1
|
Shi R, Ye J, Liu Z, Wang C, Wu S, Shen H, Suo Q, Li W, He X, Zhang Z, Tang Y, Yang GY, Wang Y. Tropism-shifted AAV-PHP.eB-mediated bFGF gene therapy promotes varied neurorestoration after ischemic stroke in mice. Neural Regen Res 2026; 21:704-714. [PMID: 38993123 DOI: 10.4103/nrr.nrr-d-23-01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/26/2024] [Indexed: 07/13/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202602000-00040/figure1/v/2025-05-05T160104Z/r/image-tiff AAV-PHP.eB is an artificial adeno-associated virus (AAV) that crosses the blood-brain barrier and targets neurons more efficiently than other AAVs when administered systematically. While AAV-PHP.eB has been used in various disease models, its cellular tropism in cerebrovascular diseases remains unclear. In the present study, we aimed to elucidate the tropism of AAV-PHP.eB for different cell types in the brain in a mouse model of ischemic stroke and evaluate its effectiveness in mediating basic fibroblast growth factor ( bFGF ) gene therapy. Mice were injected intravenously with AAV-PHP.eB either 14 days prior to (pre-stroke) or 1 day following (post-stroke) transient middle cerebral artery occlusion. Notably, we observed a shift in tropism from neurons to endothelial cells with post-stroke administration of AAV-PHP.eB-mNeonGreen (mNG). This endothelial cell tropism correlated strongly with expression of the endothelial membrane receptor lymphocyte antigen 6 family member A (Ly6A). Furthermore, AAV-PHP.eB-mediated overexpression of bFGF markedly improved neurobehavioral outcomes and promoted long-term neurogenesis and angiogenesis post-ischemic stroke. Our findings underscore the significance of considering potential tropism shifts when utilizing AAV-PHP.eB-mediated gene therapy in neurological diseases and suggest a promising new strategy for bFGF gene therapy in stroke treatment.
Collapse
Affiliation(s)
- Rubing Shi
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Ye
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ze Liu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Wang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shengju Wu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Shen
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Suo
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wanlu Li
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaosong He
- Department of Emergency, the Second Affiliated Hospital, Department of Human Anatomy, School of Basic Science, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhijun Zhang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yaohui Tang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yongting Wang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Holst MR, de Wit NM, Ozgür B, Brachner A, Hyldig K, Appelt-Menzel A, Sleven H, Cader Z, de Vries HE, Neuhaus W, Jensen A, Brodin B, Nielsen MS. Subcellular trafficking and transcytosis efficacy of different receptor types for therapeutic antibody delivery at the blood‒brain barrier. Fluids Barriers CNS 2023; 20:82. [PMID: 37932749 PMCID: PMC10626680 DOI: 10.1186/s12987-023-00480-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
Here, we report an experimental setup to benchmark different receptors for targeted therapeutic antibody delivery at the blood-brain barrier. We used brain capillary endothelial-like cells derived from induced pluripotent stem cells (hiPSC-BECs) as a model system and compared them to colon epithelial Caco-2 cells. This approach helped to identify favourable receptors for transport into the cell layer itself or for directing transport for transcytosis across the cell layer. The sorting receptors transferrin receptor and sortilin were shown to be efficient as antibody cargo receptors for intracellular delivery to the cell layer. In contrast, the cell surface receptors CD133 and podocalyxin were identified as static and inefficient receptors for delivering cargo antibodies. Similar to in vivo studies, the hiPSC-BECs maintained detectable transcytotic transport via transferrin receptor, while transcytosis was restricted using sortilin as a cargo receptor. Based on these findings, we propose the application of sortilin as a cargo receptor for delivering therapeutic antibodies into the brain microvascular endothelium.
