1
|
Keskin A, Acar G, Aladag T, Onal U, Baltaci SB, Mogulkoc R, Baltaci AK. Effect of 2 Weeks Naringin Application on Neurological Function and Neurogenesis After Brain Ischemia-Reperfusion in Ovariectomized Rats. Mol Neurobiol 2025:10.1007/s12035-025-05050-w. [PMID: 40374843 DOI: 10.1007/s12035-025-05050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 05/07/2025] [Indexed: 05/18/2025]
Abstract
Cerebral ischemia-reperfusion (I/R) is a condition that occurs when blood flow is restored after a temporary interruption and may lead to deterioration in brain functions depending on the time passed. One of the changes in functions is neurological score values. This study aimed to determine the effect of brain ischemia reperfusion and 2-week naringin supplementation on changes in neurological score and neurogenesis in ovariectomized female rats. Experimental groups of 36 Wistar-albino-type female rats were created as follows: control group: no anesthesia or surgical procedure was applied. Ovariectomy-sham brain I/R group: After the ovariectomy was performed under general anesthesia, the carotid artery regions were opened and closed, and sham ischemia-reperfusion was performed, followed by a vehicle application for 2 weeks (2 weeks, 1 ml 0.25% carboxymethylcellulose). Ovariectomy-I/R group: After ovariectomy, carotid arteries were isolated under general anesthesia, ligated for 30 min, and reperfused for 2 weeks after ischemia was performed. Ovariectomy-I/R sham treatment group: After ovariectomy, the carotid arteries were isolated under general anesthesia, then ligated and ischemia was performed for 30 min, and then reperfusion and vehicle application were performed for 2 weeks. Ovariectomy-I/R naringin treatment group: After ovariectomy, carotid arteries were isolated under general anesthesia, ligated for 30 min, and ischemia was performed, followed by naringin application with reperfusion for 2 weeks. Neurological scoring values performed on the 1st, 7th, and 14th days after the surgical procedure significantly increased with ischemia-reperfusion. Also, hippocampus and frontal cortex calbindin, alpha/beta-tubulin, and Neu-N levels were reduced considerably by ischemia-reperfusion. However, it was observed that a 2-week naringin application significantly suppressed the increase in neurological scores. The suppression in neurological score values became more evident in the 2nd week. Our results show that the impairment of motor functions and neurogenesis in the frontal cortex and hippocampus in brain ischemia-reperfusion after ovariectomy in female rats was significantly improved by 2 weeks of naringin supplementation.
Collapse
Affiliation(s)
- Aysenur Keskin
- Faculty of Medicine, Department of Physiology, Selcuk University, Konya, Turkey
| | - Gozde Acar
- Faculty of Medicine, Department of Physiology, Selcuk University, Konya, Turkey
| | - Tugce Aladag
- Faculty of Medicine, Department of Physiology, Selcuk University, Konya, Turkey
| | - Ummugulsum Onal
- Faculty of Medicine, Department of Histology, Selcuk University, Konya, Turkey
| | - Saltuk Bugra Baltaci
- Faculty of Medicine, Department of Physiology, Istanbul Medipol University, Istanbul, Turkey
| | - Rasim Mogulkoc
- Faculty of Medicine, Department of Physiology, Selcuk University, Konya, Turkey.
| | | |
Collapse
|
2
|
Stępnik K, Jarząb A, Niedźwiadek R, Głowniak-Lipa A, Głowniak K, Kukula-Koch W. In Vivo Insights into the Role of Astragaloside IV in Preventing and Treating Civilization Diseases: A Comprehensive Review. Int J Mol Sci 2025; 26:4250. [PMID: 40362487 PMCID: PMC12071949 DOI: 10.3390/ijms26094250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/24/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Civilization diseases are a growing and global health problem in modern societies. Neurological disorders, cancer, and inflammatory diseases affect a large group of patients around the world. Therefore, it is of utmost importance to search for novel drugs, lifestyle tips, and foods that can help restore balance in the living organism, promote the efficiency of the immune system, and provide satisfactory prophylactic measures. Astragaloside IV (ASIV)-a triterpenoid saponin from Astragalus species, one of the world's most widely used herbs-has been shown to have a variety of biological properties, including anti-inflammatory, antioxidant, antitumor, and neuroprotective effects. In recent years, the number of in vivo studies on this active ingredient in the scientific literature has increased considerably. The aim of this review was therefore to compile the existing knowledge on the use of this compound in the treatment of selected diseases of civilization-cancer, neurological disorders, and inflammatory diseases-in vivo.
Collapse
Affiliation(s)
- Katarzyna Stępnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Agata Jarząb
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Rafał Niedźwiadek
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Anna Głowniak-Lipa
- Department of Cosmetology, University of Information, Sucharskiego 2, 35-225 Rzeszów, Poland
| | - Kazimierz Głowniak
- Department of Cosmetology, University of Information, Sucharskiego 2, 35-225 Rzeszów, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| |
Collapse
|
3
|
Chen S, Li X, Shi D, Xu Y, Lu Y, Tu P. Identification strategy of wild and cultivated Astragali Radix based on REIMS combined with two-dimensional LC-MS. NPJ Sci Food 2024; 8:91. [PMID: 39516475 PMCID: PMC11549423 DOI: 10.1038/s41538-024-00333-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
A rapid and real-time method was established based on the combination of rapid evaporative ionization mass spectrometry (REIMS) and two-dimensional liquid chromatography mass spectrometry (2DLC-MS) for identification of wild Astragali Radix (WAR) and cultivated AR (CAR). The samples were analyzed under ambient ionization without time-consuming sample preparation. The phenotypic data of WAR and CAR were used to develop a real-time recognition model. Subsequently, the compounds in these two species were comprehensively characterized based on 2DLC-MS, and 45 different compounds were screened out by multivariate statistical analysis. A semi-quantitative method for 45 different compounds was established based on ultrahigh-performance liquid chromatography/quadrupole-linear ion trap mass spectrometry (UHPLC-QTRAP-MS). The results showed that the relative content of most compounds in WAR was higher than in CAR. In summary, the method has demonstrated remarkable performance in distinguishing between WAR and CAR, providing a reference in the field of traditional Chinese medicine (TCM) analysis and identification.
Collapse
Affiliation(s)
- Sijian Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoshuang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Danshu Shi
- Shimadzu (China) Co., Ltd., Beijing Branch, Beijing, China
| | - Yisheng Xu
- Waters Technology(Beijing) Co., Ltd., Beijing, China
| | - Yingyuan Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
4
|
Yang J, Yu B, Zheng J. Natural herbal extract roles and mechanisms in treating cerebral ischemia: A systematic review. Front Pharmacol 2024; 15:1424146. [PMID: 39156109 PMCID: PMC11327066 DOI: 10.3389/fphar.2024.1424146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024] Open
Abstract
Background Stroke has been the focus of medical research due to its serious consequences and sequelae. Among the tens of millions of new stroke patients every year, cerebral ischemia patients account for the vast majority. While cerebral ischemia drug research and development is still ongoing, most drugs are terminated at preclinical stages due to their unacceptable toxic side effects. In recent years, natural herbs have received considerable attention in the pharmaceutical research and development field due to their low toxicity levels. Numerous studies have shown that natural herbs exert actions that cannot be ignored when treating cerebral ischemia. Methods We reviewed and summarized the therapeutic effects and mechanisms of different natural herbal extracts on cerebral ischemia to promote their application in this field. We used keywords such as "natural herbal extract," "herbal medicine," "Chinese herbal medicine" and "cerebral ischemia" to comprehensively search PubMed, ScienceDirect, ScienceNet, CNKI, and Wanfang databases, after which we conducted a detailed screening and review strategy. Results We included 120 high-quality studies up to 10 January 2024. Natural herbal extracts had significant roles in cerebral ischemia treatments via several molecular mechanisms, such as improving regional blood flow disorders, protecting the blood-brain barrier, and inhibiting neuronal apoptosis, oxidative stress and inflammatory responses. Conclusion Natural herbal extracts are represented by low toxicity and high curative effects, and will become indispensable therapeutic options in the cerebral ischemia treatment field.
Collapse
Affiliation(s)
| | | | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Tang X, Huang Y, Fu W, Wang P, Feng L, Yang J, Zhu H, Huang X, Ming Q, Li P. Digirseophene A promotes recovery in injured developing cerebellum via AMPK/AKT/GSK3β pathway-mediated neural stem cell proliferation. Biomed Pharmacother 2024; 177:117046. [PMID: 38981241 DOI: 10.1016/j.biopha.2024.117046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
Neural stem cells (NSCs) exhibit a remarkable capacity for self-renewal and have the potential to differentiate into various neural lineage cells, which makes them pivotal in the management of neurological disorders. Harnessing the inherent potential of endogenous NSCs for enhancing nerve repair and regeneration represents an optimal approach to addressing diseases of the nervous system. In this study, we explored the potential of a novel benzophenone derivative named Digirseophene A (DGA), which was isolated from the endophytic fungus Corydalis tomentella. Previous experiments have extensively identified and characterized DGA, revealing its unique properties. Our findings demonstrate the remarkable capability of DGA to stimulate neural stem cell proliferation, both in vitro and in vivo. Furthermore, we established a model of radiation-induced cerebellar injury to assess the effects of DGA on the distribution of different cell subpopulations within the damaged cerebellum, thereby suggesting its beneficial role in cerebellar repair. In addition, our observations on a primary NSCs model revealed that DGA significantly increased cellular oxygen consumption, indicating increased energy and metabolic demands. By utilizing various pathway inhibitors in combination with DGA, we successfully demonstrated its ability to counteract the suppressive impacts of AMPK and GSK3β inhibitors on NSC proliferation. Collectively, our research results strongly suggest that DGA, as an innovative compound, exerts its role in activating NSCs and promoting injury repair through the regulation of the AMPK/AKT/GSK3β pathway.
Collapse
Affiliation(s)
- Xiangyu Tang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Yuting Huang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Wenying Fu
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Pengbo Wang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Liyuan Feng
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Jie Yang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Hongyan Zhu
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Xiuning Huang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Qianliang Ming
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China.
| | - Peng Li
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China.
| |
Collapse
|
6
|
Zhou J, Sun F, Zhang W, Feng Z, Yang Y, Mei Z. Novel insight into the therapeutical potential of flavonoids from traditional Chinese medicine against cerebral ischemia/reperfusion injury. Front Pharmacol 2024; 15:1352760. [PMID: 38487170 PMCID: PMC10937431 DOI: 10.3389/fphar.2024.1352760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Cerebral ischemia/reperfusion injury (CIRI) is a major contributor to poor prognosis of ischemic stroke. Flavonoids are a broad family of plant polyphenols which are abundant in traditional Chinese medicine (TCM) and have beneficial effects on several diseases including ischemic stroke. Accumulating studies have indicated that flavonoids derived from herbal TCM are effective in alleviating CIRI after ischemic stroke in vitro or in vivo, and exhibit favourable therapeutical potential. Herein, we systematically review the classification, metabolic absorption, neuroprotective efficacy, and mechanisms of TCM flavonoids against CIRI. The literature suggest that flavonoids exert potential medicinal functions including suppressing excitotoxicity, Ca2+ overloading, oxidative stress, inflammation, thrombin's cellular toxicity, different types of programmed cell deaths, and protecting the blood-brain barrier, as well as promoting neurogenesis in the recovery stage following ischemic stroke. Furthermore, we identified certain matters that should be taken into account in future research, as well as proposed difficulties and opportunities in transforming TCM-derived flavonoids into medications or functional foods for the treatment or prevention of CIRI. Overall, in this review we aim to provide novel ideas for the identification of new prospective medication candidates for the therapeutic strategy against ischemic stroke.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Feiyue Sun
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Yi Yang
- The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
7
|
Zhang W, Xu H, Li C, Han B, Zhang Y. Exploring Chinese herbal medicine for ischemic stroke: insights into microglia and signaling pathways. Front Pharmacol 2024; 15:1333006. [PMID: 38318134 PMCID: PMC10838993 DOI: 10.3389/fphar.2024.1333006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Ischemic stroke is a prevalent clinical condition affecting the central nervous system, characterized by a high mortality and disability rate. Its incidence is progressively rising, particularly among younger individuals, posing a significant threat to human well-being. The activation and polarization of microglia, leading to pro-inflammatory and anti-inflammatory responses, are widely recognized as pivotal factors in the pathogenesis of cerebral ischemia and reperfusion injury. Traditional Chinese herbal medicines (TCHMs) boasts a rich historical background, notable efficacy, and minimal adverse effects. It exerts its effects by modulating microglia activation and polarization, suppressing inflammatory responses, and ameliorating nerve injury through the mediation of microglia and various associated pathways (such as NF-κB signaling pathway, Toll-like signaling pathway, Notch signaling pathway, AMPK signaling pathway, MAPK signaling pathway, among others). Consequently, this article focuses on microglia as a therapeutic target, reviewing relevant pathway of literature on TCHMs to mitigate neuroinflammation and mediate IS injury, while also exploring research on drug delivery of TCHMs. The ultimate goal is to provide new insights that can contribute to the clinical management of IS using TCHMs.
