1
|
Lazo PA. VRK2 kinase pathogenic pathways in cancer and neurological diseases. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119949. [PMID: 40187568 DOI: 10.1016/j.bbamcr.2025.119949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/07/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The VRK2 ser-thr kinase, belonging to the dark kinome, is implicated in the pathogenesis of cancer progression, neurological and psychiatric diseases. The VRK2 gene codes for two isoforms. The main isoform (VRK2A) is mainly located in the cytoplasm, and anchored to different types of membranes, such as the endoplasmic reticulum, mitochondria and nuclear envelope. The VRK2A isoform interacts with signaling modules assembled on scaffold proteins such as JIP1 or KSR1, forming stable complexes and blocking the activation of regulatory signaling pathways by altering their intracellular localization and the balance among them. VRK2 regulates apoptosis, nuclear membrane organization, immune responses, and Cajal bodies. Wild-type VRK2 is overexpressed in tumors and contributes to cancer development. In cells and tumors with low levels of nuclear VRK1, VRK2 generates by alternative splicing a shorter isoform (VRK2B) that lacks the C-terminal hydrophobic tail and permits its relocation to nuclei. Furthermore, rare VRK2 gene variants are associated with different neurological or psychiatric diseases such as schizophrenia, epilepsy, bipolar disorder, depression, autism, circadian clock alterations and insomnia, but their pathogenic mechanism is unknown. These diseases are a likely consequence of an altered balance among different signaling pathways that are regulated by VRK2.
Collapse
Affiliation(s)
- Pedro A Lazo
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
2
|
Hegarty CE, Ianni AM, Kohn PD, Kolachana B, Gregory M, Masdeu JC, Eisenberg DP, Berman KF. Polymorphism in the ZNF804A Gene and Variation in D 1 and D 2/D 3 Dopamine Receptor Availability in the Healthy Human Brain: A Dual Positron Emission Tomography Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:121-128. [PMID: 33712377 PMCID: PMC10501410 DOI: 10.1016/j.bpsc.2020.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND The rs1344706 single nucleotide polymorphism in the ZNF804A gene has been associated with risk for psychosis in multiple genome-wide association studies, yet mechanisms underlying this association are not known. Given preclinical work suggesting an impact of ZNF804A on dopamine receptor gene transcription and clinical studies establishing dopaminergic dysfunction in patients with schizophrenia, we hypothesized that the ZNF804A risk single nucleotide polymorphism would be associated with variation in dopamine receptor availability in the human brain. METHODS In this study, 72 healthy individuals genotyped for rs1344706 completed both [18F]fallypride and [11C]NNC-112 positron emission tomography scans to measure D2/D3 and D1 receptor availability, respectively. Genetic effects on estimates of binding potential for each ligand were tested first with canonical subject-specific striatal regions of interest analyses, followed by exploratory whole-brain voxelwise analyses to test for more localized striatal signals and for extrastriatal effects. RESULTS Region of interest analyses revealed significantly less D2/D3 receptor availability in risk-allele homozygotes (TT) compared with non-risk allele carriers (G-allele carrier group: TG and GG) in the associative striatum and sensorimotor striatum, but no significant differences in striatal D1 receptor availability. CONCLUSIONS These data suggest that ZNF804A genotype may be meaningfully linked to dopaminergic function in the human brain. The results also may provide information to guide future studies of ZNF804A-related mechanisms of schizophrenia risk.
Collapse
Affiliation(s)
- Catherine E Hegarty
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland; Neuroscience Graduate Program, Brown University, Providence, Rhode Island
| | - Angela M Ianni
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Philip D Kohn
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Bhaskar Kolachana
- Human Brain Collection Core, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Michael Gregory
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Joseph C Masdeu
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Daniel P Eisenberg
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Karen F Berman
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland.