Collapse
Affiliation(s)
| | - Nienke Marije de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Burak Ozgür
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
- Biotherapeutic Discovery, H. Lundbeck A/S, Valby, 2500, Copenhagen, Denmark
| | - Andreas Brachner
- AIT Austrian Institute of Technology GmbH, Competence Unit Molecular Diagnostics, Centre for Health and Bioresources, Vienna, Austria
| | - Kathrine Hyldig
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Biotherapeutic Discovery, H. Lundbeck A/S, Valby, 2500, Copenhagen, Denmark
| | - Antje Appelt-Menzel
- Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Röntgenring 11, Würzburg, Germany
- Translational Center Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research ISC, Röntgenring 12, Würzburg, Germany
| | - Hannah Sleven
- Translational Molecular Neuroscience Group, University of Oxford, Oxford, UK
| | - Zameel Cader
- Translational Molecular Neuroscience Group, University of Oxford, Oxford, UK
| | - Helga Eveline de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Winfried Neuhaus
- AIT Austrian Institute of Technology GmbH, Competence Unit Molecular Diagnostics, Centre for Health and Bioresources, Vienna, Austria
- Department of Medicine, Faculty Medicine and Dentistry, Private Danube University, 3500, Krems, Austria
| | - Allan Jensen
- Biotherapeutic Discovery, H. Lundbeck A/S, Valby, 2500, Copenhagen, Denmark
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
3
|
Toth AE, Helms HC, Harazin A, Johnsen KB, Goldeman C, Burkhart A, Thomsen MS, Kempen PJ, Klepe A, Lipka DV, Møller PL, Andresen TL, Nyegaard M, Moos T, Brodin B, Nielsen MS. Sortilin regulates blood-brain barrier integrity. FEBS J 2021; 289:1062-1079. [PMID: 34626084 DOI: 10.1111/febs.16225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/09/2021] [Accepted: 10/07/2021] [Indexed: 01/09/2023]
Abstract
Brain homeostasis depends on the existence of the blood-brain barrier (BBB). Despite decades of research, the factors and signalling pathways for modulating and maintaining BBB integrity are not fully elucidated. Here, we characterise the expression and function of the multifunctional receptor, sortilin, in the cells of the BBB, in vivo and in vitro. We show that sortilin acts as an important regulatory protein of the BBB's tightness. In rats lacking sortilin, the BBB was leaky, which correlated well with relocated distribution of the localisation of zonula occludens-1, VE-cadherin and β-catenin junctional proteins. Furthermore, the absence of sortilin in brain endothelial cells resulted in decreased phosphorylation of Akt signalling protein and increased the level of phospho-ERK1/2. As a putative result of MAPK/ERK pathway activity, the junctions between the brain endothelial cells were disintegrated and the integrity of the BBB became compromised. The identified barrier differences between wild-type and Sort1-/- brain endothelial cells can pave the way for a better understanding of sortilin's role in the healthy and diseased BBB.
Collapse
Affiliation(s)
- Andrea E Toth
- Department of Biomedicine, Faculty of Health, Aarhus University, Denmark.,Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Copenhagen, Denmark
| | - Hans C Helms
- Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Copenhagen, Denmark.,Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Andras Harazin
- Department of Biomedicine, Faculty of Health, Aarhus University, Denmark
| | - Kasper B Johnsen
- Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Copenhagen, Denmark.,Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Lyngby, Denmark
| | - Charlotte Goldeman
- Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Copenhagen, Denmark.,Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Annette Burkhart
- Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Copenhagen, Denmark.,Laboratory of Neurobiology, Biomedicine Group, Department of Health Science and Technology, Aalborg University, Denmark
| | - Maj S Thomsen
- Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Copenhagen, Denmark.,Laboratory of Neurobiology, Biomedicine Group, Department of Health Science and Technology, Aalborg University, Denmark
| | - Paul J Kempen
- Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Copenhagen, Denmark.,Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Lyngby, Denmark
| | - Adrián Klepe
- Department of Biomedicine, Faculty of Health, Aarhus University, Denmark
| | - Dora V Lipka
- Department of Biomedicine, Faculty of Health, Aarhus University, Denmark
| | - Peter L Møller
- Department of Biomedicine, Faculty of Health, Aarhus University, Denmark
| | - Thomas L Andresen
- Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Copenhagen, Denmark.,Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Lyngby, Denmark
| | - Mette Nyegaard
- Department of Biomedicine, Faculty of Health, Aarhus University, Denmark
| | - Torben Moos
- Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Copenhagen, Denmark.,Laboratory of Neurobiology, Biomedicine Group, Department of Health Science and Technology, Aalborg University, Denmark
| | - Birger Brodin
- Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Copenhagen, Denmark.,Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Morten S Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Denmark.,Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Copenhagen, Denmark
| |
Collapse
|
4
|
Post-capillary venules are the key locus for transcytosis-mediated brain delivery of therapeutic nanoparticles. Nat Commun 2021; 12:4121. [PMID: 34226541 PMCID: PMC8257611 DOI: 10.1038/s41467-021-24323-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Effective treatments of neurodegenerative diseases require drugs to be actively transported across the blood-brain barrier (BBB). However, nanoparticle drug carriers explored for this purpose show negligible brain uptake, and the lack of basic understanding of nanoparticle-BBB interactions underlies many translational failures. Here, using two-photon microscopy in mice, we characterize the receptor-mediated transcytosis of nanoparticles at all steps of delivery to the brain in vivo. We show that transferrin receptor-targeted liposome nanoparticles are sequestered by the endothelium at capillaries and venules, but not at arterioles. The nanoparticles move unobstructed within endothelium, but transcytosis-mediated brain entry occurs mainly at post-capillary venules, and is negligible in capillaries. The vascular location of nanoparticle brain entry corresponds to the presence of perivascular space, which facilitates nanoparticle movement after transcytosis. Thus, post-capillary venules are the point-of-least resistance at the BBB, and compared to capillaries, provide a more feasible route for nanoparticle drug carriers into the brain.