Collapse
Affiliation(s)
| | | | | | - Bingbing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yimin Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
8
|
Bao M, Bade R, Liu H, Tsambaa B, Shao G, Borjigidai A, Cheng Y. Astragaloside IV against Alzheimer's disease via microglia-mediated neuroinflammation using network pharmacology and experimental validation. Eur J Pharmacol 2023; 957:175992. [PMID: 37598923 DOI: 10.1016/j.ejphar.2023.175992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/11/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases in the world. The effective therapeutic methods and drugs are still not clear. Astragaloside IV (AS-IV), a triterpenoid saponin isolated from the root of Huangqi, has a beneficial effect in the treatment of AD. However, whether AS-IV alters microglia in the inflammation of AD is still ambiguous. In our study, 99 common targets were collected between AS-IV and AD. BCL2 apoptosis regulator (Bcl-2), pro-apoptotic BCL-2 protein BAX, epidermal growth factor receptor (EGFR), and receptor tyrosine phosphatase type C (PTPRC) were screened for inflammation and microglia in the above targets by network pharmacology. Interleukin-1β (IL-1β) and EGFR both interact with signal transducer and activator of transcription 3 (STAT3) by a protein interaction network, and IL-1β had a higher affinity for AS-IV based on molecular docking. Enrichment revealed targets involved in the regulation of neuronal cell bodies, growth factor receptor binding, EGFR tyrosine kinase inhibitor resistance., etc. Besides, AS-IV alleviated the reduced cell proliferation in amyloid-beta (Aβ)-treated microglial BV2 cells. AS-IV affected BV2 cell morphological changes and decreased cluster of differentiation 11b (CD11b) gene, IL-1β, and EGFR mRNA levels increment during lipopolysaccharide (LPS) injury in BV2 cell activation. Therefore, AS-IV may regulate microglial activation and inflammation via EGFR-dependent pathways in AD. EGFR and IL-1β are vital targets that may relate to each other to coregulate downstream molecular functions in the cure of AD. Our study provides a candidate drug and disease target for the treatment of neurodegenerative diseases in the clinic.
Collapse
Affiliation(s)
- MuLan Bao
- Key Laboratory for Ethnomedicine for Ministry of Education, Minzu University of China, Beijing 100081, China; Center on Translational Neuroscience, Minzu University of China, Beijing 100081, China; Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, School of Medical Technology and Anesthesiology, Baotou Medical College, Baotou 014040, China
| | - RenGui Bade
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, School of Medical Technology and Anesthesiology, Baotou Medical College, Baotou 014040, China
| | - Hua Liu
- Key Laboratory for Ethnomedicine for Ministry of Education, Minzu University of China, Beijing 100081, China; Center on Translational Neuroscience, Minzu University of China, Beijing 100081, China
| | - Battseren Tsambaa
- Botanic Garden and Research Institute, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
| | - Guo Shao
- Center for Translational Medicine, The Third People's Hospital of Longgang District, Shenzhen 518112, China
| | - Almaz Borjigidai
- Key Laboratory for Ethnomedicine for Ministry of Education, Minzu University of China, Beijing 100081, China.
| | - Yong Cheng
- Key Laboratory for Ethnomedicine for Ministry of Education, Minzu University of China, Beijing 100081, China; Center on Translational Neuroscience, Minzu University of China, Beijing 100081, China; Institute of National Security, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
9
|
Tan R, Hu X, Wang X, Sun M, Cai Z, Zhang Z, Fu Y, Chen X, An J, Lu H. Leptin Promotes the Proliferation and Neuronal Differentiation of Neural Stem Cells through the Cooperative Action of MAPK/ERK1/2, JAK2/STAT3 and PI3K/AKT Signaling Pathways. Int J Mol Sci 2023; 24:15151. [PMID: 37894835 PMCID: PMC10606644 DOI: 10.3390/ijms242015151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The potential of neural stem cells (NSCs) for neurological disorders the treatment has relied in large part upon identifying the NSCs fate decision. The hormone leptin has been reported to be a crucial regulator of brain development, able to influence the glial and neural development, yet, the underlying mechanism of leptin acting on NSCs' biological characteristics is still poorly understood. This study aims to investigate the role of leptin in the biological properties of NSCs. In this study, we investigate the possibility that leptin may regulate the NSCs' fate decision, which may promote the proliferation and neuronal differentiation of NSCs and thus act positively in neurological disorders. NSCs from the embryonic cerebral cortex were used in this study. We used CCK-8 assay, ki67 immunostaining, and FACS analysis to confirm that 25-100 ng/mL leptin promotes the proliferation of NSCs in a concentration-dependent pattern. This change was accompanied by the upregulation of p-AKT and p-ERK1/2, which are the classical downstream signaling pathways of leptin receptors b (LepRb). Inhibition of PI3K/AKT or MAPK/ERK signaling pathways both abolished the effect of leptin-induced proliferation. Moreover, leptin also enhanced the directed neuronal differentiation of NSCs. A blockade of the PI3K/AKT pathway reversed leptin-stimulated neurogenesis, while a blockade of JAK2/STAT3 had no effect on it. Taken together, our results support a role for leptin in regulating the fate of NSCs differentiation and promoting NSCs proliferation, which could be a promising approach for brain repair via regulating the biological characteristics of NSCs.
Collapse
Affiliation(s)
- Ruolan Tan
- Department of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (R.T.); (X.H.); (X.W.); (M.S.); (Z.C.); (Z.Z.); (Y.F.); (X.C.)
- Department of Human Anatomy and Histo-Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Xiaoxuan Hu
- Department of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (R.T.); (X.H.); (X.W.); (M.S.); (Z.C.); (Z.Z.); (Y.F.); (X.C.)
- Department of Human Anatomy and Histo-Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Xinyi Wang
- Department of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (R.T.); (X.H.); (X.W.); (M.S.); (Z.C.); (Z.Z.); (Y.F.); (X.C.)
- Department of Human Anatomy and Histo-Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Meiqi Sun
- Department of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (R.T.); (X.H.); (X.W.); (M.S.); (Z.C.); (Z.Z.); (Y.F.); (X.C.)
| | - Zhenlu Cai
- Department of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (R.T.); (X.H.); (X.W.); (M.S.); (Z.C.); (Z.Z.); (Y.F.); (X.C.)
| | - Zixuan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (R.T.); (X.H.); (X.W.); (M.S.); (Z.C.); (Z.Z.); (Y.F.); (X.C.)
- Department of Human Anatomy and Histo-Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yali Fu
- Department of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (R.T.); (X.H.); (X.W.); (M.S.); (Z.C.); (Z.Z.); (Y.F.); (X.C.)
- Department of Human Anatomy and Histo-Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Xinlin Chen
- Department of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (R.T.); (X.H.); (X.W.); (M.S.); (Z.C.); (Z.Z.); (Y.F.); (X.C.)
| | - Jing An
- Department of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (R.T.); (X.H.); (X.W.); (M.S.); (Z.C.); (Z.Z.); (Y.F.); (X.C.)
| | - Haixia Lu
- Department of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (R.T.); (X.H.); (X.W.); (M.S.); (Z.C.); (Z.Z.); (Y.F.); (X.C.)
| |
Collapse
|
10
|
Hong L, Shi X, Zhao Y, Zhao G, Jiang H, Liu M, Zhang H, Wu H, Wang L, He L, Chen W. Network pharmacology-guided and TCM theory-supported in vitro and in vivo component identification of Naoluoxintong. Heliyon 2023; 9:e19369. [PMID: 37681188 PMCID: PMC10480607 DOI: 10.1016/j.heliyon.2023.e19369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Naoluoxintong (NLXT) has been used to treat ischemic stroke (IS) in China for more than two hundred years. However, the pharmacodynamic material basis of NLXT has not been fully studied. Under the guidance of the former network pharmacological analysis, a rapid and reliable method combining UPLC-Q-TOF-MSE with the novel informatics UNIFI™ platform was established which was used to study the composition of NLXT and its prototype components and metabolites in vivo. A total of 102 compounds were identified. 13 compounds were sourced from "Monarch herb", mainly involving flavonoids and their glycosides. 54 compounds were sourced from "Minister herb", mainly involving triterpenoid saponins, organic acids and lactones. 11 compounds were from the "Assistant herb", mostly containing citric acid and esters of citric acid. 24 compounds were from the "Guide herb", mostly including flavonoids and their glycosides, organic acids and lactones. Moreover, 24 prototype components and 30 metabolites were detected, and in vivo transformation pathways for different types of chemical components were provided. This is a comprehensive report on the identification of major chemical components in NLXT and metabolic components in rats by UPLC-Q-TOF-MS combined with UNIFI platform under the guidance of network pharmacology, which is helpful for the quality control of NLXT and the study of quality markers.
Collapse
Affiliation(s)
- Lu Hong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Xiaoqian Shi
- Department of Pharmacy, Huaibei People's Hospital, Huaibei, Anhui, 235000, China
| | - Yutong Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Guodong Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Huihui Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Mingming Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Hanzhi Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Huan Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230038, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230038, China
| | - Ling He
- Key Laboratory of Xin’ an Medicine (Anhui University of Chinese Medicine) Ministry of Education, Hefei, Anhui, 230038, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230038, China
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230038, China
| |
Collapse
|
11
|
Joseph DK, Mat Ludin AF, Ibrahim FW, Ahmadazam A, Che Roos NA, Shahar S, Rajab NF. Effects of aerobic exercise and dietary flavonoids on cognition: a systematic review and meta-analysis. Front Physiol 2023; 14:1216948. [PMID: 37664425 PMCID: PMC10468597 DOI: 10.3389/fphys.2023.1216948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/12/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction: Studies have shown that exercise increases angiogenesis and perfusion in the hippocampus, activates neurogenesis in the dentate gyrus and increases synaptic plasticity, as well as increases the complexity and number of dendritic spines, all of which promote memory function and protect against cognitive decline. Flavonoids are gaining attention as antioxidants in health promotion due to their rich phenolic content, particularly for their modulating role in the treatment of neurodegenerative diseases. Despite this, there has been no comprehensive review of cognitive improvement supplemented with flavonoid and prescribed with exercise or a combination of the two interventions has been conducted. The purpose of this review is to determine whether a combined intervention produces better results when given together than when given separately. Methods: Relevant articles assessing the effect of physical exercise, flavonoid or in combination on cognitive related biomarkers and neurobehavioral assessments within the timeline of January 2011 until June 2023 were searched using three databases; PubMed, PROQUEST and SCOPUS. Results: A total of 705 articles were retrieved and screened, resulting in 108 studies which are in line with the objective of the current study were included in the analysis. Discussion: The selected studies have shown significant desired effect on the chosen biomarkers and neurobehavioral assessments. Systematic Review Registration: identifier: [CRD42021271001].
Collapse
Affiliation(s)
- Daren Kumar Joseph
- Center for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Arimi Fitri Mat Ludin
- Center for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Farah Wahida Ibrahim
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amalina Ahmadazam
- Center for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Aishah Che Roos
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Suzana Shahar
- Center for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Fadilah Rajab
- Center for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Lo TY, Chan ASL, Cheung ST, Yung LY, Leung MMH, Wong YH. Multi-target regulatory mechanism of Yang Xin Tang - a traditional Chinese medicine against dementia. Chin Med 2023; 18:101. [PMID: 37587513 PMCID: PMC10428601 DOI: 10.1186/s13020-023-00813-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Yang Xin Tang (YXT) is a traditional Chinese herbal preparation which has been reported to improve cognitive function and memory in patients with dementia. As the underlying mechanism of action of YXT has not been elucidated, we examined the effects of YXT and its major herbal components in regulating gene transcription and molecular targets related to Alzheimer's disease (AD). METHODS Aqueous and ethanol extracts of YXT and selected herbal components were prepared and validated by standard methods. A series of biochemical and cellular assays were employed to assess the ability of the herbal extracts to inhibit acetylcholinesterase, reduce β-amyloid aggregation, stimulate the differentiation of neural progenitor cells, suppress cyclooxygenase, and protect neurons against β-amyloid or N-methyl-D-aspartate-induced cytotoxicity. The effects of YXT on multiple molecular targets were further corroborated by a panel of nine reporter gene assays. RESULTS Extracts of YXT and two of its constituent herbs, Poria cocos and Poria Sclerotium pararadicis, significantly inhibited β-amyloid aggregation and β-amyloid-induced cytotoxicity. A protective effect of the YXT extract was similarly observed against N-methyl-D-aspartate-induced cytotoxicity in primary neurons, and this activity was shared by extracts of Radix Astragali and Rhizoma Chuanxiong. Although the YXT extract was ineffective, extracts of Poria cocos, Poria Sclerotium pararadicis and Radix Polygalae inhibited acetylcholine esterase, with the latter also capable of upregulating choline acetyltransferase. YXT and its components significantly inhibited the activities of the pro-inflammatory cyclooxygenases. Additionally, extracts of YXT and several of its constituent herbs significantly stimulated the phosphorylation of extracellular signal-regulated kinases and cAMP-responsive element binding protein, two molecular targets involved in learning and memory, as well as in the regulation of neurogenesis. CONCLUSIONS Several constituents of YXT possess multiple regulatory effects on known therapeutic targets of AD that range from β-amyloid to acetylcholinesterase. The demonstrated neuroprotective and neurogenic actions of YXT lend credence to its use as an alternative medicine for treating AD.
Collapse
Affiliation(s)
- Tung Yan Lo
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Anthony Siu Lung Chan
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Suet Ting Cheung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Lisa Ying Yung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Manton Man Hon Leung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Yung Hou Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China.
- State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Hong Kong University of Science and Technology, Hong Kong, China.
- Center for Aging Science, Hong Kong University of Science and Technology, Hong Kong, China.