| |
Collapse
|
3
|
Liu X, Han T, Xie H, Fu Z, Yao Q, Lin Z, Zhu H, Zhan D. Evaluation of the relationship between VRK2, rs4380187 polymorphisms, and genetic susceptibility to schizophrenia in the Chinese Han population. J Gene Med 2021; 23:e3313. [PMID: 33522046 DOI: 10.1002/jgm.3313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Schizophrenia (SZ) is a serious hereditary mental disease with a low recovery rate, especially due to the lack of understanding about the cause of the disease. VRK2 is considered to be related to the pathogenesis of schizophrenia. In this study, we analyzed the correlation between VRK2, rs4380187 single-nucleotide polymorphism (SNP), and schizophrenia. METHODS Peripheral blood DNA was extracted using a genomic DNA extraction kit. The DNA samples were genotyped using the Agena MassARRAY platform, and four genetic models were applied to compute the odds ratios (ORs) and 95% confidence intervals (CIs) using unconditional logistic regression. The p value was obtained by the chi-square and t test for independent samples. RESULTS The C allele of rs4380187 SNP was significantly (p = 0.008) associated with decreased risk of SZ. The AA genotype of rs4380187 showed significantly (p = 0.009) lower frequency in cases with SZ than in controls and was associated with decreased risk of the disease. The frequency of the CA genotype of rs4380187 correlated with a 0.73-fold decreased risk of SZ (p = 0.033). In the co-dominant genetic model, the genotype of rs4380187 was associated with a decreased risk of SZ (p = 0.010). We also found that the log-additive model of rs4380187 significantly reduced the risk of SZ disease (p = 0.007). CONCLUSION This study provides further evidence that rs4380187 SNP is associated with SZ. This genotype variation could be associated with the psychopathology and cognitive function in SZ.
Collapse
Affiliation(s)
- Xianglai Liu
- Institute of Mental Health, Anning Hospital, Hainan Province, China
| | - Tianming Han
- Institute of Mental Health, Anning Hospital, Hainan Province, China
| | - Hailing Xie
- Institute of Mental Health, Anning Hospital, Hainan Province, China.,The Third Department of Psychiatry, Anning Hospital, Hainan Province, China
| | - Zejuan Fu
- Institute of Mental Health, Anning Hospital, Hainan Province, China
| | - Qiankun Yao
- Institute of Mental Health, Anning Hospital, Hainan Province, China
| | - Zhan Lin
- Institute of Mental Health, Anning Hospital, Hainan Province, China
| | - Hong Zhu
- Institute of Mental Health, Anning Hospital, Hainan Province, China
| | - Dafei Zhan
- Institute of Mental Health, Anning Hospital, Hainan Province, China
| |
Collapse
|
4
|
Nedoluzhko A, Gruzdeva N, Sharko F, Rastorguev S, Zakharova N, Kostyuk G, Ushakov V. The Biomarker and Therapeutic Potential of Circular Rnas in Schizophrenia. Cells 2020; 9:E2238. [PMID: 33020462 PMCID: PMC7601372 DOI: 10.3390/cells9102238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are endogenous, single-stranded, most frequently non-coding RNA (ncRNA) molecules that play a significant role in gene expression regulation. Circular RNAs can affect microRNA functionality, interact with RNA-binding proteins (RBPs), translate proteins by themselves, and directly or indirectly modulate gene expression during different cellular processes. The affected expression of circRNAs, as well as their targets, can trigger a cascade of events in the genetic regulatory network causing pathological conditions. Recent studies have shown that altered circular RNA expression patterns could be used as biomarkers in psychiatric diseases, including schizophrenia (SZ); moreover, circular RNAs together with other cell molecules could provide new insight into mechanisms of this disorder. In this review, we focus on the role of circular RNAs in the pathogenesis of SZ and analyze their biomarker and therapeutic potential in this disorder.
Collapse
Affiliation(s)
- Artem Nedoluzhko
- Faculty of Biosciences and Aquaculture, Nord University, PB 1490. 8049 Bodø, Norway
- Mental-Health Clinic No. 1 Named after N.A. Alexeev, Moscow Healthcare Department, Zagorodnoye Highway, 2, 115191 Moscow, Russia; (N.Z.); (G.K.); (V.U.)
| | - Natalia Gruzdeva
- National Research Center “Kurchatov Institute”, 1st Akademika Kurchatova Square, 123182 Moscow, Russia; (N.G.); (F.S.); (S.R.)
| | - Fedor Sharko
- National Research Center “Kurchatov Institute”, 1st Akademika Kurchatova Square, 123182 Moscow, Russia; (N.G.); (F.S.); (S.R.)