Collapse
|
5
|
Christensen SC, Hudecz D, Jensen A, Christensen S, Nielsen MS. Basigin Antibodies with Capacity for Drug Delivery Across Brain Endothelial Cells. Mol Neurobiol 2021; 58:4392-4403. [PMID: 34014436 DOI: 10.1007/s12035-021-02421-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/04/2021] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) poses challenges for delivering antibody-based therapeutics to the brain and is a main obstacle for the successful application of biotherapeutics for the treatment of brain disorders. As only a small fraction of monoclonal antibodies (mAbs) is penetrating the BBB, high doses of therapeutics are required to elicit a pharmacological effect. This limitation has evoked research to improve transport across the BBB through receptor-mediated transcytosis, and several receptors have been explored for mediating this process. A recently suggested candidate is the brain endothelial cells (BECs) expressed basigin. Here, we explore the transcytosis capacity of different basigin mAbs targeting distinct epitopes using the porcine in vitro BBB models and provide data showing the intracellular vesicle sorting of these basigin mAbs in porcine BECs. Our data suggest that basigin mAbs avoid the lysosomal degradation pathway and are internalized to vesicles used by recycling receptors. Engagement of basigin mAbs with basigin led to the translocation of the mAbs across the tight BECs into the astrocytes in our in vitro BBB co-culture model. Although mAbs with higher binding affinity to basigin showed a greater astrocyte internalization, based on our experiments, it is not clear whether the transcytosis is affinity- or epitope-dependent or a combination of both. Overall, this study provides information about the intra- and intercellular fate of basigin mAbs in BECs, which are valuable for the future design of basigin-mediated drug delivery platforms.
Collapse
Affiliation(s)
- Sarah Christine Christensen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Building 1116, 8000, Aarhus C, Denmark.,Department of Biotherapeutic Discovery, H. Lundbeck A/S, Copenhagen, Denmark
| | - Diána Hudecz
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Building 1116, 8000, Aarhus C, Denmark
| | - Allan Jensen
- Department of Biotherapeutic Discovery, H. Lundbeck A/S, Copenhagen, Denmark
| | - Søren Christensen
- Department of Biotherapeutic Discovery, H. Lundbeck A/S, Copenhagen, Denmark
| | - Morten Schallburg Nielsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Building 1116, 8000, Aarhus C, Denmark.
