1
|
The Rab11-regulated endocytic pathway and BDNF/TrkB signaling: Roles in plasticity changes and neurodegenerative diseases. Neurobiol Dis 2022; 171:105796. [PMID: 35728773 DOI: 10.1016/j.nbd.2022.105796] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023] Open
Abstract
Neurons are highly polarized cells that rely on the intracellular transport of organelles. This process is regulated by molecular motors such as dynein and kinesins and the Rab family of monomeric GTPases that together help move cargo along microtubules in dendrites, somas, and axons. Rab5-Rab11 GTPases regulate receptor trafficking along early-recycling endosomes, which is a process that determines the intracellular signaling output of different signaling pathways, including those triggered by BDNF binding to its tyrosine kinase receptor TrkB. BDNF is a well-recognized neurotrophic factor that regulates experience-dependent plasticity in different circuits in the brain. The internalization of the BDNF/TrkB complex results in signaling endosomes that allow local signaling in dendrites and presynaptic terminals, nuclear signaling in somas and dynein-mediated long-distance signaling from axons to cell bodies. In this review, we briefly discuss the organization of the endocytic pathway and how Rab11-recycling endosomes interact with other endomembrane systems. We further expand upon the roles of the Rab11-recycling pathway in neuronal plasticity. Then, we discuss the BDNF/TrkB signaling pathways and their functional relationships with the postendocytic trafficking of BDNF, including axonal transport, emphasizing the role of BDNF signaling endosomes, particularly Rab5-Rab11 endosomes, in neuronal plasticity. Finally, we discuss the evidence indicating that the dysfunction of the early-recycling pathway impairs BDNF signaling, contributing to several neurodegenerative diseases.
Collapse
|
2
|
Liu Y, Zhang Z, Gao X, Ma Q, Yu Z, Huang S. Rab8A promotes breast cancer progression by increasing surface expression of Tropomyosin-related kinase B. Cancer Lett 2022; 535:215629. [PMID: 35278612 DOI: 10.1016/j.canlet.2022.215629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
Abstract
Ras-related protein in brain (Rab) proteins are dysregulated in cancer cells and affect the proliferation and metastasis of cancer cells, thereby reducing the survival rate of cancer patients. Brain-derived neurotrophic factor (BDNF) and its receptor Tropomyosin-related kinase B (TrkB) play an important role in the occurrence and development of tumors. In this research, we investigate the interaction of Rab8A and TrkB in regulating the progression of breast cancer. Rab8A is upregulated in breast cancer tissues. The knockdown of Rab8A inhibits the proliferation, migration, and invasion of breast cancer cells through inhibiting TrkB. Moreover, the phosphorylation of AKT and ERK1/2 is suppressed by Rab8A knockdown. Rab8A interacts with TrkB, as revealed by co-immunoprecipitation assay to promote the surface expression of TrkB. However, Rab8A induced no significant changes in TrkB internalization. Functionally, BDNF promotes the expression of Rab8A through inhibiting Rab8A degradation. The TrkB inhibitor K252a blocks cell proliferation, migration and invasion as well as the activation of the AKT and ERK1/2 signaling pathway, which is induced by Rab8A in breast cancer cells. Our results reveal that Rab8A is upregulated by BDNF, and that Rab8A increases the surface expression of TrkB to promote the growth of breast cancer through the activation of the AKT and ERK1/2 signaling pathway. These results suggest that inhibiting Rab8A level could inhibit the progression of breast cancer.