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect 33/2, 119071 Moscow, Russia
| | - Sergey Rastorguev
- National Research Center “Kurchatov Institute”, 1st Akademika Kurchatova Square, 123182 Moscow, Russia; (N.G.); (F.S.); (S.R.)
| | - Natalia Zakharova
- Mental-Health Clinic No. 1 Named after N.A. Alexeev, Moscow Healthcare Department, Zagorodnoye Highway, 2, 115191 Moscow, Russia; (N.Z.); (G.K.); (V.U.)
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alexeev, Moscow Healthcare Department, Zagorodnoye Highway, 2, 115191 Moscow, Russia; (N.Z.); (G.K.); (V.U.)
| | - Vadim Ushakov
- Mental-Health Clinic No. 1 Named after N.A. Alexeev, Moscow Healthcare Department, Zagorodnoye Highway, 2, 115191 Moscow, Russia; (N.Z.); (G.K.); (V.U.)
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Leninskiye Gory, 119899 Moscow, Russia
| |
Collapse
|
5
|
Liu YP, Wu X, Xia X, Yao J, Wang BJ. The genome-wide supported CACNA1C gene polymorphisms and the risk of schizophrenia: an updated meta-analysis. BMC MEDICAL GENETICS 2020; 21:159. [PMID: 32770953 PMCID: PMC7414708 DOI: 10.1186/s12881-020-01084-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023]
Abstract
Background The CACNA1C gene was defined as a risk gene for schizophrenia in a large genome-wide association study of European ancestry performed by the Psychiatric Genomics Consortium. Previous meta-analyses focused on the association between the CACNA1C gene rs1006737 and schizophrenia. The present study focused on whether there was an ancestral difference in the effect of the CACNA1C gene rs1006737 on schizophrenia. rs2007044 and rs4765905 were analyzed for their effect on the risk of schizophrenia. Methods Pooled, subgroup, sensitivity, and publication bias analysis were conducted. Results A total of 18 studies met the inclusion criteria, including fourteen rs1006737 studies (15,213 cases, 19,412 controls), three rs2007044 studies (6007 cases, 6518 controls), and two rs4765905 studies (2435 cases, 2639 controls). An allele model study also related rs2007044 and rs4765905 to schizophrenia. The overall meta-analysis for rs1006737, which included the allele contrast, dominant, recessive, codominance, and complete overdominance models, showed significant differences between rs1006737 and schizophrenia. However, the ancestral-based subgroup analysis for rs1006737 found that the genotypes GG and GG + GA were only protective factors for schizophrenia in Europeans. In contrast, the rs1006737 GA genotype only reduced the risk of schizophrenia in Asians. Conclusions Rs1006737, rs2007044, and rs4765905 of the CACNA1C gene were associated with susceptibility to schizophrenia. However, the influence model for rs1006737 on schizophrenia in Asians and Europeans demonstrated both similarities and differences between the two ancestors.
Collapse
Affiliation(s)
- Yong-Ping Liu
- School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Xue Wu
- School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Xi Xia
- School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang, 110122, China.
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang, 110122, China.