| |
Collapse
|
6
|
Toth AE, Holst MR, Nielsen MS. Vesicular Transport Machinery in Brain Endothelial Cells: What We Know and What We Do not. Curr Pharm Des 2020; 26:1405-1416. [PMID: 32048959 DOI: 10.2174/1381612826666200212113421] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
The vesicular transport machinery regulates numerous essential functions in cells such as cell polarity, signaling pathways, and the transport of receptors and their cargoes. From a pharmaceutical perspective, vesicular transport offers avenues to facilitate the uptake of therapeutic agents into cells and across cellular barriers. In order to improve receptor-mediated transcytosis of biologics across the blood-brain barrier and into the diseased brain, a detailed understanding of intracellular transport mechanisms is essential. The vesicular transport machinery is a highly complex network and involves an array of protein complexes, cytosolic adaptor proteins, and the subcellular structures of the endo-lysosomal system. The endo-lysosomal system includes several types of vesicular entities such as early, late, and recycling endosomes, exosomes, ectosomes, retromer-coated vesicles, lysosomes, trans-endothelial channels, and tubules. While extensive research has been done on the trafficking system in many cell types, little is known about vesicular trafficking in brain endothelial cells. Consequently, assumptions on the transport system in endothelial cells are based on findings in polarised epithelial cells, although recent studies have highlighted differences in the endothelial system. This review highlights aspects of the vesicular trafficking machinery in brain endothelial cells, including recent findings, limitations, and opportunities for further studies.
Collapse
Affiliation(s)
- Andrea E Toth
- Department of Biomedicine, Faculty of Health, Aarhus University, Høegh-Guldberg Gade 10, 8000 Aarhus C, Denmark
| | - Mikkel R Holst
- Department of Biomedicine, Faculty of Health, Aarhus University, Høegh-Guldberg Gade 10, 8000 Aarhus C, Denmark
| | - Morten S Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Høegh-Guldberg Gade 10, 8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Novel Intrinsic Mechanisms of Active Drug Extrusion at the Blood-Brain Barrier: Potential Targets for Enhancing Drug Delivery to the Brain? Pharmaceutics 2020; 12:pharmaceutics12100966. [PMID: 33066604 PMCID: PMC7602420 DOI: 10.3390/pharmaceutics12100966] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) limits the pharmacotherapy of several brain disorders. In addition to the structural and metabolic characteristics of the BBB, the ATP-driven, drug efflux transporter P-glycoprotein (Pgp) is a selective gatekeeper of the BBB; thus, it is a primary hindrance to drug delivery into the brain. Here, we review the complex regulation of Pgp expression and functional activity at the BBB with an emphasis on recent studies from our laboratory. In addition to traditional processes such as transcriptional regulation and posttranscriptional or posttranslational modification of Pgp expression and functionality, novel mechanisms such as intra- and intercellular Pgp trafficking and intracellular Pgp-mediated lysosomal sequestration in BBB endothelial cells with subsequent disposal by blood neutrophils are discussed. These intrinsic mechanisms of active drug extrusion at the BBB are potential therapeutic targets that could be used to modulate P-glycoprotein activity in the treatment of brain diseases and enhance drug delivery to the brain.
Collapse
|
8
|
Kristensen M, Kucharz K, Felipe Alves Fernandes E, Strømgaard K, Schallburg Nielsen M, Cederberg Helms HC, Bach A, Ulrikkaholm Tofte-Hansen M, Irene Aldana Garcia B, Lauritzen M, Brodin B. Conjugation of Therapeutic PSD-95 Inhibitors to the Cell-Penetrating Peptide Tat Affects Blood-Brain Barrier Adherence, Uptake, and Permeation. Pharmaceutics 2020; 12:E661. [PMID: 32674358 PMCID: PMC7408072 DOI: 10.3390/pharmaceutics12070661] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Novel stroke therapies are needed. Inhibition of the interaction between the postsynaptic density-95 (PSD-95)/disc large/ZO-1 (PDZ) domains of PSD-95 and the N-methyl-D-aspartate (NMDA) receptor has been suggested as a strategy for relieving neuronal damage. The peptides NR2B9c and N-dimer have been designed to hinder this interaction; they are conjugated to the cell-penetrating peptide Tat to facilitate blood-brain barrier (BBB) permeation and neuronal uptake. Tat-N-dimer exhibits 1000-fold better target affinity than Tat-NR2B9c, but the same magnitude of improvement is not observed in terms of therapeutic effect. Differences in BBB permeation by Tat-NR2B9c and Tat-N-dimer may explain this difference, but studies providing a direct comparison of Tat-NR2B9c and Tat-N-dimer are lacking. The aim of the present study was therefore to compare the BBB uptake and permeation of Tat-NR2B9c and Tat-N-dimer. The peptides were conjugated to the fluorophore TAMRA and their chemical stability assessed. Endothelial membrane association and cell uptake, and transendothelial permeation were estimated using co-cultures of primary bovine brain capillary endothelial cells and rat astrocytes. In vivo BBB permeation was demonstrated in mice using two-photon microscopy imaging. Tissue distribution was evaluated in mice demonstrating brain accumulation of TAMRA-Tat (0.4% ID/g), TAMRA-Tat-NR2B9c (0.3% ID/g), and TAMRA-Tat-N-dimer (0.25% ID/g). In conclusion, we demonstrate that attachment of NR2B9c or N-dimer to Tat affects both the chemical stability and the ability of the resulting construct to interact with and permeate the BBB.