- Hong Kong Center for Neurodegenerative Diseases, Units 1501-1502, 17 Science Park West Avenue, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
13
|
Gravandi MM, Abdian S, Tahvilian M, Iranpanah A, Moradi SZ, Fakhri S, Echeverría J. Therapeutic targeting of Ras/Raf/MAPK pathway by natural products: A systematic and mechanistic approach for neurodegeneration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154821. [PMID: 37119761 DOI: 10.1016/j.phymed.2023.154821] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Multiple dysregulated pathways are behind the pathogenesis of neurodegenerative diseases (NDDs); however, the crucial targets are still unknown. Oxidative stress, apoptosis, autophagy, and inflammation are the most dominant pathways that strongly influence neurodegeneration. In this way, targeting the Ras/Raf/mitogen-activated protein kinases (MAPKs) pathway appears to be a developing strategy for combating NDDs like Parkinson's disease, Alzheimer's disease, stroke, aging, and other NDDs. Accordingly, plant secondary metabolites have shown promising potentials for the simultaneous modulation of the Ras/Raf/MAPKs pathway and play an essential role in NDDs. MAPKs include p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK 1/2), and c-Jun N-terminal kinase (JNK), which are important molecular players in neurodegeneration. Ras/Raf, which is located the upstream of MAPK pathway influences the initiation and progression of neurodegeneration and is regulated by natural products. PURPOSE Thus, the present study aimed to investigate the neuroprotective roles of plant- and marine-derived secondary metabolites against several NDDs through the modulation of the Ras/Raf/MAPK signaling pathway. STUDY DESIGN AND METHODS A systematic and comprehensive review was performed to highlight the modulatory roles of natural products on the Ras/Raf/MAPK signaling pathway in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including PubMed, Scopus, and Web of Sciences. Associated reference lists were also searched for the literature review. RESULTS From a total of 1495 results, finally 107 articles were included in the present study. The results show that several natural compounds such as alkaloid, phenolic, terpenoids, and nanoformulation were shown to have modulatory effects on the Ras/Raf/MAPKs pathway. CONCLUSION Natural products are promising multi-targeted agents with on NDDs through Ras/Raf/MAPKs pathway. Nevertheless, additional and complementary studies are necessary to check its efficacy and potential side effects.
Collapse
Affiliation(s)
| | - Sadaf Abdian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maedeh Tahvilian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile.
| |
Collapse
|
14
|
Jin Z, Gao W, Guo F, Liao S, Hu M, Yu T, Yu S, Shi Q. Astragaloside IV alleviates neuronal ferroptosis in ischemic stroke by regulating fat mass and obesity-associated-N6-methyladenosine-acyl-CoA synthetase long-chain family member 4 axis. J Neurochem 2023. [PMID: 37300304 DOI: 10.1111/jnc.15871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Ischemic stroke (IS) is a detrimental neurological disease with limited treatment options. Astragaloside IV (As-IV) was a promising bioactive constituent in the treatment of IS. However, the functional mechanism remains unclear. Here, IS cell and mouse models were established by oxygen glucose deprivation/re-oxygenation (OGD/R) and middle cerebral artery occlusion (MCAO). Quantitative reverse transcription PCR (RT-qPCR), Western blotting, or Immunofluorescence staining measured related gene and protein expression of cells or mice brain tissues, and the results revealed altered expression of acyl-CoA synthetase long-chain family member 4 (Acsl4), fat mass and obesity-associated (Fto), and activation transcription factor 3 (Atf3) after treatment with As-IV. Then, increased N6 -methyladenosine (m6 A) levels caused OGD/R or MCAO were reduced by As-IV according to the data from methylated RNA immunoprecipitation (MeRIP)-qPCR and dot blot assays. Moreover, through a series of functional experiments such as observing mitochondrial changes under transmission electron microscopy (TEM), evaluating cell viability by cell counting kit-8 (CCK-8), analyzing infract area of brain tissues by 2,3,5-triphenyltetrazolium chloride (TTC) staining, measuring levels of malondialdehyde (MDA), lactate dehydrogenase (LDH), Fe2+ , solute carrier family 7 member 11 (Slc7a11) and glutathione peroxidase 4 (Gpx4) and concentration of glutathione (GSH), we found that Fto knockdown, Acsl4 overexpression or Atf3 knockdown promoted the viability of OGD/R cells, inhibited cell ferroptosis, reduced infract size, while As-IV treatment or Fto overexpression reversed these changes. In mechanism, the interplays of YTH N6 -methyladenosine RNA-binding protein 3 (Ythdf3)/Acsl4 and Atf3/Fto were analyzed by RNA-pull down, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assay. Fto regulated the m6 A levels of Acsl4. Ythdf3 bound to Acsl4, and modulated its levels through m6 A modification. Atf3 bound to Fto and positively regulated its levels. Overall, As-IV promoted the transcription of Fto by upregulating Atf3, resulting in decreased m6 A levels of Acsl4, thus, improving neuronal injury in IS by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Zhenglong Jin
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen, China
| | - Wenying Gao
- Department of TCM Pediatrics, Jiangmen Maternal and Child Health Hospital, Jiangmen, China
| | - Fu Guo
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen, China
| | - Shaojun Liao
- Department of Spine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Mingzhe Hu
- Department of Neurology, The Affiliated Hospital of Shandong University of TCM, Jinan, China
| | - Tao Yu
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen, China
| | - Shangzhen Yu
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen, China
| | - Qing Shi
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen, China
| |
Collapse
|
15
|
Chen B, Jin W. A comprehensive review of stroke-related signaling pathways and treatment in western medicine and traditional Chinese medicine. Front Neurosci 2023; 17:1200061. [PMID: 37351420 PMCID: PMC10282194 DOI: 10.3389/fnins.2023.1200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
This review provides insight into the complex network of signaling pathways and mechanisms involved in stroke pathophysiology. It summarizes the historical progress of stroke-related signaling pathways, identifying potential interactions between them and emphasizing that stroke is a complex network disease. Of particular interest are the Hippo signaling pathway and ferroptosis signaling pathway, which remain understudied areas of research, and are therefore a focus of the review. The involvement of multiple signaling pathways, including Sonic Hedgehog (SHH), nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE), hypoxia-inducible factor-1α (HIF-1α), PI3K/AKT, JAK/STAT, and AMPK in pathophysiological mechanisms such as oxidative stress and apoptosis, highlights the complexity of stroke. The review also delves into the details of traditional Chinese medicine (TCM) therapies such as Rehmanniae and Astragalus, providing an analysis of the recent status of western medicine in the treatment of stroke and the advantages and disadvantages of TCM and western medicine in stroke treatment. The review proposes that since stroke is a network disease, TCM has the potential and advantages of a multi-target and multi-pathway mechanism of action in the treatment of stroke. Therefore, it is suggested that future research should explore more treasures of TCM and develop new therapies from the perspective of stroke as a network disease.
Collapse
Affiliation(s)
- Binhao Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weifeng Jin
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
16
|
Li L, Li X, Han R, Wu M, Ma Y, Chen Y, Zhang H, Li Y. Therapeutic Potential of Chinese Medicine for Endogenous Neurogenesis: A Promising Candidate for Stroke Treatment. Pharmaceuticals (Basel) 2023; 16:ph16050706. [PMID: 37242489 DOI: 10.3390/ph16050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Strokes are a leading cause of morbidity and mortality in adults worldwide. Extensive preclinical studies have shown that neural-stem-cell-based treatments have great therapeutic potential for stroke. Several studies have confirmed that the effective components of traditional Chinese medicine can protect and maintain the survival, proliferation, and differentiation of endogenous neural stem cells through different targets and mechanisms. Therefore, the use of Chinese medicines to activate and promote endogenous nerve regeneration and repair is a potential treatment option for stroke patients. Here, we summarize the current knowledge regarding neural stem cell strategies for ischemic strokes and the potential effects of these Chinese medicines on neuronal regeneration.
Collapse
Affiliation(s)
- Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Han
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meirong Wu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yaolei Ma
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuzhao Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yue Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
17
|
Astragaloside IV: A promising natural neuroprotective agent for neurological disorders. Biomed Pharmacother 2023; 159:114229. [PMID: 36652731 DOI: 10.1016/j.biopha.2023.114229] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Neurological disorders are characterized by high morbidity, disability, and mortality rates, which seriously threaten human health. However, clinically satisfactory agents for treatment are still currently lacking. Therefore, finding neuroprotective agents with minimum side effects and better efficacy is a challenge. Chinese herbal medicine, particularly natural preparations extracted from herbs or plants, has become an unparalleled resource for discovering new agent candidates. Astragali Radix is an important Qi tonic drug in traditional Chinese medicine and has a long medicinal history. As a natural medicine, it has a good prevention and treatment effect on neurological disorders. Here, the role and mechanism of astragaloside IV in the treatment of neurological disorders were evaluated and discussed through previous research results. Related information from major scientific databases, such as PubMed, MEDLINE, Web of Science, ScienceDirect, Embase, BIOSIS Previews, and the Cochrane Central Register of Controlled Trials and Cochrane Library, covering between 2001 and 2021 was compiled, using "Astragaloside IV" and "Neurological disorders," "Astragaloside IV," and "Neurodegenerative diseases" as reference terms. By summarizing previous research results, we found that astragaloside IV may play a neuroprotective role through various mechanisms: anti-inflammatory, anti-oxidative, anti-apoptotic protection of nerve cells and regulation of nerve growth factor, as well as by inhibiting neurodegeneration and promoting nerve regeneration. Astragaloside IV is a promising natural neuroprotective agent. By determining its pharmacological mechanism, astragaloside IV may be a new candidate drug for the treatment of neurological disorders.
Collapse
|
18
|
Yu Q, Jian Z, Yang D, Zhu T. Perspective insights into hydrogels and nanomaterials for ischemic stroke. Front Cell Neurosci 2023; 16:1058753. [PMID: 36761147 PMCID: PMC9902513 DOI: 10.3389/fncel.2022.1058753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023] Open
Abstract
Ischemic stroke (IS) is a neurological disorder prevalent worldwide with a high disability and mortality rate. In the clinic setting, tissue plasminogen activator (tPA) and thrombectomy could restore blood flow of the occlusion region and improve the outcomes of IS patients; however, these therapies are restricted by a narrow time window. Although several preclinical trials have revealed the molecular and cellular mechanisms underlying infarct lesions, the translatability of most findings is unsatisfactory, which contributes to the emergence of new biomaterials, such as hydrogels and nanomaterials, for the treatment of IS. Biomaterials function as structural scaffolds or are combined with other compounds to release therapeutic drugs. Biomaterial-mediated drug delivery approaches could optimize the therapeutic effects based on their brain-targeting property, biocompatibility, and functionality. This review summarizes the advances in biomaterials in the last several years, aiming to discuss the therapeutic potential of new biomaterials from the bench to bedside. The promising prospects of new biomaterials indicate the possibility of an organic combination between materialogy and medicine, which is a novel field under exploration.
Collapse
Affiliation(s)
- Qingbo Yu
- Laboratory of Anesthesia & Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China,Department of Anesthesiology, North Sichuan Medical College, Nanchong, China
| | - Zhang Jian
- Sichuan Provincial Maternity and Child Health Care Hospital, Women’s and Children’s Hospital Affiliated of Chengdu Medical College, Chengdu, China
| | - Dan Yang
- Department of Anesthesiology, North Sichuan Medical College, Nanchong, China
| | - Tao Zhu
- Laboratory of Anesthesia & Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China,*Correspondence: Tao Zhu,
| |
Collapse
|
19
|
Hao DL, Li JM, Xie R, Huo HR, Xiong XJ, Sui F, Wang PQ. The role of traditional herbal medicine for ischemic stroke: from bench to clinic-A critical review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154609. [PMID: 36610141 DOI: 10.1016/j.phymed.2022.154609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/29/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ischemic stroke (IS) is a leading cause of death and severe long-term disability worldwide. Over the past few decades, considerable progress has been made in anti-ischemic therapies. However, IS remains a tremendous challenge, with favourable clinical outcomes being generally difficult to achieve from candidate drugs in preclinical phase testing. Traditional herbal medicine (THM) has been used to treat stroke for over 2,000 years in China. In modern times, THM as an alternative and complementary therapy have been prescribed in other Asian countries and have gained increasing attention for their therapeutic effects. These millennia of clinical experience allow THM to be a promising avenue for improving clinical efficacy and accelerating drug discovery. PURPOSE To summarise the clinical evidence and potential mechanisms of THMs in IS. METHODS A comprehensive literature search was conducted in seven electronic databases, including PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the Chinese National Knowledge Infrastructure, the VIP Information Database, the Chinese Biomedical Literature Database, and the Wanfang Database, from inception to 17 June 2022 to examine the efficacy and safety of THM for IS, and to investigate experimental studies regarding potential mechanisms. RESULTS THM is widely prescribed for IS alone or as adjuvant therapy. In clinical trials, THM is generally administered within 72 h of stroke onset and are continuously prescribed for over 3 months. Compared with Western medicine (WM), THM combined with routine WM can significantly improve neurological function defect scores, promote clinical total effective rate, and accelerate the recovery time of stroke with fewer adverse effects (AEs). These effects can be attributed to multiple mechanisms, mainly anti-inflammation, antioxidative stress, anti-apoptosis, brain blood barrier (BBB) modulation, inhibition of platelet activation and thrombus formation, and promotion of neurogenesis and angiogenesis. CONCLUSIONS THM may be a promising candidate for IS management to guide clinical applications and as a reference for drug development.