| |
Collapse
|
6
|
Rs1625579 polymorphism in the MIR137 gene is associated with the risk of schizophrenia: updated meta-analysis. Neurosci Lett 2019; 713:134535. [DOI: 10.1016/j.neulet.2019.134535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022]
|
7
|
Wang D, Guo T, Guo Q, Zhang S, Zhang J, Luo J. The Association Between Schizophrenia Risk Variants and Creativity in Healthy Han Chinese Subjects. Front Psychol 2019; 10:2218. [PMID: 31649580 PMCID: PMC6792478 DOI: 10.3389/fpsyg.2019.02218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/17/2019] [Indexed: 11/14/2022] Open
Abstract
Although previous evidence has suggested that there is a genetic link between schizophrenia and creativity, the specific genetic variants that underlie the link are still largely unknown. To further explore the potential genetic link between schizophrenia and creativity, in a sample of 580 healthy Han Chinese subjects, this study aimed to (1) validate the role of Neuregulin 1 (NRG1) rs6994992 (one schizophrenia risk variant that has been previously linked to creativity in the European population) in the relationship between schizophrenia and creativity and (2) explore the associations between 10 other schizophrenia risk variants and creativity. For NRG1 rs6994992, the result validated its association with creativity measures. However, since NRG1 rs6994992 is not a schizophrenia risk variant in the Han Chinese population, the validated association suggested that ethnic difference may exist in the relationship between NRG1 rs6994992, schizophrenia and creativity. For other schizophrenia risk variants, the result only demonstrated a nominal association between ZNF536 rs2053079 and creativity measures which would not survive correction for multiple testing. No association between polygenic risk score for these 10 schizophrenia risk variants and creativity measures was observed. In conclusion, this study provides limited evidence for the associations between these schizophrenia risk variants and creativity in healthy Han Chinese subjects. Future studies are warranted to better understand the potential genetic link between schizophrenia and creativity.
Collapse
Affiliation(s)
- Dan Wang
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, The Collaborative Innovation Center for Capital Education Development, Capital Normal University, Beijing, China
| | - Tingting Guo
- Beijing Gese Technology Co., Ltd., Beijing, China
| | - Qi Guo
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, The Collaborative Innovation Center for Capital Education Development, Capital Normal University, Beijing, China
| | - Shun Zhang
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Jinghuan Zhang
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Jing Luo
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, The Collaborative Innovation Center for Capital Education Development, Capital Normal University, Beijing, China
| | | |
Collapse
|
8
|
Cui L, Wang F, Chang M, Yin Z, Fan G, Song Y, Wei Y, Xu Y, Zhang Y, Tang Y, Gong X, Xu K. Spontaneous Regional Brain Activity in Healthy Individuals is Nonlinearly Modulated by the Interaction of ZNF804A rs1344706 and COMT rs4680 Polymorphisms. Neurosci Bull 2019; 35:735-742. [PMID: 30852803 DOI: 10.1007/s12264-019-00357-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022] Open
Abstract
ZNF804A rs1344706 has been identified as one of the risk genes for schizophrenia. However, the neural mechanisms underlying this association are unknown. Given that ZNF804A upregulates the expression of COMT, we hypothesized that ZNF804A may influence brain activity by interacting with COMT. Here, we genotyped ZNF804A rs1344706 and COMT rs4680 in 218 healthy Chinese participants. Amplitudes of low-frequency fluctuations (ALFFs) were applied to analyze the main and interaction effects of ZNF804A rs1344706 and COMT rs4680. The ALFFs of the bilateral dorsolateral prefrontal cortex showed a significant ZNF804A rs1344706 × COMT rs4680 interaction, manifesting as a U-shaped modulation, presumably by dopamine signaling. Significant main effects were also found. These findings suggest that ZNF804A affects the resting-state functional activation by interacting with COMT, and may improve our understanding of the neurobiological effects of ZNF804A and its association with schizophrenia.