Collapse
Affiliation(s)
- Mie Kristensen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; (H.C.C.H.); (B.B.)
| | - Krzysztof Kucharz
- Department of Neuroscience and Pharmacology, University of Copenhagen, DK-2200 Copenhagen N, Denmark; (K.K.); (M.L.)
| | - Eduardo Felipe Alves Fernandes
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; (E.F.A.F.); (K.S.); (A.B.); (M.U.T.-H.); (B.I.A.G.)
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; (E.F.A.F.); (K.S.); (A.B.); (M.U.T.-H.); (B.I.A.G.)
| | | | - Hans Christian Cederberg Helms
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; (H.C.C.H.); (B.B.)
| | - Anders Bach
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; (E.F.A.F.); (K.S.); (A.B.); (M.U.T.-H.); (B.I.A.G.)
| | - Malte Ulrikkaholm Tofte-Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; (E.F.A.F.); (K.S.); (A.B.); (M.U.T.-H.); (B.I.A.G.)
| | - Blanca Irene Aldana Garcia
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; (E.F.A.F.); (K.S.); (A.B.); (M.U.T.-H.); (B.I.A.G.)
| | - Martin Lauritzen
- Department of Neuroscience and Pharmacology, University of Copenhagen, DK-2200 Copenhagen N, Denmark; (K.K.); (M.L.)
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; (H.C.C.H.); (B.B.)
| |
Collapse
|
9
|
Toth AE, Nielsen SSE, Tomaka W, Abbott NJ, Nielsen MS. The endo-lysosomal system of bEnd.3 and hCMEC/D3 brain endothelial cells. Fluids Barriers CNS 2019; 16:14. [PMID: 31142333 PMCID: PMC6542060 DOI: 10.1186/s12987-019-0134-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/03/2019] [Indexed: 01/08/2023] Open
Abstract
Background Brain endothelial cell-based in vitro models are among the most versatile tools in blood–brain barrier research for testing drug penetration to the central nervous system. Transcytosis of large pharmaceuticals across the brain capillary endothelium involves the complex endo-lysosomal system. This system consists of several types of vesicle, such as early, late and recycling endosomes, retromer-positive structures, and lysosomes. Since the endo-lysosomal system in endothelial cell lines of in vitro blood–brain barrier models has not been investigated in detail, our aim was to characterize this system in different models. Methods For the investigation, we have chosen two widely-used models for in vitro drug transport studies: the bEnd.3 mouse and the hCMEC/D3 human brain endothelial cell line. We compared the structures and attributes of their endo-lysosomal system to that of primary porcine brain endothelial cells. Results We detected significant differences in the vesicular network regarding number, morphology, subcellular distribution and lysosomal activity. The retromer-positive vesicles of the primary cells were distinct in many ways from those of the cell lines. However, the cell lines showed higher lysosomal degradation activity than the primary cells. Additionally, the hCMEC/D3 possessed a strikingly unique ratio of recycling endosomes to late endosomes. Conclusions Taken together our data identify differences in the trafficking network of brain endothelial cells, essentially mapping the endo-lysosomal system of in vitro blood–brain barrier models. This knowledge is valuable for planning the optimal route across the blood–brain barrier and advancing drug delivery to the brain. Electronic supplementary material The online version of this article (10.1186/s12987-019-0134-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea E Toth
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark. .,Lundbeck Foundation, Research Initiative on Brain Barriers and Drug Delivery, Scherfigsvej 7, 2100, Copenhagen, Denmark.