Collapse
Affiliation(s)
- Dan-Li Hao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jia-Meng Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hai-Ru Huo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xing-Jiang Xiong
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peng-Qian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
20
|
Shen W, Jiang N, Zhou W. What can traditional Chinese medicine do for adult neurogenesis? Front Neurosci 2023; 17:1158228. [PMID: 37123359 PMCID: PMC10130459 DOI: 10.3389/fnins.2023.1158228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
Adult neurogenesis plays a crucial role in cognitive function and mood regulation, while aberrant adult neurogenesis contributes to various neurological and psychiatric diseases. With a better understanding of the significance of adult neurogenesis, the demand for improving adult neurogenesis is increasing. More and more research has shown that traditional Chinese medicine (TCM), including TCM prescriptions (TCMPs), Chinese herbal medicine, and bioactive components, has unique advantages in treating neurological and psychiatric diseases by regulating adult neurogenesis at various stages, including proliferation, differentiation, and maturation. In this review, we summarize the progress of TCM in improving adult neurogenesis and the key possible mechanisms by which TCM may benefit it. Finally, we suggest the possible strategies of TCM to improve adult neurogenesis in the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wei Shen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Ning Jiang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
- *Correspondence: Ning Jiang, ; Wenxia Zhou,
| | - Wenxia Zhou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
- *Correspondence: Ning Jiang, ; Wenxia Zhou,
| |
Collapse
|
21
|
Chen X, Shen J, Zhou Q, Jin X, Liu H, Gao R. Astragaloside VI Ameliorates Post-Stroke Depression via Upregulating the NRG-1-Mediated MEK/ERK Pathway. Pharmaceuticals (Basel) 2022; 15:ph15121551. [PMID: 36559001 PMCID: PMC9784132 DOI: 10.3390/ph15121551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Post-stroke depression (PSD) has been identified as one of the most commonly occurring complications attributed to stroke. Astragaloside VI (AsVI), which is an active Radix Astragali (AR)-derived compound, has been reported to be a potential drug for post-stroke therapy, but its effects on PSD and the underlying mechanisms remain uncovered. METHODS In this study, healthy male SD rats underwent a middle cerebral artery occlusion (MCAO) stroke model. To create a PSD model, these rats were then kept in isolated houses and subjected to chronic unpredictable mild stress. The rats were examined every five days for a series of behavioral tests of depression. The antidepressant properties of AsVI were also investigated in vitro in a corticosterone (CORT)-induced major depression model using a CCK-8 assay. The release of neurotransmitters dopamine (DA)/5-hydroxytryptamine (5-HT) was measured using HPLC. The expression of the neurotrophic factor Neuregulin 1 (NRG-1) in rat brain tissues was detected by immunostaining. The protein expression of NRG-1, p-MEK1, and p-ERK1/2 was analyzed utilizing western blotting. RESULTS AsVI treatment significantly reduced depression-like behaviors in PSD rats and attenuated the CORT-induced apoptotic cell death in neuronal PC-12 cells. Besides, AsVI treatment remarkably prevented the decrease of the levels of DA and 5-HT in the PSD rat brains and in CORT-induced PC-12 cells. Furthermore, AsVI treatment upregulated the NRG-1-mediated MEK/ERK pathway, which is associated with the improvement of PSD. CONCLUSIONS These findings suggest that AsVI could improve PSD at least partially by upregulating NRG-1-mediated MEK/ERK pathway. AsVI could be a novel therapeutic option for treating PSD.
Collapse
Affiliation(s)
- Xi Chen
- Department of Core Facility, The People’s Hospital of Bao-an, Shenzhen 518000, China
- The Second Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
- Correspondence: ; Tel.: +86-139-0247-5452; Fax: +86-2778-8311
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong SAR 999077, China
| | - Qing Zhou
- Department of Core Facility, The People’s Hospital of Bao-an, Shenzhen 518000, China
- The Second Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| | - Xinchun Jin
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Haosheng Liu
- Department of Core Facility, The People’s Hospital of Bao-an, Shenzhen 518000, China
- The Second Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| | - Ran Gao
- Department of Core Facility, The People’s Hospital of Bao-an, Shenzhen 518000, China
- The Second Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
22
|
Hong L, Jiang H, Liu M, Zhao G, Shi X, Tan H, Peng D, Wang L, Chen W, He L. Investigation of Naoluoxintong on the neural stem cells by facilitating proliferation and differentiation in vitro and on protecting neurons by up-regulating the expression of nestin in MCAO rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 299:115684. [PMID: 36058480 DOI: 10.1016/j.jep.2022.115684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/15/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The classic traditional Chinese compound Naoluoxintong (NLXT) has been proven an effective remedy for ischemic stroke (IS). The protective effect of NLXT on neural stem cells (NSCs), however, remains unclear. AIM OF THE STUDY To investigate the protective effect of NLXT on NSCs in rats with middle cerebral artery occlusion (MCAO) and the effect of Nestin expression in vivo. MATERIALS AND METHODS Sprague-Dawley (SD) rats were randomly divided into three groups: the sham-operated group, the MCAO model group and the NLXT group. The MCAO model in rats was established by modified Longa wire embolization method. The sham-operated group, the model group and the NLXT groups were divided into three subgroups according to the sampling time points of 1 d, 3 d and 7 d after successful model-making. Immunofluorescence staining, including bromodeoxyuridine (BrdU)/glial fibrillary acidic protein (GFAP), β-tubulinIII/GFAP, BrdU/doublecortin (DCX) and BrdU/neuronal nuclei (NeuN), was used to detect the proliferation and survival of NSCs in the hippocampal after drug administration. Protein expression of Nestin, DCX, GFAP and NeuN in the hippocampal was detected by Western blot (WB). RESULTS Immunofluorescence experiment of Nestin labeled: on the first day, a few Nestin-positive cells were found in the hippocampal DG area. Afterwards, the number of Nestin-labeled positive cells in the model group increased, while the number of cells in the sham group did not fluctuate significantly. The number of positive cells in each administration group increased more than that in the model and normal group. β-tubulin III/GFAP double-labeled: a small amount of double labeled cells was expressed in the normal group, and the number subsequently fluctuated little. In the model group, β-tubulin III/GFAP positive cells increased initially after acute ischemia, and gradually decreased afterwards. In the NLXT-treated group, β-Tubulin III positive cells were significantly increased on day 1, 3 and 7, while GFAP positive cells had little change. BrdU/DCX double-labeled: initially, a small number of BrdU/DCX-labeled positive cells were observed in the normal group and the model group, but there was no increasing trend over time. The positive cells in the NLXT group increased over time, and those in the seven-day group were significantly higher than those in the one-day and three-day groups. BrdU/NEUN double-labeled: in the normal group, BrdU/NEUN positive cells were enriched and distributed regularly. The number of positive cells in the model group was small and decreased gradually with time, and the decrease was most obvious on the third day. The number of positive cells in the NLXT group was significantly higher than that in the model group, and the number of positive cells in the seven-day group was significantly higher than that in the one-day and three-day groups. WB results reflected those three proteins, Nestin, NeuN and DCX, showed an increase in expression, except GFAP, which showed a decreasing trend. CONCLUSIONS Preliminarily, NLXT can promote the migration and differentiation of NSCs. It may have a protective effect on the brain by promoting repair of brain tissue damage through upregulation of Nestin after IS.
Collapse
Affiliation(s)
- Lu Hong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Huihui Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Mingming Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Guodong Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Xiaoqian Shi
- Department of Pharmacy, Huaibei People's Hospital, Hefei, Anhui, 235000, China
| | - Hui Tan
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, 230012, China; School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China
| | - Ling He
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, 230012, China; School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| |
Collapse
|
23
|
Liu X, Xiao X, Han X, Yao L, Lan W. A New Therapeutic Trend: Natural Medicine for Ameliorating Ischemic Stroke via PI3K/Akt Signaling Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227963. [PMID: 36432062 PMCID: PMC9694461 DOI: 10.3390/molecules27227963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Ischemic stroke (IS) is an acute cerebrovascular disease caused by sudden arterial occlusion, which is characterized by a high morbidity, mortality, and disability rate. It is one of the most important causes of nervous system morbidity and mortality in the world. In recent years, the search for new medicine for the treatment of IS has become an attractive research focus. Due to the extremely limited time window of traditional medicine treatment, some side effects may occur, and accompanied by the occurrence of adverse reactions, the frequency of exploration with natural medicine is significantly increased. Phosphatidylinositol-3-kinase/Protein kinase B (PI3K/Akt) signaling pathway is a classical pathway for cell metabolism, growth, apoptosis, and other physiological activities. There is considerable research on medicine that treats various diseases through this pathway. This review focuses on how natural medicines (including herbs and insects) regulate important pathophysiological processes such as inflammation, oxidative stress, apoptosis, and autophagy through the PI3K/Akt signaling pathway, and the role it plays in improving IS. We found that many kinds of herbal medicine and insect medicine can alleviate the damage caused by IS through the PI3K/Akt signaling pathway. Moreover, the prescription after their combination can also achieve certain results. Therefore, this review provides a new candidate category for medicine development in the treatment of IS.
Collapse
Affiliation(s)
- Xian Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Xinyu Xiao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610015, China
| | - Xue Han
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Lan Yao
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Wei Lan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
- Correspondence:
| |
Collapse
|
24
|
Chen X, Mao LF, Tian S, Tian X, Meng X, Wang MK, Xu W, Li YM, Liu K, Dong Z. Icotinib derivatives as tyrosine kinase inhibitors with anti-esophageal squamous carcinoma activity. Front Pharmacol 2022; 13:1028692. [PMID: 36467103 PMCID: PMC9709406 DOI: 10.3389/fphar.2022.1028692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/27/2022] [Indexed: 09/19/2023] Open
Abstract
Previous report showed that a variety of icotinib derivatives bearing different 1,2,3-triazole moieties, which could be readily prepared via copper (I)-catalyzed cycloaddition (CuAAC) reaction between icotinib and different azides, exhibited interesting activity against different lung cancer cell lines such as H460, H1975, H1299, A549 or PC-9. To further expand the application scope of the compounds and to validate the function of triazole groups in drug design, the anti-cancer activity of these compounds against esophageal squamous carcinoma (ESCC) cells was tested herein. Preliminary MTT experiments suggested that these compounds were active against different ESCC cell lines such as KYSE70, KYSE410, or KYSE450 as well as their drug-resistant ones. Especially, compound 3l showed interesting anticancer activity against these cell lines. The mode of action was studied via molecular docking, SPR experiments and other biochemical studies, and 3l exhibited higher binding potential to wild-type EGFR than icotinib did. In vivo anticancer study showed that 3l could inhibit tumor growth of cell-line-derived xenografts in ESCC. Study also suggested that 3l was a potent inhibitor for EGFR-TK pathway. Combining these results, 3l represents a promising lead compound for the design of anti-cancer drugs against ESCC.
Collapse
Affiliation(s)
- Xiaojie Chen
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Long-Fei Mao
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, Tianjin, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, Xinxiang, China
| | - Siqi Tian
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Xueli Tian
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xueqiong Meng
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Mu-Kuo Wang
- School of Chemistry and Chemical Engineering, Henan Normal University, Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, Xinxiang, China
| | - Weifeng Xu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yue-Ming Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, Tianjin, China
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Yan YH, Huang ZH, Xiong QP, Song YW, Li SY, Yang BW, Sun L, Zhang MY, Ji Y. Effects of Broussonetia papyrifera (L.) L'Hér. ex Vent. fruits water extract on hippocampal neurogenesis in the treatment of APP/PS1 transgenic mice. Front Pharmacol 2022; 13:1056614. [DOI: 10.3389/fphar.2022.1056614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Adult neurogenesis plays an important role in repairing damaged neurons and improving cognitive impairment in Alzheimer’s disease (AD). B. Papyrifera (L.) L'Hér. ex Vent. fruits (BL), a traditional Chinese medicine for tonifying the kidney, has been reported to improve cognitive function in AD mice, but the underlying mechanisms have not been clearly illuminated. This study aimed to provide an overview of the differential compounds in the brain of APP/PS1 mice after BL water extract (BLWE) treatment through metabolomics technology and to elucidate whether the therapeutic effect and mechanism are through the enhancement of neurogenesis.Methods: APP/PS1 transgenic mice were treated with different doses of BLWE. After 6 weeks of intragastric injection, the therapeutic effects of BLWE on APP/PS1 transgenic mice were determined by the Morris water maze test, immunohistochemistry, hematoxylin & eosin and Nissl staining, enzyme-linked immunosorbent assay and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Subsequently, metabolomics technology was used to analyze the regulatory effect of BLWE on differential compounds in the brain of APP/PS1 mice, and on this basis, its molecular mechanism of BLWE was screened. Finally, the protein expression of the Wnt/β-catenin signaling pathway was detected by Western blotting.Results: After BLWE treatment, the learning and memory function of APP/PS1 mice were significantly improved, which was related to the increase in the number of Nestin+/BrdU+ and NeuN+/BrdU+ cells, and the decrease in the number of apoptotic cells in the hippocampus. BLWE treatment could also up-regulate the expression of synapse-associated proteins. Moreover, BLWE could modulate endogenous metabolic compounds in the brains of AD mice, including N-acetyl-aspartate, glutamine, etc. Furthermore, BLWE inhibited the phosphorylation of Tyr216-GSK-3β and β-catenin protein while increased CyclinD1 protein expression.Conclusion: We demonstrated that BLWE can enhance neural stem cells proliferation and improve neurogenesis, thereby efficiently repairing damaged neurons in the hippocampus and ameliorating cognitive impairment in APP/PS1 transgenic mice. The mechanism is at least partly through activating the Wnt/β-catenin signaling pathway.