Collapse
Affiliation(s)
- Lingling Cui
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Fei Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Miao Chang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Zhiyang Yin
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Guoguang Fan
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yanzhuo Song
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yange Wei
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yixiao Xu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yifan Zhang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Xiaohong Gong
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| | - Ke Xu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
9
|
Li M, Yue W. VRK2, a Candidate Gene for Psychiatric and Neurological Disorders. MOLECULAR NEUROPSYCHIATRY 2018; 4:119-133. [PMID: 30643786 PMCID: PMC6323383 DOI: 10.1159/000493941] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022]
Abstract
Recent large-scale genetic approaches, such as genome-wide association studies, have identified multiple genetic variations that contribute to the risk of mental illnesses, among which single nucleotide polymorphisms (SNPs) within or near the vaccinia related kinase 2 (VRK2) gene have gained consistent support for their correlations with multiple psychiatric and neurological disorders including schizophrenia (SCZ), major depressive disorder (MDD), and genetic generalized epilepsy. For instance, the genetic variant rs1518395 in VRK2 showed genome-wide significant associations with SCZ (35,476 cases and 46,839 controls, p = 3.43 × 10-8) and MDD (130,620 cases and 347,620 controls, p = 4.32 × 10-12) in European populations. This SNP was also genome-wide significantly associated with SCZ in Han Chinese population (12,083 cases and 24,097 controls, p = 3.78 × 10-13), and all associations were in the same direction of allelic effects. These studies highlight the potential roles of VRK2 in the central nervous system, and this gene therefore might be a good candidate to investigate the shared genetic and molecular basis between SCZ and MDD, as it is one of the few genes known to show genome-wide significant associations with both illnesses. Furthermore, the VRK2 gene was found to be involved in multiple other congenital deficits related to the malfunction of neurodevelopment, adding further support for the involvement of this gene in the pathogenesis of these neurological and psychiatric illnesses. While the precise function of VRK2 in these conditions remains unclear, preliminary evidence suggests that it may affect neuronal proliferation and migration via interacting with multiple essential signaling pathways involving other susceptibility genes/proteins for psychiatric disorders. Here, we have reviewed the recent progress of genetic and molecular studies of VRK2, with an emphasis on its role in psychiatric illnesses and neurological functions. We believe that attention to this important gene is necessary, and further investigations of VRK2 may provide hints into the underlying mechanisms of SCZ and MDD.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Weihua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
10
|
Xiao X, Zhang C, Grigoroiu-Serbanescu M, Wang L, Li L, Zhou D, Yuan TF, Wang C, Chang H, Wu Y, Li Y, Wu DD, Yao YG, Li M. The cAMP responsive element-binding (CREB)-1 gene increases risk of major psychiatric disorders. Mol Psychiatry 2018; 23:1957-1967. [PMID: 29158582 DOI: 10.1038/mp.2017.243] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/25/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022]
Abstract
Bipolar disorder (BPD), schizophrenia (SCZ) and unipolar major depressive disorder (MDD) are primary psychiatric disorders sharing substantial genetic risk factors. We previously reported that two single-nucleotide polymorphisms (SNPs) rs2709370 and rs6785 in the cAMP responsive element-binding (CREB)-1 gene (CREB1) were associated with the risk of BPD and abnormal hippocampal function in populations of European ancestry. In the present study, we further expanded our analyses of rs2709370 and rs6785 in multiple BPD, SCZ and MDD data sets, including the published Psychiatric Genomics Consortium (PGC) genome-wide association study, the samples used in our previous CREB1 study, and six additional cohorts (three new BPD samples, two new SCZ samples and one new MDD sample). Although the associations of both CREB1 SNPs with each illness were not replicated in the new cohorts (BPD analysis in 871 cases and 1089 controls (rs2709370, P=0.0611; rs6785, P=0.0544); SCZ analysis in 1273 cases and 1072 controls (rs2709370, P=0.230; rs6785, P=0.661); and MDD analysis in 129 cases and 100 controls (rs2709370, P=0.114; rs6785, P=0.188)), an overall meta-analysis of all included samples suggested that both SNPs were significantly associated with increased risk of BPD (11 105 cases and 51 331 controls; rs2709370, P=2.33 × 10-4; rs6785, P=6.33 × 10-5), SCZ (34 913 cases and 44 528 controls; rs2709370, P=3.96 × 10-5; rs6785, P=2.44 × 10-5) and MDD (9369 cases and 9619 controls; rs2709370, P=0.0144; rs6785, P=0.0314), with the same direction of allelic effects across diagnostic categories. We then examined the impact of diagnostic status on CREB1 mRNA expression using data obtained from independent brain tissue samples, and observed that the mRNA expression of CREB1 was significantly downregulated in psychiatric patients compared with healthy controls. The protein-protein interaction analyses showed that the protein encoded by CREB1 directly interacted with several risk genes of psychiatric disorders identified by GWAS. In conclusion, the current study suggests that CREB1 might be a common risk gene for major psychiatric disorders, and further investigations are necessary.