| | - Simone S E Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark.,Lundbeck Foundation, Research Initiative on Brain Barriers and Drug Delivery, Scherfigsvej 7, 2100, Copenhagen, Denmark
| | - Weronika Tomaka
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark
| | - N Joan Abbott
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK
| | - Morten S Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark. .,Lundbeck Foundation, Research Initiative on Brain Barriers and Drug Delivery, Scherfigsvej 7, 2100, Copenhagen, Denmark.
| |
Collapse
|
10
|
Villaseñor R, Lampe J, Schwaninger M, Collin L. Intracellular transport and regulation of transcytosis across the blood-brain barrier. Cell Mol Life Sci 2019; 76:1081-1092. [PMID: 30523362 PMCID: PMC6513804 DOI: 10.1007/s00018-018-2982-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 12/31/2022]
Abstract
The blood-brain barrier is a dynamic multicellular interface that regulates the transport of molecules between the blood circulation and the brain parenchyma. Proteins and peptides required for brain homeostasis cross the blood-brain barrier via transcellular transport, but the mechanisms that control this pathway are not well characterized. Here, we highlight recent studies on intracellular transport and transcytosis across the blood-brain barrier. Endothelial cells at the blood-brain barrier possess an intricate endosomal network that allows sorting to diverse cellular destinations. Internalization from the plasma membrane, endosomal sorting, and exocytosis all contribute to the regulation of transcytosis. Transmembrane receptors and blood-borne proteins utilize different pathways and mechanisms for transport across brain endothelial cells. Alterations to intracellular transport in brain endothelial cells during diseases of the central nervous system contribute to blood-brain barrier disruption and disease progression. Harnessing the intracellular sorting mechanisms at the blood-brain barrier can help improve delivery of biotherapeutics to the brain.
Collapse
Affiliation(s)
- Roberto Villaseñor
- Roche Pharma Research and Early Development (pRED), Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland.
| | - Josephine Lampe
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Germany
| | - Ludovic Collin
- Roche Pharma Research and Early Development (pRED), Neuro-Immunology, Roche Innovation Center, Basel, Switzerland.
| |
Collapse
|
11
|
Galla HJ. Monocultures of primary porcine brain capillary endothelial cells: Still a functional in vitro model for the blood-brain-barrier. J Control Release 2018; 285:172-177. [PMID: 30005905 DOI: 10.1016/j.jconrel.2018.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/26/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022]
Abstract
The main obstacle for the treatment of brain diseases is the restriction of the passage of pharmaceuticals across the blood-brain barrier. Endothelial cells line up the cerebral micro vessels and prevent the uncontrolled transfer of polar substances by intercellular tight junctions. In addition to this physical barrier, active transporters of the multi-drug-resistance prevent the passage of hydrophobic substances by refluxing them back to the blood stream. This paper reviews the development and selected applications of an in vitro porcine brain derived primary cell culture system established in the authors lab that closely resembles the BBB in vivo and could thus be used to study beyond other applications drug delivery to the brain. An essential technique to control the intactness or destruction of the barrier, the impedance spectroscopy, will be introduced. It will be shown that nanoparticles can cross the blood brain barrier by two mechanisms: opening the tight junctions and thus allowing parallel import of substances into the brain as well as receptor mediated endocytosis using brain specific target molecules. However cytotoxic effects have to be considered as well which beside standard cytotoxicity assays could be also determined by impedance technology. Moreover it will be shown that enzymes e.g. for enzyme replacement therapy could be transferred across the barrier by proper tuning or chemical modification of the enzyme. Since this review is based on a conference presentation it will mainly focus on applications of the monoculture system developed in the authors lab which under given culture conditions is useful due to its easy availability, robustness, good reproducibility and also due to its simplicity. Improvements of this model made by other groups will be acknowledged but not discussed here in detail.
Collapse
Affiliation(s)
- Hans-Joachim Galla
- Institute for Biochemistry, Westfälische Wilhems Universität,Münster, Wilhelm Klemm Str. 2, 48149 Münster, Germany.
| |
Collapse
|
12
|
Toth AE, Nielsen MS. Analysis of the trafficking system in blood-brain barrier models by high content screening microscopy. Neural Regen Res 2018; 13:1883-1884. [PMID: 30233057 PMCID: PMC6183033 DOI: 10.4103/1673-5374.239435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Andrea E Toth
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Morten S Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|