Collapse
|
26
|
Zhao T, Zhu T, Xie L, Li Y, Xie R, Xu F, Tang H, Zhu J. Neural Stem Cells Therapy for Ischemic Stroke: Progress and Challenges. Transl Stroke Res 2022; 13:665-675. [PMID: 35032307 DOI: 10.1007/s12975-022-00984-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Ischemic stroke, with its high morbidity and mortality, is the most common cerebrovascular accident and results in severe neurological deficits. Despite advances in medical and surgical intervention, post-stroke therapies remain scarce, which seriously affects the quality of life of patients. Over the past decades, stem cell transplantation has been recognized as very promising therapy for neurological diseases. Neural stem cell (NSC) transplantation is the optimal choice for ischemic stroke as NSCs inherently reside in the brain and can potentially differentiate into a variety of cell types within the central nervous system. Recent research has demonstrated that NSC transplantation can facilitate neural recovery after ischemic stroke, but the mechanisms still remain unclear, and basic/clinical studies of NSC transplantation for ischemic stroke have not yet been thoroughly elucidated. We thus, in this review, provide a futher understanding of the therapeutic role of NSCs for ischemic stroke, and evaluate their prospects for future application in clinical patients of ischemic stroke.
Collapse
Affiliation(s)
- Tong Zhao
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Tongming Zhu
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, No.12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Liqian Xie
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, No.12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Yao Li
- Med-X Research Institute, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Rong Xie
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, No.12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Feng Xu
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, No.12 Middle Wulumuqi Road, Shanghai, 200040, China.
| | - Hailiang Tang
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, No.12 Middle Wulumuqi Road, Shanghai, 200040, China.
| | - Jianhong Zhu
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, No.12 Middle Wulumuqi Road, Shanghai, 200040, China.
| |
Collapse
|
27
|
Zeng M, Zhang R, Yang Q, Guo L, Zhang X, Yu B, Gan J, Yang Z, Li H, Wang Y, Jiang X, Lu B. Pharmacological therapy to cerebral ischemia-reperfusion injury: Focus on saponins. Biomed Pharmacother 2022; 155:113696. [PMID: 36116247 DOI: 10.1016/j.biopha.2022.113696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Secondary insult from cerebral ischemia-reperfusion injury (CIRI) is a major risk factor for poor prognosis of cerebral ischemia. Saponins are steroid or triterpenoid glycosides with various pharmacological activities that are effective in treating CIRI. By browsing the literature from 2001 to 2021, 55 references involving 24 kinds of saponins were included. Saponins were shown to relieve CIRI by inhibiting oxidation stress, neuroinflammation, and apoptosis, restoring BBB integrity, and promoting neurogenesis and angiogenesis. This review summarizes and classifies several common saponins and their mechanisms in relieving CIRI. Information provided in this review will benefit researchers to design, research and develop new medicines to treat CIRI-related conditions with saponins.
Collapse
Affiliation(s)
- Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qiuyue Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bin Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhen Yang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Bin Lu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
28
|
Gong F, Qu R, Li Y, Lv Y, Dai J. Astragalus Mongholicus: A review of its anti-fibrosis properties. Front Pharmacol 2022; 13:976561. [PMID: 36160396 PMCID: PMC9490009 DOI: 10.3389/fphar.2022.976561] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Fibrosis-related diseases (FRD) include cerebral fibrosis, pulmonary fibrosis, cardiac fibrosis, liver fibrosis, renal fibrosis, peritoneal fibrosis, etc. The effects of fibrosis can be severe, resulting in organ dysfunction, functional decline, and even organ failure, which can cause serious health problems.Aim: Currently, there is no effective modern medicine for anti-fibrosis in the clinics; however, Chinese medicine has a certain beneficial effect on treating such diseases. Astragalus Mongholicus (AM) has rich medicinal value, and its anti-fibrosis effect has been recently investigated. In recent years, more and more experimental studies have been conducted on the intervention of astragaloside IV (AS-IV), astragalus polysaccharide (APS), astragalus flavone, cycloastragalus alcohol, astragalus water extract and other pharmacological components in fibrosis-related diseases, attracting the interest of researchers. We aim to provide ideas for future research by summarizing recent research advances of AM in treating fibrosis-related diseases.Methods: A literature search was conducted from the core collections of electronic databases such as Baidu Literature, Sciencen.com, Google Scholar, PubMed, and Science Direct using the above keywords and the pharmacological and phytochemical details of the plant.Results: AM can be used to intervene in fibrosis-disease progression by regulating inflammation, oxidative stress, the immune system, and metabolism.Conclusion: AS-IV, APS, and astragalus flavone were studied and discussed in detail. These components have high potential anti-fibrosis activity. Overall, this review aims to gain insight into the AM’s role in treating fibro-related diseases.
Collapse
Affiliation(s)
- Fengying Gong
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yongchun Li
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Ying Lv
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Ying Lv, ; Jingxing Dai,
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Ying Lv, ; Jingxing Dai,
| |
Collapse
|
29
|
Campanile M, Cuomo O, Brancaccio P, Vinciguerra A, Casamassa A, Pastorino O, Volpicelli F, Gentile MT, Amoroso S, Annunziato L, Colucci-D Amato L, Pignataro G. Ruta graveolens water extract (RGWE) ameliorates ischemic damage and improves neurological deficits in a rat model of transient focal brain ischemia. Biomed Pharmacother 2022; 154:113587. [PMID: 36029540 DOI: 10.1016/j.biopha.2022.113587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION AND AIMS The limited therapeutic options for ischemic stroke treatment render necessary the identification of new strategies. In recent years, it has been shown that natural compounds may represent a valid therapeutic opportunity. Therefore, the present study aimed to evaluate the protective effect of Ruta graveolens water extract (RGWE) in an in vivo experimental model of brain ischemia. METHODS RGWE effects on ischemic damage and neurological function were evaluated in adult rats subjected to transient occlusion of the Middle Cerebral Artery (tMCAO), receiving two intraperitoneal injections of RGWE, 100 and 300 min after the induction of ischemia. In addition, astroglial and microglial activation was measured as GFAP and IBA-1 expression by immunofluorescence and confocal microscopy analysis. RESULTS Treatment with RGWE containing 10 mg/kg of Rutin, the major component, ameliorates the ischemic damage and improves neurological performances. Interestingly, the pro-inflammatory states of astrocytes and microglia, respectively detected by using C3 and iNOS markers, were significantly reduced in ipsilateral cortical and striatal areas in ischemic RGWE-treated rats. CONCLUSIONS RGWE shows a neuroprotective effect on brain infarct volume extent in a transient focal cerebral ischemia model and this effect was paralleled by the prevention of pro-inflammatory astroglial and microglial activation. Collectively, our findings support the idea that natural compounds may represent potential therapeutic opportunities against ischemic stroke.
Collapse
Affiliation(s)
- Mario Campanile
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100, Caserta, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Antonio Vinciguerra
- Department of Biomedical Science and Public Health, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy
| | | | - Olga Pastorino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100, Caserta, Italy
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Maria Teresa Gentile
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100, Caserta, Italy
| | - Salvatore Amoroso
- Department of Biomedical Science and Public Health, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy
| | | | - Luca Colucci-D Amato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100, Caserta, Italy; InterUniversity Center for Research in Neurosciences (CIRN), University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
30
|
Molecular Mechanism of Salvia miltiorrhiza Bunge in Treating Cerebral Infarction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5992394. [PMID: 35392650 PMCID: PMC8983215 DOI: 10.1155/2022/5992394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022]
Abstract
Background Cerebral infarction (CI) is a common brain disease in clinical practice, which is mainly due to the pathological environment of ischemia and hypoxia caused by difficult cerebral circulation perfusion function, resulting in ischemic necrosis of local brain tissue and neurological impairment. In traditional Chinese medicine (TCM) theory, CI is mainly due to blood stasis in the brain. Therefore, blood-activating and stasis-dissipating drugs are often used to treat CI in clinical practice. Salvia miltiorrhiza Bunge (SMB) is a kind of traditional Chinese medicine with good efficacy in promoting blood circulation and removing blood stasis, and treatment of CI with it is a feasible strategy. Based on the above analysis, we chose network pharmacology to investigate the feasibility of SMB in the treatment of CI and to study the possible molecular mechanisms by providing some reference for the treatment of CI with TCM. Methods The active ingredients and related targets of SMB were obtained through the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and CI-related targets were obtained from the GeneCards and DisGeNET databases. The target of SMB for the treatment of CI was obtained using Cytoscape software and visualized. GO and KEGG enrichment analysis was performed based on “clusterProfiler” within R, and the prediction results were validated by molecular docking technique. Results By constructing a compound-target (C-T) network, it was found that the active components in SMB mainly treated CI by regulating key proteins such as AKT1, IL-6, and EGFR. These key proteins mainly involve in pathways such as immune regulation, cancer and lipid metabolism, such as lipid and atherosclerosis, chemical carcinogenesis-receptor activation pathways, and IL-17 signaling pathway. In the GO term, it mainly regulates the response to steroid hormones, membrane rafts, and G protein-amine receptor coupled activity. Eventually, we verified that the luteolin and tanshinone IIA components in SMB have a good possibility of action with AKT1 and IL-6 by in silico techniques, indicating that SMB has some scientificity in the treatment of CI. Conclusion SMB mainly treats CI by regulating 94 proteins involved in lipid and atherosclerosis, chemical carcinogenesis-receptor activation, and IL-17 signaling pathway. Our research strategy provided a template for the drug development of TCM for the treatment of CI.
Collapse
|
31
|
Li M, Han B, Zhao H, Xu C, Xu D, Sieniawska E, Lin X, Kai G. Biological active ingredients of Astragali Radix and its mechanisms in treating cardiovascular and cerebrovascular diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153918. [PMID: 35104756 DOI: 10.1016/j.phymed.2021.153918] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/12/2021] [Accepted: 12/30/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND With the rising age of the global population, the incidence rate of cardiovascular and cerebrovascular diseases (CCVDs) is increasing, which causes serious public health burden. The efforts for new therapeutic approaches are still being sought since the treatment effects of existing therapies are not quite satisfactory. Chinese traditional medicine proved to be very efficient in the treatment of CCVDs. Well described and established in Chinese medicine, Astragali Radix, has been commonly administered in the prophylaxis and cure of CCVDs for thousands of years. PURPOSE This review summarized the action mode and mechanisms of Astragali Radix phytochemicals on CCVDs, hoping to provide valuable information for the future application, development and improvement of Astragali Radix as well as CCVDs treatment. METHODS A plenty of literature on biological active ingredients of Astragali Radix used for CCVDs treatment were retrieved from online electronic PubMed and Web of Science databases. RESULTS This review highlighted the effects of five main active components in Astragali Radix including astragaloside Ⅳ, cycloastragenol, astragalus polysaccharide, calycosin-7-O-β-d-glucoside, and calycosin on CCVDs. The mechanisms mainly involved anti-oxidative damage, anti-inflammatory, and antiapoptotic through signaling pathways such as PI3K/Akt, Nrf2/HO-1, and TLR4/NF-κB pathway. In addition, the majority active constituents in AR have no obvious toxic side effects. CONCLUSION The main active components of Astragali Radix, especially AS-IV, have been extensively summarized. It has been proved that Astragali Radix has obvious therapeutic effects on various CCVDs, including myocardial and cerebral ischemia, hypertension, atherosclerosis, cardiac hypertrophy, chronic heart failure. CAG possesses anti-ischemia activity without toxicity, indicating a worthy of further development. However, high-quality clinical and pharmacokinetic studies are required to validate the current studies.
Collapse
Affiliation(s)
- Man Li
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Bing Han
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Huan Zhao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Chongyi Xu
- Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou, Zhejiang, 317500, China
| | - Daokun Xu
- Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou, Zhejiang, 317500, China
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Xianming Lin
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
32
|
Huang P, Wan H, Shao C, Li C, Zhang L, He Y. Recent Advances in Chinese Herbal Medicine for Cerebral Ischemic Reperfusion Injury. Front Pharmacol 2022; 12:688596. [PMID: 35111041 PMCID: PMC8801784 DOI: 10.3389/fphar.2021.688596] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Cerebral ischemic reperfusion injury (CI/RI) is a critical factor that leads to a poor prognosis in patients with ischemic stroke. It is an extremely complicated pathological process that is clinically characterized by high rates of disability and mortality. Current available treatments for CI/RI, including mechanical and drug therapies, are often accompanied by significant side effects. Therefore, it is necessary to discovery new strategies for treating CI/RI. Many studies confirm that Chinese herbal medicine (CHM) was used as a potential drug for treatment of CI/RI with the advantages of abundant resources, good efficacy, and few side effects. In this paper, we investigate the latest drug discoveries and advancements on CI/RI, make an overview of relevant CHM, and systematically summarize the pathophysiology of CI/RI. In addition, the protective effect and mechanism of related CHM, which includes extraction of single CHM and CHM formulation and preparation, are discussed. Moreover, an outline of the limitations of CHM and the challenges we faced are also presented. This review will be helpful for researchers further propelling the advancement of drugs and supplying more knowledge to support the application of previous discoveries in clinical drug applications against CI/RI.