Collapse
Affiliation(s)
- X Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - C Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - M Grigoroiu-Serbanescu
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania.
| | - L Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - L Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - D Zhou
- Ningbo Kangning Hospital, Ningbo, China
| | - T-F Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - C Wang
- Department of Pharmacology, and Provincial Key Laboratory of Pathophysiology in Ningbo University School of Medicine, Ningbo, China
| | - H Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Y Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Y Li
- Laboratory for Conservation and Utilization of Bio-Resource, Yunnan University, Kunming, China
| | - D-D Wu
- State Key Laboratory of Genetic Resources and Evolution, Chinese Academy of Sciences, Kunming, China
| | - Y-G Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - M Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
11
|
Genetic association and meta-analysis of a schizophrenia GWAS variant rs10489202 in East Asian populations. Transl Psychiatry 2018; 8:144. [PMID: 30087317 PMCID: PMC6081446 DOI: 10.1038/s41398-018-0211-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/16/2018] [Accepted: 04/04/2018] [Indexed: 12/14/2022] Open
Abstract
Previous genome-wide association studies (GWAS) suggest that rs10489202 in the intron of MPC2 (mitochondrial pyruvate carrier 2) is a risk locus for schizophrenia in Han Chinese populations. To validate this discovery, we conducted a replication analysis in an independent case-control sample of Han Chinese ancestry (437 cases and 2031 controls), followed by a meta-analytic investigation in multiple East Asian samples. In the replication analysis, rs10489202 showed marginal association with schizophrenia (two-tailed P = 0.071, OR = 1.192 for T allele); in the meta-analysis using a total of 14,340 cases and 20,349 controls from ten East Asian samples, rs10489202 was genome-wide significantly associated with schizophrenia (two-tailed P = 3.39 × 10-10, OR = 1.161 for T allele, under the fixed-effect model). We then performed an explorative investigation of the association between this SNP and bipolar disorder, as well as a major depressive disorder, and the schizophrenia-predisposing allele was associated with an increased risk of major depressive disorder in East Asians (two-tailed P = 2.49 × 10-2, OR = 1.103 for T allele). Furthermore, expression quantitative trait loci (eQTL) analysis in lymphoblastoid cell lines from East Asian donors (N = 85 subjects) revealed that rs10489202 was specifically and significantly associated with the expression of TIPRL gene (P = 5.67 × 10-4). Taken together, our data add further support for the genetic involvement of this genomic locus in the susceptibility to schizophrenia in East Asian populations, and also provide preliminary evidence for the underlying molecular mechanisms.
Collapse
|
12
|
Zhou Y, Dong F, Mao Y. Control of CNS functions by RNA-binding proteins in neurological diseases. ACTA ACUST UNITED AC 2018; 4:301-313. [PMID: 30410853 DOI: 10.1007/s40495-018-0140-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of Review This review summarizes recent studies on the molecular mechanisms of RNA binding proteins (RBPs) that control neurological functions and pathogenesis in various neurodevelopmental and neurodegenerative diseases, including autism spectrum disorders, schizophrenia, Alzheimer's disease, amyotrophic lateral sclerosis, frontotemporal dementia, and spinocerebellar ataxia. Recent Findings RBPs are critical players in gene expression that regulate every step of posttranscriptional modifications. Recent genome-wide approaches revealed that many proteins associate with RNA, but do not contain any known RNA binding motifs. Additionally, many causal and risk genes of neurodevelopmental and neurodegenerative diseases are RBPs. Development of high-throughput sequencing methods has mapped out the fingerprints of RBPs on transcripts and provides unprecedented potential to discover new mechanisms of neurological diseases. Insights into how RBPs modulate neural development are important for designing effective therapies for numerous neurodevelopmental and neurodegenerative diseases. Summary RBPs have diverse mechanisms for modulating RNA processing and, thereby, controlling neurogenesis. Understanding the role of disease-associated RBPs in neurogenesis is vital for developing novel treatments for neurological diseases.