Collapse
Affiliation(s)
- Yansong Liu
- Department of Breast Disease, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhonghua Zhang
- Department of Breast Disease, Dongping County Hospital, Taian, Shandong, China
| | - Xuefeng Gao
- Department of Breast and Thyroid Surgery, Yinan People's Hospital, Linyi, Shandong, China
| | - Qinghua Ma
- Department of Breast Disease, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhiyong Yu
- Department of Breast Disease, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Shuhong Huang
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Arituluk ZC, Horne J, Adhikari B, Steltzner J, Mansur S, Ahirwar P, Velu SE, Gray NE, Ciesla LM, Bao Y. Identification of TrkB Binders from Complex Matrices Using a Magnetic Drug Screening Nanoplatform. ACS APPLIED BIO MATERIALS 2021; 4:6244-6255. [PMID: 35006910 DOI: 10.1021/acsabm.1c00552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptor tyrosine receptor kinase B (TrkB) have been shown to play an important role in numerous neurological disorders, such as Alzheimer's disease. The identification of biologically active compounds interacting with TrkB serves as a drug discovery strategy to identify drug leads for neurological disorders. Here, we report effective immobilization of functional TrkB on magnetic iron oxide nanoclusters, where TrkB receptors behave as "smart baits" to bind compounds from mixtures and magnetic nanoclusters enable rapid isolation through magnetic separation. The presence of the immobilized TrkB was confirmed by specific antibody labeling. Subsequently, the activity of the TrkB on iron oxide nanoclusters was evaluated with ATP/ADP conversion experiments using a known TrkB agonist. The immobilized TrkB receptors can effectively identify binders from mixtures containing known binders, synthetic small molecule mixtures, and Gotu Kola (Centella asiatica) plant extracts. The identified compounds were analyzed by an ultrahigh-performance liquid chromatography system coupled with a quadrupole time-of-flight mass spectrometer. Importantly, some of the identified TrkB binders from Gotu Kola plant extracts matched with compounds previously linked to neuroprotective effects observed for a Gotu Kola extract approved for use in a clinical trial. Our studies suggest that the possible therapeutic effects of the Gotu Kola plant extract in dementia treatment, at least partially, might be associated with compounds interacting with TrkB. The unique feature of this approach is its ability to fast screen potential drug leads using less explored transmembrane targets. This platform works as a drug-screening funnel at early stages of the drug discovery pipeline. Therefore, our approach will not only greatly benefit drug discovery processes using transmembrane proteins as targets but also allow for evaluation and validation of cellular pathways targeted by drug leads.
Collapse
Affiliation(s)
- Zekiye Ceren Arituluk
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States.,Department of Pharmaceutical Botany, Hacettepe University, Ankara 06100, Turkey
| | - Jesse Horne
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Bishnu Adhikari
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Jeffrey Steltzner
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Shomit Mansur
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Parmanand Ahirwar
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Sadanandan E Velu
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Nora E Gray
- Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Lukasz M Ciesla
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Yuping Bao
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
4
|
Ding C, Zhang C, Kopp R, Kuney L, Meng Q, Wang L, Xia Y, Jiang Y, Dai R, Min S, Yao WD, Wong ML, Ruan H, Liu C, Chen C. Transcription factor POU3F2 regulates TRIM8 expression contributing to cellular functions implicated in schizophrenia. Mol Psychiatry 2021; 26:3444-3460. [PMID: 32929213 PMCID: PMC7956165 DOI: 10.1038/s41380-020-00877-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/17/2023]
Abstract
Schizophrenia (SCZ) is a neuropsychiatric disorder with aberrant expression of multiple genes. However, identifying its exact causal genes remains a considerable challenge. The brain-specific transcription factor POU3F2 (POU domain, class 3, transcription factor 2) has been recognized as a risk factor for SCZ, but our understanding of its target genes and pathogenic mechanisms are still limited. Here we report that POU3F2 regulates 42 SCZ-related genes in knockdown and RNA-sequencing experiments of human neural progenitor cells (NPCs). Among those SCZ-related genes, TRIM8 (Tripartite motif containing 8) is located in SCZ-associated genetic locus and is aberrantly expressed in patients with SCZ. Luciferase reporter and electrophoretic mobility shift assays (EMSA) showed that POU3F2 induces TRIM8 expression by binding to the SCZ-associated SNP (single nucleotide polymorphism) rs5011218, which affects POU3F2-binding efficiency at the promoter region of TRIM8. We investigated the cellular functions of POU3F2 and TRIM8 as they co-regulate several pathways related to neural development and synaptic function. Knocking down either POU3F2 or TRIM8 promoted the proliferation of NPCs, inhibited their neuronal differentiation, and impaired the excitatory synaptic transmission of NPC-derived neurons. These results indicate that POU3F2 regulates TRIM8 expression through the SCZ-associated SNP rs5011218, and both genes may be involved in the etiology of SCZ by regulating neural development and synaptic function.