Collapse
Affiliation(s)
- Ping Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chongyu Shao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chang Li
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ling Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
33
|
Zaman Q, Zhang D, Reddy OS, Wong WT, Lai WF. Roles and Mechanisms of Astragaloside IV in Combating Neuronal Aging. Aging Dis 2022; 13:1845-1861. [DOI: 10.14336/ad.2022.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
|
34
|
Du Q, Deng R, Li W, Zhang D, Tsoi B, Shen J. Baoyuan Capsule promotes neurogenesis and neurological functional recovery through improving mitochondrial function and modulating PI3K/Akt signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153795. [PMID: 34735905 DOI: 10.1016/j.phymed.2021.153795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bao Yuan Capsule (BYC) is a patented Chinese medicinal formula for health promotion but its application for ischemic stroke remains unknown. In this study, we proposed the hypothesis that BYC could promote neurogenesis and neurological functional recovery through promoting mitochondrial function and activating PI3K/Akt signaling pathway. METHODS We firstly performed chemical identification studies by using QIT-TOF-MS technology. Then, we investigated the effects of BYC (1 g/kg, 2 g/kg, 4 g/kg per day) on improving the recovery of the neurological functions in transient middle cerebral artery occlusion (MCAO) ischemic mice. RESULTS We tentatively characterized 36 compounds from the BYC extractions. At dosage of 4 g/kg, BYC effectively improved locomotor ability, attenuated anxiety-like behaviors, and enhanced the exploring behaviors, learning and memory capability in the transient MCAO ischemic mice. BYC treatment promoted neural stem cell differentiations in the subventricular zone (SVZ) and subgranular zone (SGZ) of the MCAO mice. BYC also up-regulated the expression of Aconitase 2 (ACO2), Succinate dehydrogenase complex, subunit A (SDHA), phosphorylation of AMP-activated protein kinase (p-AMPK), protein kinase B (p-Akt) and glycogen synthase kinase 3β (p-GSK3β) in the hippocampus of the MCAO mice. BYC (200 µg/ml) significantly improved the mitochondrial functions in cultured mouse multipotent neural stem like C17.2 cells. BYC treatment also promoted neuronal differentiations in the C17.2 cells under oxygen-glucose deprivation (OGD) condition. The neurogenetic effects were abolished by co-treatments of ATP synthesis inhibitor oligomycin and PI3K/Akt inhibitor wortmannin. Moreover, Akt phosphorylation was dramatically reduced by oligomycin. CONCLUSION BYC could promote neurogenesis and neurological functional recovery in post ischemic brains by regulating the mitochondrial functions and Akt signaling pathway.
Collapse
Affiliation(s)
- Qiaohui Du
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong
| | - Ruixia Deng
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong
| | - Wenting Li
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong
| | - Dong Zhang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hum, Kowloon, Hong Kong
| | - Bun Tsoi
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
35
|
Wei M, Feng S, Zhang L, Wang C, Chu S, Shi T, Zhou W, Zhang Y. Active Fraction Combination From Liuwei Dihuang Decoction Improves Adult Hippocampal Neurogenesis and Neurogenic Microenvironment in Cranially Irradiated Mice. Front Pharmacol 2021; 12:717719. [PMID: 34630096 PMCID: PMC8495126 DOI: 10.3389/fphar.2021.717719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/02/2021] [Indexed: 02/02/2023] Open
Abstract
Background: Cranial radiotherapy is clinically used in the treatment of brain tumours; however, the consequent cognitive and emotional dysfunctions seriously impair the life quality of patients. LW-AFC, an active fraction combination extracted from classical traditional Chinese medicine prescription Liuwei Dihuang decoction, can improve cognitive and emotional dysfunctions in many animal models; however, the protective effect of LW-AFC on cranial irradiation–induced cognitive and emotional dysfunctions has not been reported. Recent studies indicate that impairment of adult hippocampal neurogenesis (AHN) and alterations of the neurogenic microenvironment in the hippocampus constitute critical factors in cognitive and emotional dysfunctions following cranial irradiation. Here, our research further investigated the potential protective effects and mechanisms of LW-AFC on cranial irradiation–induced cognitive and emotional dysfunctions in mice. Methods: LW-AFC (1.6 g/kg) was intragastrically administered to mice for 14 days before cranial irradiation (7 Gy γ-ray). AHN was examined by quantifying the number of proliferative neural stem cells and immature neurons in the dorsal and ventral hippocampus. The contextual fear conditioning test, open field test, and tail suspension test were used to assess cognitive and emotional functions in mice. To detect the change of the neurogenic microenvironment, colorimetry and multiplex bead analysis were performed to measure the level of oxidative stress, neurotrophic and growth factors, and inflammation in the hippocampus. Results: LW-AFC exerted beneficial effects on the contextual fear memory, anxiety behaviour, and depression behaviour in irradiated mice. Moreover, LW-AFC increased the number of proliferative neural stem cells and immature neurons in the dorsal hippocampus, displaying a regional specificity of neurogenic response. For the neurogenic microenvironment, LW-AFC significantly increased the contents of superoxide dismutase, glutathione peroxidase, glutathione, and catalase and decreased the content of malondialdehyde in the hippocampus of irradiated mice, accompanied by the increase in brain-derived neurotrophic factor, insulin-like growth factor-1, and interleukin-4 content. Together, LW-AFC improved cognitive and emotional dysfunctions, promoted AHN preferentially in the dorsal hippocampus, and ameliorated disturbance in the neurogenic microenvironment in irradiated mice. Conclusion: LW-AFC ameliorates cranial irradiation–induced cognitive and emotional dysfunctions, and the underlying mechanisms are mediated by promoting AHN in the dorsal hippocampus and improving the neurogenic microenvironment. LW-AFC might be a promising therapeutic agent to treat cognitive and emotional dysfunctions in patients receiving cranial radiotherapy.
Collapse
Affiliation(s)
- Mingxiao Wei
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shufang Feng
- Department of Poisoning and the Treatment, Affiliated Hospital to Academy of Military Medical Sciences (the 307 Hospital), Beijing, China
| | - Lin Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Chen Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shasha Chu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Tianyao Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wenxia Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongxiang Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
36
|
Zamorano M, Castillo RL, Beltran JF, Herrera L, Farias JA, Antileo C, Aguilar-Gallardo C, Pessoa A, Calle Y, Farias JG. Tackling Ischemic Reperfusion Injury With the Aid of Stem Cells and Tissue Engineering. Front Physiol 2021; 12:705256. [PMID: 34603075 PMCID: PMC8484708 DOI: 10.3389/fphys.2021.705256] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/11/2021] [Indexed: 01/14/2023] Open
Abstract
Ischemia is a severe condition in which blood supply, including oxygen (O), to organs and tissues is interrupted and reduced. This is usually due to a clog or blockage in the arteries that feed the affected organ. Reinstatement of blood flow is essential to salvage ischemic tissues, restoring O, and nutrient supply. However, reperfusion itself may lead to major adverse consequences. Ischemia-reperfusion injury is often prompted by the local and systemic inflammatory reaction, as well as oxidative stress, and contributes to organ and tissue damage. In addition, the duration and consecutive ischemia-reperfusion cycles are related to the severity of the damage and could lead to chronic wounds. Clinical pathophysiological conditions associated with reperfusion events, including stroke, myocardial infarction, wounds, lung, renal, liver, and intestinal damage or failure, are concomitant in due process with a disability, morbidity, and mortality. Consequently, preventive or palliative therapies for this injury are in demand. Tissue engineering offers a promising toolset to tackle ischemia-reperfusion injuries. It devises tissue-mimetics by using the following: (1) the unique therapeutic features of stem cells, i.e., self-renewal, differentiability, anti-inflammatory, and immunosuppressants effects; (2) growth factors to drive cell growth, and development; (3) functional biomaterials, to provide defined microarchitecture for cell-cell interactions; (4) bioprocess design tools to emulate the macroscopic environment that interacts with tissues. This strategy allows the production of cell therapeutics capable of addressing ischemia-reperfusion injury (IRI). In addition, it allows the development of physiological-tissue-mimetics to study this condition or to assess the effect of drugs. Thus, it provides a sound platform for a better understanding of the reperfusion condition. This review article presents a synopsis and discusses tissue engineering applications available to treat various types of ischemia-reperfusions, ultimately aiming to highlight possible therapies and to bring closer the gap between preclinical and clinical settings.
Collapse
Affiliation(s)
- Mauricio Zamorano
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | | | - Jorge F Beltran
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Lisandra Herrera
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Joaquín A Farias
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibíñtez, Santiago, Chile
| | - Christian Antileo
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Cristobal Aguilar-Gallardo
- Hematological Transplant and Cell Therapy Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Yolanda Calle
- Department of Life Sciences, Whitelands College, University of Roehampton, London, United Kingdom
| | - Jorge G Farias
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
37
|
Liu X, Chu W, Shang S, Ma L, Jiang C, Ding Y, Wang J, Zhang S, Shao B. Preliminary study on the anti-apoptotic mechanism of Astragaloside IV on radiation-induced brain cells. Int J Immunopathol Pharmacol 2021; 34:2058738420954594. [PMID: 32902354 PMCID: PMC7485151 DOI: 10.1177/2058738420954594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
With multiple targets and low cytotoxicity, natural medicines can be used as potential neuroprotective agents. The increase in oxidative stress levels and inflammatory responses in the brain caused by radiation affects cognitive function and neuronal structure, and ultimately leads to abnormal changes in neurogenesis, differentiation, and apoptosis. Astragaloside Ⅳ (AS-Ⅳ), one of the main active constituents of astragalus, is known for its antioxidant, antihypertensive, antidiabetic, anti-infarction, anti-inflammatory, anti-apoptotic and wound healing, angiogenesis, and other protective effects. In this study, the mechanism of AS-IV against radiation-induced apoptosis of brain cells in vitro and in vivo was explored by radiation modeling, which provided a theoretical basis for the development of anti-radiation Chinese herbal active molecules and brain health products. In order to study the protective mechanism of AS-IV on radiation-induced brain cell apoptosis in mice, the paper constructed a radiation-induced brain cell apoptosis model, using TUNEL staining, flow cytometry, Western blotting to analyze AS-IV resistance mechanism to radiation-induced brain cell apoptosis. The results of TUNEL staining and flow cytometry showed that the apoptosis rate of radiation group was significantly increased. The results of Western blotting indicated that the expression levels of p-JNK, p-p38, p53, Caspase-9 and Caspase-3 protein, and the ratio of Bax to Bcl-2 in radiation group were significantly increased. There was no significant difference in the expression levels of JNK and p38. After AS-IV treatment, the apoptosis was reduced and the expression of apoptosis related proteins was changed. These data suggested that AS-IV can effectively reduce radiation-induced apoptosis of brain cells, and its mechanism may be related to the phosphorylation regulation of JNK-p38.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Weiwei Chu
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Shuying Shang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Liang Ma
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Chenxin Jiang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yanping Ding
- School wof Life Sciences, Northwest Normal University, Lanzhou, Gansu Province, China
| | - Jianlin Wang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Shengxiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Baoping Shao
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| |
Collapse
|
38
|
Krishnan M, Kumar S, Kangale LJ, Ghigo E, Abnave P. The Act of Controlling Adult Stem Cell Dynamics: Insights from Animal Models. Biomolecules 2021; 11:biom11050667. [PMID: 33946143 PMCID: PMC8144950 DOI: 10.3390/biom11050667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Adult stem cells (ASCs) are the undifferentiated cells that possess self-renewal and differentiation abilities. They are present in all major organ systems of the body and are uniquely reserved there during development for tissue maintenance during homeostasis, injury, and infection. They do so by promptly modulating the dynamics of proliferation, differentiation, survival, and migration. Any imbalance in these processes may result in regeneration failure or developing cancer. Hence, the dynamics of these various behaviors of ASCs need to always be precisely controlled. Several genetic and epigenetic factors have been demonstrated to be involved in tightly regulating the proliferation, differentiation, and self-renewal of ASCs. Understanding these mechanisms is of great importance, given the role of stem cells in regenerative medicine. Investigations on various animal models have played a significant part in enriching our knowledge and giving In Vivo in-sight into such ASCs regulatory mechanisms. In this review, we have discussed the recent In Vivo studies demonstrating the role of various genetic factors in regulating dynamics of different ASCs viz. intestinal stem cells (ISCs), neural stem cells (NSCs), hematopoietic stem cells (HSCs), and epidermal stem cells (Ep-SCs).