Collapse
Affiliation(s)
- Yijing Zhou
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Fengping Dong
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
13
|
Wang L, Chen J, Li Z, Sun W, Chen B, Li S, Li W, Lu D, Wang Y, Shi Y. Association study of NDST3 gene for schizophrenia, bipolar disorder, major depressive disorder in the Han Chinese population. Am J Med Genet B Neuropsychiatr Genet 2018; 177:3-9. [PMID: 29140583 DOI: 10.1002/ajmg.b.32573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/05/2017] [Indexed: 12/14/2022]
Abstract
The NDST3 gene at 4q26 was a functional candidate gene for mental disorders. Recently, a novel genome-wide significant risk locus at chromosome 4q26 was identified and the top single nucleotide polymorphism rs11098403 in the vicinity of NDST3 gene was reported to confer risk of schizophrenia in Caucasian. Nevertheless, association between NDST3 gene polymorphisms and schizophrenia, bipolar disorder, or major depressive disorders has not been well studied in the Han Chinese population. To further investigate whether NDST3 is a risk gene for these mental disorders, we genotyped and analyzed eight tag SNPs (rs11098403, rs10857057, rs2389521, rs4833564, rs6837896, rs7689157, rs3817274, rs609512) covering NDST3 gene in 1,248 schizophrenia cases, 1,056 major depression cases, 1,344 bipolar disorder cases, and 1,248 controls of Chinese origin. However, there was no significant difference in allelic or genotypic frequency observed between each case group and healthy controls. Accordingly, our study does not support that the NDST3 gene plays a major role in schizophrenia, bipolar disorder, and major depressive disorder in the Han Chinese population.
Collapse
Affiliation(s)
- Lin Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Weiming Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Boyu Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Sining Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China.,ULink College of Shanghai, Shanghai, P. R. China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Dajiang Lu
- School of Kinesiology, Shanghai University of Sport, Shanghai, P. R. China
| | - Yonggang Wang
- Department of Neurology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China.,Shanghai Changning Mental Health Center, Shanghai, P. R. China.,Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
14
|
Javidfar B, Park R, Kassim BS, Bicks LK, Akbarian S. The epigenomics of schizophrenia, in the mouse. Am J Med Genet B Neuropsychiatr Genet 2017; 174:631-640. [PMID: 28699694 PMCID: PMC5573750 DOI: 10.1002/ajmg.b.32566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/04/2017] [Accepted: 06/12/2017] [Indexed: 01/02/2023]
Abstract
Large-scale consortia including the Psychiatric Genomics Consortium, the Common Minds Consortium, BrainSeq and PsychENCODE, and many other studies taken together provide increasingly detailed insights into the genetic and epigenetic risk architectures of schizophrenia (SCZ) and offer vast amounts of molecular information, but with largely unexplored therapeutic potential. Here we discuss how epigenomic studies in human brain could guide animal work to test the impact of disease-associated alterations in chromatin structure and function on cognition and behavior. For example, transcription factors such as MYOCYTE-SPECIFIC ENHANCER FACTOR 2C (MEF2C), or multiple regulators of the open chromatin mark, methyl-histone H3-lysine 4, are associated with the genetic risk architectures of common psychiatric disease and alterations in chromatin structure and function in diseased brain tissue. Importantly, these molecules also affect cognition and behavior in genetically engineered mice, including virus-mediated expression changes in prefrontal cortex (PFC) and other key nodes in the circuitry underlying psychosis. Therefore, preclinical and small laboratory animal work could target genomic sequences affected by chromatin alterations in SCZ. To this end, in vivo editing of enhancer and other regulatory non-coding DNA by RNA-guided nucleases including CRISPR-Cas, and designer transcription factors, could be expected to deliver pipelines for novel therapeutic approaches aimed at improving cognitive dysfunction and other core symptoms of SCZ.