Collapse
Affiliation(s)
- Chaodong Ding
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Chunling Zhang
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Richard Kopp
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Liz Kuney
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Qingtuan Meng
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi, China
| | - Le Wang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Yan Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Yi Jiang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Rujia Dai
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Shishi Min
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Wei-Dong Yao
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Ma-Li Wong
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Hongyu Ruan
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA.
| | - Chunyu Liu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA.
- School of Psychology, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Chao Chen
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, the Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Molecular Precision Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Tejeda GS, Esteban‐Ortega GM, San Antonio E, Vidaurre ÓG, Díaz‐Guerra M. Prevention of excitotoxicity-induced processing of BDNF receptor TrkB-FL leads to stroke neuroprotection. EMBO Mol Med 2019; 11:e9950. [PMID: 31273936 PMCID: PMC6609917 DOI: 10.15252/emmm.201809950] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022] Open
Abstract
Neuroprotective strategies aimed to pharmacologically treat stroke, a prominent cause of death, disability, and dementia, have remained elusive. A promising approach is restriction of excitotoxic neuronal death in the infarct penumbra through enhancement of survival pathways initiated by brain-derived neurotrophic factor (BDNF). However, boosting of neurotrophic signaling after ischemia is challenged by downregulation of BDNF high-affinity receptor, full-length tropomyosin-related kinase B (TrkB-FL), due to calpain-degradation, and, secondarily, regulated intramembrane proteolysis. Here, we have designed a blood-brain barrier (BBB) permeable peptide containing TrkB-FL sequences (TFL457 ) which prevents receptor disappearance from the neuronal surface, early induced after excitotoxicity. In this way, TFL457 interferes TrkB-FL cleavage by both proteolytic systems and increases neuronal viability via a PLCγ-dependent mechanism. By preserving downstream CREB and MEF2 promoter activities, TFL457 initiates a feedback mechanism favoring increased levels in excitotoxic neurons of critical prosurvival mRNAs and proteins. This neuroprotective peptide could be highly relevant for stroke therapy since, in a mouse ischemia model, it counteracts TrkB-FL downregulation in the infarcted brain, efficiently decreases infarct size, and improves neurological outcome.
Collapse
Affiliation(s)
- Gonzalo S Tejeda
- Instituto de Investigaciones Biomédicas “Alberto Sols”Consejo Superior de Investigaciones Científicas‐Universidad Autónoma de Madrid (CSIC‐UAM)MadridSpain
- Present address:
Gardiner LaboratoryInstitute of Cardiovascular and Medical SciencesCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Gema M Esteban‐Ortega
- Instituto de Investigaciones Biomédicas “Alberto Sols”Consejo Superior de Investigaciones Científicas‐Universidad Autónoma de Madrid (CSIC‐UAM)MadridSpain
| | - Esther San Antonio
- Instituto de Investigaciones Biomédicas “Alberto Sols”Consejo Superior de Investigaciones Científicas‐Universidad Autónoma de Madrid (CSIC‐UAM)MadridSpain
| | - Óscar G Vidaurre
- Instituto de Investigaciones Biomédicas “Alberto Sols”Consejo Superior de Investigaciones Científicas‐Universidad Autónoma de Madrid (CSIC‐UAM)MadridSpain
| | - Margarita Díaz‐Guerra
- Instituto de Investigaciones Biomédicas “Alberto Sols”Consejo Superior de Investigaciones Científicas‐Universidad Autónoma de Madrid (CSIC‐UAM)MadridSpain
| |
Collapse
|