Collapse
Affiliation(s)
- Meera Krishnan
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
| | - Sahil Kumar
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
| | - Luis Johnson Kangale
- IRD, AP-HM, SSA, VITROME, Aix-Marseille University, 13385 Marseille, France;
- Institut Hospitalo Universitaire Méditerranée Infection, 13385 Marseille, France;
| | - Eric Ghigo
- Institut Hospitalo Universitaire Méditerranée Infection, 13385 Marseille, France;
- TechnoJouvence, 13385 Marseille, France
| | - Prasad Abnave
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
- Correspondence:
| |
Collapse
|
39
|
Mi Y, Jiao K, Xu JK, Wei K, Liu JY, Meng QQ, Guo TT, Zhang XN, Zhou D, Qing DG, Sun Y, Li N, Hou Y. Kellerin from Ferula sinkiangensis exerts neuroprotective effects after focal cerebral ischemia in rats by inhibiting microglia-mediated inflammatory responses. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113718. [PMID: 33352239 DOI: 10.1016/j.jep.2020.113718] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ferula sinkiangensis K. M. Shen is a traditional Chinese medicine that has a variety of pharmacological properties relevant to neurological disorders and inflammations. Kellerin, a novel compound extracted from Ferula sinkiangensis, exerts a strong anti-neuroinflammatory effect by inhibiting microglial activation. Microglial activation plays a vital role in ischemia-induced brain injury. However, the potential therapeutic effect of kellerin on focal cerebral ischemia is still unknown. AIM OF THE STUDY To explore the effect of kellerin on cerebral ischemia and clarify its possible mechanisms, we applied the middle cerebral artery occlusion (MCAO) model and the LPS-activated microglia model in our study. MATERIALS AND METHODS Neurological outcome was examined according to a 4-tiered grading system. Brain infarct size was measured using TTC staining. Brain edema was calculated using the wet weight minus dry weight method. Neuron damage and microglial activation were observed by immunofluorescence in MCAO model in rats. In in vitro studies, microglial activation was examined by flow cytometry and the viability of neuronal cells cultured in microglia-conditioned medium was measured using MTT assay. The levels of pro-inflammatory cytokines were measured by qRT-PCR and ELISA. The proteins involved in NF-κB signaling pathway were determined by western blot. Intracellular ROS was examined using DCFH-DA method and NADPH oxidase activity was measured using the NBT assay. RESULTS We found that kellerin improved neurological outcome, reduced brain infarct size and decreased brain edema in MCAO model in rats. Under the pathologic conditions of focal cerebral ischemia, kellerin alleviated neuron damage and inhibited microglial activation. Moreover, in in vitro studies of LPS-stimulated BV2 cells kellerin protected neuronal cells from being damaged by inhibiting microglial activation. Kellerin also reduced the levels of pro-inflammatory cytokines, suppressed the NF-κB signaling pathway, and decreased ROS generation and NADPH oxidase activity. CONCLUSIONS Our discoveries reveal that the neuroprotective effects of kellerin may largely depend on its inhibitory effect on microglial activation. This suggests that kellerin could serve as a novel anti-inflammatory agent which may have therapeutic effects in ischemic stroke.
Collapse
Affiliation(s)
- Yan Mi
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Kun Jiao
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Ji-Kai Xu
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Kun Wei
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Jing-Yu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qing-Qi Meng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ting-Ting Guo
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xue-Ni Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - De-Gang Qing
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, China
| | - Yu Sun
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China.
| |
Collapse
|
40
|
Chen H, Guan B, Chen S, Yang D, Shen J. Peroxynitrite activates NLRP3 inflammasome and contributes to hemorrhagic transformation and poor outcome in ischemic stroke with hyperglycemia. Free Radic Biol Med 2021; 165:171-183. [PMID: 33515754 DOI: 10.1016/j.freeradbiomed.2021.01.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
This study aims to test the hypothesis that peroxynitrite-mediated inflammasome activation could be a crucial player in the blood-brain barrier (BBB) disruption, hemorrhagic transformation (HT) and poor outcome in ischemic stroke with hyperglycemia. We used an experimental rat stroke model subjected to 90 min of middle cerebral artery occlusion plus 24 h or 7 days of reperfusion with or without acute hyperglycemia. We detected the production of peroxynitrite, the expression of NADPH oxidase, iNOS, MMPs and NLRP3 inflammasome in the ischemic brains, and evaluated infarct volume, brain edema, HT, neurological deficit score and survival rates. Our results show that: (1) Hyperglycemia increased the expression of NADPH oxidase subunits p47phox and p67phox, and iNOS, and the production of peroxynitrite. (2) Hyperglycemia increased infarct volume, aggravated the BBB hyperpermeability, induced brain edema and HT, and worsened neurological outcomes. These brain damages and poor outcome were reversed by the treatments of FeTmPyP (a representative peroxynitrite decomposition catalyst, PDC), peroxynitrite scavenger uric acid, and iNOS inhibitor 1400W. Furthermore, the activations of MMPs and NLRP3 inflammasome including pro/active-caspase-1 and IL-1β were inhibited both PDC and 1400W, indicating the roles of peroxynitrite in the inductions of MMPs and NLRP3 inflammasome in the ischemic brains under hyperglycemia. (3) NLRP3 inflammasome inhibitor MCC950, caspase-1 inhibitor VX-765 and IL-1β inhibitor diacerein attenuated brain edema, minimized hemorrhagic transformation and improved neurological outcome, demonstrating the roles of NLRP3 inflammasome in the hyperglycemia-mediated HT and poor outcome in the ischemic stroke rats with acute hyperglycemia. In conclusion, peroxynitrite could mediate activations of MMPs and NLRP3 inflammasome, aggravate the BBB damage and HT, and induce poor outcome in ischemic stroke with hyperglycemia. Therefore, targeting peroxynitrite-mediated NLRP3 inflammasome could be a promising strategy for ischemic stroke with hyperglycemia.
Collapse
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, SAR, China; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| | - Binghe Guan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Dan Yang
- Department of Chemistry, Morningside Laboratory for Chemical Biology, The University of Hong Kong, Hong Kong, SAR, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, SAR, China; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China.
| |
Collapse
|
41
|
Additive Manufacturing of Astragaloside-Containing Polyurethane Nerve Conduits Influenced Schwann Cell Inflammation and Regeneration. Processes (Basel) 2021. [DOI: 10.3390/pr9020353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The peripheral nervous system is the bridge of communication between the central nervous system and other body systems. Autologous nerve grafting is the mainstream method for repair of nerve lesions greater than 20 mm. However, there are several disadvantages and limitations of autologous nerve grafting, thus prompting the need for fabrication of nerve conduits for clinical use. In this study, we successfully fabricated astragaloside (Ast)-containing polyurethane (PU) nerve guidance conduits via digital light processing, and it was noted that the addition of Ast improved the hydrophilicity of traditional PU conduits by at least 23%. The improved hydrophilicity not only led to enhanced cellular proliferation of rat Schwann cells, we also noted that levels of inflammatory markers tumor necrosis factor-alpha (TNF-α) and cyclooxygenase-2 (COX-2) significantly decreased with increasing concentrations of Ast. Furthermore, the levels of neural regeneration markers were significantly enhanced with the addition of Ast. This study demonstrated that Ast-containing PU nerve conduits can be potentially used as an alternative solution to regenerate peripheral nerve injuries.
Collapse
|
42
|
Niu Y, Chen Y, Xu H, Wang Q, Xue C, Zhu R, Zhao RC. Astragaloside IV Promotes Antiphotoaging by Enhancing the Proliferation and Paracrine Activity of Adipose-Derived Stem Cells. Stem Cells Dev 2020; 29:1285-1293. [PMID: 32703122 DOI: 10.1089/scd.2020.0092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Photoaging is a degenerative biological process. As a kind of pluripotent stem cells, adipose-derived stem cells (ADSCs) are widely used in the treatment of photoaging. Therefore, we aimed to find an effective way to improve the antiaging ability of ADSCs. In this study, we isolated ADSCs and assessed multilineage differentiation ability and markers. Cultured ADSCs were preconditioned with astragaloside IV (ASI) at 10-7, 10-6, and 10-5 M. Cell proliferation was assessed by CCK-8 assay and cytokine secretion by enzyme-linked immunosorbent assay (ELISA). A fibroblast photoaging model was established and cocultured with normal ADSCs or ASI-treated ADSCs. Matrix metalloproteinase-1 (MMP1) and type I procollagen (PC-I) secreted by human dermal fibroblasts were measured by ELISA. The effects of ASI-treated ADSCs on skin texture, including dermal thickness, collagen content, and microvessel density, in a photoaging animal model were analyzed using H&E staining, Masson staining, and CD31 immunohistochemistry, respectively. We found that 10-6 M ASI could significantly promote cell proliferation and stimulate robust secretion of growth factors in ADSCs. Furthermore, our data showed that ASI-treated ADSCs could markedly reverse the ultraviolet B-induced decrease of PC-I secretion and increase of MMP-1 release in fibroblasts. Moreover, in photoaged skin of nude mice, ASI-treated ADSCs significantly increased dermal thickness, collagen content, and microvessel density.
Collapse
Affiliation(s)
- Yanchao Niu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Beijing Key Laboratory (No.BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yunfei Chen
- Beijing Key Laboratory (No.BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Haoying Xu
- Beijing Key Laboratory (No.BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qiaoling Wang
- Beijing Key Laboratory (No.BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Chunling Xue
- Beijing Key Laboratory (No.BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Rongjia Zhu
- Beijing Key Laboratory (No.BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Robert Chunhua Zhao
- Beijing Key Laboratory (No.BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Department of Cell Biology, School of Life Sciences, Shanghai University, Shanghai, People's Republic of China
| |
Collapse
|
43
|
Sun L, Han R, Guo F, Chen H, Wang W, Chen Z, Liu W, Sun X, Gao C. Antagonistic effects of IL-17 and Astragaloside IV on cortical neurogenesis and cognitive behavior after stroke in adult mice through Akt/GSK-3β pathway. Cell Death Discov 2020; 6:74. [PMID: 32818074 PMCID: PMC7417740 DOI: 10.1038/s41420-020-00298-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/18/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
We aimed to investigate the exact effect of IL-17 on regulating neural stem cells (NSCs) stemness and adult neurogenesis in ischemic cortex after stroke, how Astragaloside IV(As-IV) regulated IL-17 expression and the underlying mechanism. Photochemical brain ischemia model was established and IL-17 protein expression was observed at different time after stroke in WT mice. At 3 days after stroke, when IL-17 expression peaked, IL-17 knock out (KO) mice were used to observe cell proliferation and neurogenesis in ischemic cortex. Then, As-IV was administered intravenously to assess cell apoptosis, proliferation, neurogenesis, and cognitive deficits by immunochemistry staining, western blots, and animal behavior tests in WT mice. Furthermore, IL-17 KO mice and As-IV were used simultaneously to evaluate the mechanism of cell apoptosis and proliferation after stroke in vivo. Besides, in vitro, As-IV and recombinant mouse IL-17A was administered, respectively, into NSCs culture, and then their diameters, viable cell proliferation and pathway relevant protein was assessed. The results showed knocking out IL-17 contributed to regulating PI3K/Akt pathway, promoting NSCs proliferation, and neurogenesis after ischemic stroke. Moreover, As-IV treatment helped inhibit neural apoptosis, promote the neurogenesis and eventually relieve mice anxiety after stroke. Unsurprisingly, IL-17 protein expression could be downregulated by As-IV in vivo and in vitro and they exerted antagonistic effect on neurogenesis by regulating Akt/GSK-3β pathway, with significant regulation for apoptosis. In conclusion, IL-17 exerts negative effect on promoting NSCs proliferation, neurogenesis and cognitive deficits after ischemic stroke, which could be reversed by As-IV.
Collapse
Affiliation(s)
- Li Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Ruili Han
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Fei Guo
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Hai Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Wen Wang
- School of Basic Medicine, Air Force Medical University, 710032 Xi’an, Shaanxi Province China
| | - Zhiyang Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Wei Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Xude Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Changjun Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| |
Collapse
|
44
|
Astragaloside IV improves neurobehavior and promotes hippocampal neurogenesis in MCAO rats though BDNF-TrkB signaling pathway. Biomed Pharmacother 2020; 130:110353. [PMID: 32682983 DOI: 10.1016/j.biopha.2020.110353] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Astragaloside IV (AST) as the main active ingredient of Astragalus membranaceus. Clinical and laboratory-based studies have demonstrated the effects of AST on cerebral protection and angiogenesis after ischemia stroke. In addition, several reports investigated the effect of AST on proliferation of neural stem cells. The current study was aimed to evaluate the influence of AST on neurogenesis in hippocampal dentate gyrus (DG) of MCAO rats and to explore the possible mechanisms. In this study, the neurobehavioral tests (Ludmila Belayev 12-point scoring, Screen test, fore limb placing test) had been employed to investigate the effect of AST treatment against functional deficit of MCAO rats. The immunofluorescence staining, western-blot and qRT-PCR was performed to evaluate the effects of AST on proliferation, differentiation and maturity of neural stemr cells in hippocampus. Moreover, we investigated the possible mechanism of the AST treatment in promoting neurogenesis after ischemic stroke. The findings indicated that AST treatment ameliorated the neurobehavior of MCAO rats. The results indicated that AST treatment possessed the potential to improve proprioceptive sense and motor function of MCAO rats. AST treatment sustained neuronal viability and stimulates sensorimotor integration functional recovery in MCAO rats. The results suggested that AST improved neurobehavior deficit after ischemic stroke. Furthermore, AST promoted neurogenesis through upregulating the expressing of BNDF/TrkB signaling pathway. Therefore AST might be a promising therapeutic agent for ischemic stroke.
Collapse
|
45
|
Wang H, Zhuang Z, Huang YY, Zhuang ZZ, Jin Y, Ye HY, Lin XJ, Zheng Q, Wang YL. Protective Effect and Possible Mechanisms of Astragaloside IV in Animal Models of Diabetic Nephropathy: A Preclinical Systematic Review and Meta-Analysis. Front Pharmacol 2020; 11:988. [PMID: 32695006 PMCID: PMC7339662 DOI: 10.3389/fphar.2020.00988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 06/18/2020] [Indexed: 12/09/2022] Open
Abstract
Astragaloside IV (AS-IV) has a variety of biological activities and is widely used to treat kidney diseases. We conducted a systematic review of 24 animal studies including 424 animals to evaluate the efficacy of AS-IV for diabetic nephropathy (DN); all current possible mechanisms were summarized. A search strategy was applied to eight databases from inception to June 2020. The CAMARADES 10-item quality checklist and Rev-Man 5.3 software were used to analyze the risks of bias of each study and data regarding outcome measures, respectively. The mean study quality score was 5.4 points (range 3–8 points). Meta-analyses data and comparisons between groups showed that AS-IV significantly slowed the progression of pathological signs in the kidney including glomeruli and tubules, increasing creatinine clearance rate, decreasing blood urea nitrogen, serum creatinine, 24-h urinary neutrophil gelatinase-associated lipocalin and N-acetyl-β-D-glucosaminidase, 24-h urinary albumin, 24-h urinary microalbumin and HbA1c. There were no significant differences between experimental and control groups with respect to mortality or levels of alanine aminotransferase and aspartate aminotransferase. In terms of the possible mechanisms of treatment of DN, AS-IV acts through antifibrotic, antioxidant, and antiapoptotic mechanisms, thereby alleviating endoplasmic reticulum stress, inhibiting mitochondrial fission, and increasing autophagic activity. Taken together, our findings suggest that AS-IV is a multifaceted renoprotective candidate drug for DN.