Collapse
Affiliation(s)
| | | | | | - Lucy K. Bicks
- Department of Psychiatry; Friedman Brain Institute; Icahn School of Medicine at Mount Sinai; New York New York
| | - Schahram Akbarian
- Department of Psychiatry; Friedman Brain Institute; Icahn School of Medicine at Mount Sinai; New York New York
| |
Collapse
|
15
|
Liu W, Liu F, Xu X, Bai Y. Replicated association between the European GWAS locus rs10503253 at CSMD1 and schizophrenia in Asian population. Neurosci Lett 2017; 647:122-128. [DOI: 10.1016/j.neulet.2017.03.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/12/2017] [Accepted: 03/21/2017] [Indexed: 11/25/2022]
|
16
|
ZNF804A rs1344706 interacts with COMT rs4680 to affect prefrontal volume in healthy adults. Brain Imaging Behav 2017; 12:13-19. [DOI: 10.1007/s11682-016-9671-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Variability of 128 schizophrenia-associated gene variants across distinct ethnic populations. Transl Psychiatry 2017; 7:e988. [PMID: 28045464 PMCID: PMC5545726 DOI: 10.1038/tp.2016.260] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/06/2016] [Accepted: 10/31/2016] [Indexed: 12/20/2022] Open
Abstract
Schizophrenia is a common polygenetic disease affecting 0.5-1% of individuals across distinct ethnic populations. PGC-II, the largest genome-wide association study investigating genetic risk factors for schizophrenia, previously identified 128 independent schizophrenia-associated genetic variants (GVs). The current study examined the genetic variability of GVs across ethnic populations. To assess the genetic variability across populations, the 'variability indices' (VIs) of the 128 schizophrenia-associated GVs were calculated. We used 2504 genomes from the 1000 Genomes Project taken from 26 worldwide healthy samples comprising five major ethnicities: East Asian (EAS: n=504), European (EUR: n=503), African (AFR: n=661), American (AMR: n=347) and South Asian (SAS: n=489). The GV with the lowest variability was rs36068923 (VI=1.07). The minor allele frequencies (MAFs) were 0.189, 0.192, 0.256, 0.183 and 0.194 for EAS, EUR, AFR, AMR and SAS, respectively. The GV with the highest variability was rs7432375 (VI=9.46). The MAFs were 0.791, 0.435, 0.041, 0.594 and 0.508 for EAS, EUR, AFR, AMR and SAS, respectively. When we focused on the EAS and EUR population, the allele frequencies of 86 GVs significantly differed between the EAS and EUR (P<3.91 × 10-4). The GV with the highest variability was rs4330281 (P=1.55 × 10-138). The MAFs were 0.023 and 0.519 for the EAS and EUR, respectively. The GV with the lowest variability was rs2332700 (P=9.80 × 10-1). The MAFs were similar between these populations (that is, 0.246 and 0.247 for the EAS and EUR, respectively). Interestingly, the mean allele frequencies of the GVs did not significantly differ between these populations (P>0.05). Although genetic heterogeneities were observed in the schizophrenia-associated GVs across ethnic groups, the combination of these GVs might increase the risk of schizophrenia.
Collapse
|
18
|
Li L, Chang H, Peng T, Li M, Xiao X. Evidence of AS3MT d2d3-Associated Variants within 10q24.32-33 in the Genetic Risk of Major Affective Disorders. MOLECULAR NEUROPSYCHIATRY 2016; 2:213-218. [PMID: 28277567 DOI: 10.1159/000452998] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/28/2016] [Indexed: 01/19/2023]
Abstract
Genome-wide association studies suggest that 10q24.32-33 is a risk region for schizophrenia (SCZ). Considering the substantial genetic overlap between SCZ and major affective disorders, we would like to investigate whether the 10q24.32-33 region confers risk of affective disorders. We chose three SCZ genome-wide significant SNPs (rs7914558, rs7085104, and rs11191580) in 10q24.32-33 and collected the statistical data from European and Asian populations to perform systematic meta-analyses, which finally included up to 26,413 cases with affective disorders and 24,849 controls. Meta-analyses showed that all SNPs were nominally associated with major affective disorders. Considering the a priori evidence that these SNPs were associated with the expression of AS3MTd2d3 isoform in the human brain, our data confirms the potential involvement of AS3MTd2d3 in the genetic risk of major affective disorders.
Collapse
Affiliation(s)
- Lingyi Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Tao Peng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| |
Collapse
|