Collapse
Affiliation(s)
- Hong Wang
- Department of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuang Zhuang
- Department of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yue-Yue Huang
- Department of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi-Zhi Zhuang
- Department of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Jin
- Department of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Han-Yang Ye
- Department of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Ji Lin
- Department of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qun Zheng
- Department of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Luan Wang
- Department of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
46
|
Ceccarelli M, D’Andrea G, Micheli L, Tirone F. Interaction Between Neurogenic Stimuli and the Gene Network Controlling the Activation of Stem Cells of the Adult Neurogenic Niches, in Physiological and Pathological Conditions. Front Cell Dev Biol 2020; 8:211. [PMID: 32318568 PMCID: PMC7154047 DOI: 10.3389/fcell.2020.00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/11/2020] [Indexed: 12/26/2022] Open
Abstract
In the adult mammalian brain new neurons are continuously generated throughout life in two niches, the dentate gyrus of the hippocampus and the subventricular zone. This process, called adult neurogenesis, starts from stem cells, which are activated and enter the cell cycle. The proliferative capability of stem cells progressively decreases during aging. The population of stem cells is generally quiescent, and it is not clear whether the potential for stem cells to expand is limited, or whether they can expand and then return to quiescence, remaining available for further activation. Certain conditions may deregulate stem cells quiescence and self-renewal. In fact we discuss the possibility of activation of stem cells by neurogenic stimuli as a function of the intensity of the stimulus (i.e., whether this is physiological or pathological), and of the deregulation of the system (i.e., whether the model is aged or carrying genetic mutations in the gene network controlling quiescence). It appears that when the system is aged and/or carrying mutations of quiescence-maintaining genes, preservation of the quiescent state of stem cells is more critical and stem cells can be activated by a neurogenic stimulus which is ineffective in normal conditions. Moreover, when a neurogenic stimulus is in itself a cause of brain damage (e.g., kainic acid treatment) the activation of stem cells occurs bypassing any inhibitory control. Plausibly, with strong neurogenic stimuli, such as kainic acid injected into the dentate gyrus, the self-renewal capacity of stem cells may undergo rapid exhaustion. However, the self-renewal capability of stem cells persists when normal stimuli are elicited in the presence of a mutation of one of the quiescence-maintaining genes, such as p16Ink4a, p21Cip1 or Btg1. In this case, stem cells become promptly activated by a neurogenic stimulus even during aging. This indicates that stem cells retain a high proliferative capability and plasticity, and suggests that stem cells are protected against the response to stimulus and are resilient to exhaustion. It will be interesting to assess at which functional degree of deregulation of the quiescence-maintaining system, stem cells will remain responsive to repeated neurogenic stimuli without undergoing exhaustion of their pool.
Collapse
Affiliation(s)
| | | | | | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| |
Collapse
|
47
|
Sun L, Zhang H, Wang W, Chen Z, Wang S, Li J, Li G, Gao C, Sun X. Astragaloside IV Exerts Cognitive Benefits and Promotes Hippocampal Neurogenesis in Stroke Mice by Downregulating Interleukin-17 Expression via Wnt Pathway. Front Pharmacol 2020; 11:421. [PMID: 32317974 PMCID: PMC7147333 DOI: 10.3389/fphar.2020.00421] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Background Stroke remains a leading cause of adult disability and the demand for stroke rehabilitation services is growing, and Astragaloside IV (As IV), a primary bioactive compound of Radix Astragali : Astragalus mongholicus Bunge (Fabaceae), may be a promising stroke therapy. Methods To access the effect of As IV on adult mice after ischemic stroke, a photochemical ischemia model was established on C57BL/6 mice, which were intravenously administered As IV for three consecutive days later. And then the cognitive benefits and hippocampal neurogenesis were evaluated by Morris Water Maze (MWM) test, Golgi staining, and immunohistochemical staining in vivo and in vitro. Furthermore, to find out the underlying mechanism, interleukin-17 (IL-17) knockout (KO) mice were used, through RNA sequence (RNA-seq) analysis and immunohistochemistry. Then the mechanism of neurogenesis promoted by As IV was observed by western blot both in vivo and in vitro. Specifically, As IV, recombinant mouse IL-17A and IL-17F, and Wingless/integrated (Wnt)-expressing virus was administered respectively in neural stem cells (NSCs), and then their diameters and protein expression of Nestin, IL-17, and Wnt pathway relevant protein, were measured in vitro. Results Administering As IV resulted in significant amelioration of stroke-induced cognitive deficits. And more hippocampal neurons with normal morphology, significant increments in the length of the apical dendrites, and the density of their spines were observed in As IV-treated mice. Furthermore, the immunohistochemistry staining of DCX/BrdU and Sox2/Nestin showed As IV could promote hippocampal neurogenesis and NSC proliferation after ischemic stroke, as well as in vitro. For the mechanism underlying, IL-17 expression was downregulated significantly by As IV treatment and knocking out IL-17 was associated with nervous regeneration and synapse repair according to the analysis of RNA-seq. Consistent to As IV treatment, knocking out IL-17 showed some promotion on hippocampal neurogenesis and proliferation of NSCs, with activating Wnt pathway after stoke. Finally, in vitro, NSCs’ diameters and protein expression of Nestin, IL-17, and Wnt pathway were regulated by either administering As IV or inhibiting IL-17. Conclusion As IV stimulates hippocampal neurogenesis after stroke, thus potentially facilitates brain to remodel and repair by downregulating IL-17 expression via Wnt pathway.
Collapse
Affiliation(s)
- Li Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Heming Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Wen Wang
- School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Zhiyang Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Shuang Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jiangjing Li
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Guangyao Li
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Changjun Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Xude Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| |
Collapse
|
48
|
Zhang W, Mi Y, Jiao K, Xu J, Guo T, Zhou D, Zhang X, Ni H, Sun Y, Wei K, Li N, Hou Y. Kellerin alleviates cognitive impairment in mice after ischemic stroke by multiple mechanisms. Phytother Res 2020; 34:2258-2274. [DOI: 10.1002/ptr.6676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/25/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Wenqiang Zhang
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| | - Yan Mi
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| | - Kun Jiao
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| | - Jikai Xu
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| | - Tingting Guo
- School of Traditional Chinese Materia Medica Shenyang Pharmaceutical University Shenyang China
| | - Di Zhou
- School of Traditional Chinese Materia Medica Shenyang Pharmaceutical University Shenyang China
| | - Xueni Zhang
- School of Traditional Chinese Materia Medica Shenyang Pharmaceutical University Shenyang China
| | - Hui Ni
- XinJiang Institute of Chinese Materia Medica and Ethnodrug Urumqi China
| | - Yu Sun
- XinJiang Institute of Chinese Materia Medica and Ethnodrug Urumqi China
| | - Kun Wei
- School of Chemical Science and Technology Yunnan University Kunming China
| | - Ning Li
- School of Traditional Chinese Materia Medica Shenyang Pharmaceutical University Shenyang China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Guangxi Normal University Guilin China
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| |
Collapse
|
49
|
Li MZ, Zhan Y, Yang L, Feng XF, Zou HY, Lei JF, Zhao T, Wang L, Zhao H. MRI Evaluation of Axonal Remodeling After Combination Treatment With Xiaoshuan Enteric-Coated Capsule and Enriched Environment in Rats After Ischemic Stroke. Front Physiol 2019; 10:1528. [PMID: 31920724 PMCID: PMC6930913 DOI: 10.3389/fphys.2019.01528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
Xiaoshuan enteric-coated capsule (XSEC) is a compound Chinese medicine widely used for the treatment of ischemic stroke. Enriched environment (EE) is a rehabilitative intervention designed to facilitate physical, cognitive, and social activity after brain injury. This study aimed to assess whether the XSEC and EE combination could provide synergistic efficacy in axonal remodeling compared to that with a single treatment after ischemic stroke using magnetic resonance imaging (MRI) followed by histological analysis. Rats were subjected to permanent middle cerebral artery occlusion and treated with XSEC and EE alone or in combination for 30 days. T2-weighted imaging and diffusion tensor imaging (DTI) were performed to examine the infarct volume and axonal remodeling, respectively. The co-localization of Ki67 with NG2 or CNPase was examined by immunofluorescence staining to assess oligodendrogenesis. The expressions of growth associated protein-43 (GAP-43) and growth inhibitors NogoA/Nogo receptor (NgR)/RhoA/Rho-associated kinase2 (ROCK2) were measured using western blot and qRT-PCR. The Morris water maze (MWM) was performed to evaluate the cognitive function. MRI and histological measurements indicated XSEC and EE individually benefited axonal reorganization after stroke. Notably, XSEC + EE decreased infarct volume compared with XSEC or EE monotherapy and increased ipsilateral residual volume compared with vehicle group. DTI showed XSEC + EE robustly increased fractional anisotropy while decreased axial diffusivity and radial diffusivity in the injured cortex, striatum, and external capsule. Meanwhile, diffusion tensor tractography revealed XSEC + EE elevated fiber density in the cortex and external capsule and increased fiber length in the striatum and external capsule compared with the monotherapies. These MRI measurements, confirmed by histology, showed that XSEC + EE promoted axonal restoration. Additionally, XSEC + EE amplified oligodendrogenesis, decreased the expressions of NogoA/NgR/RhoA/ROCK2, and increased the expression of GAP-43 in the peri-infarct tissues. In parallel to these findings, rats treated with XSEC + EE exhibited higher cognitive recovery than those treated with XSEC or EE monotherapy, as evidenced by MWM test. Taken together, our data implicated that XSEC + EE exerted synergistic effects on alleviating atrophy and encouraging axonal reorganization partially by promoting oligodendrogenesis and overcoming intrinsic growth-inhibitory signaling, thereby facilitating higher cognitive recovery.
Collapse
Affiliation(s)
- Man-Zhong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Yu Zhan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Le Yang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Xue-Feng Feng
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Hai-Yan Zou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Jian-Feng Lei
- Medical Imaging Laboratory of Core Facility Center, Capital Medical University, Beijing, China
| | - Ting Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| |
Collapse
|
50
|
Zhang J, Jiang Y, Liu N, Shen T, Jung HW, Liu J, Yan BC. A Network-Based Method for Mechanistic Investigation and Neuroprotective Effect on Post-treatment of Senkyunolid-H Against Cerebral Ischemic Stroke in Mouse. Front Neurol 2019; 10:1299. [PMID: 31920923 PMCID: PMC6930873 DOI: 10.3389/fneur.2019.01299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Senkyunolide-H (SEH), a major bioactive compound extracted from Ligusticum chuanxiong, has been reported to be effective in preventing cerebral ischemic stroke (CIS). In this study, we employed network pharmacology to reveal potential mechanism of SEH against CIS on a system level and confirmed the therapeutic effects of SEH on CIS by models of cerebral ischemia-reperfusion in vivo and in vitro. Through protein-protein interaction networks construction of SEH- and CIS-related targets, a total of 62 key targets were obtained by screening topological indices and analyzed for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. Gene Ontology analysis indicated that SEH might have a role in treating CIS via regulating some biological processes including regulation of transcription from RNA polymerase II promoter, epidermal growth factor receptor signaling pathway, phosphatidylinositol-mediated signaling, and some molecular function, such as transcription factor and protein phosphatase binding and nitric oxide synthase regulator activity. Meanwhile, the Kyoto Encyclopedia of Genes and Genomes analysis showed that phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway was significantly enriched. In addition, our result showed that SEH posttreatment significantly decreased the neurological scores, infarct volume, and neuronal death in the middle cerebral artery occlusion mice. Moreover, the PI3K/Akt/nuclear factor kappa B signaling pathway was activated by intragastric administration of 40 mg/kg SEH, as verified by Western blot. In vitro, treatment of PC12 cells with 100 μM SEH markedly reduced cell death induced by oxygen-glucose deprivation through the activation of PI3K/Akt/nuclear factor kappa B pathway, and the therapeutic effect of SEH was obviously inhibited by 10 μM LY294002. In summary, these results suggested that SEH carries a therapeutic potential in CIS involving multiple targets and pathways, and the most crucial mechanism might be through the activation of PI3K/Akt/nuclear factor kappa B (NF-κB) signaling pathway to inhibit inflammatory factor releases and increase the antiapoptosis capacity. Our study furnishes the future traditional Chinese medicine research with a network pharmacology framework.
Collapse
Affiliation(s)
- Jie Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, China
| | - Yunyao Jiang
- School of Pharmaceutical Sciences, Institute for Chinese Materia Medica, Tsinghua University, Beijing, China
| | - Nan Liu
- Beijing Increase Research for Drug Efficacy and Safety Co., Ltd., Beijing, China
| | - Ting Shen
- School of Life Sciences, Huaiyin Normal University, Huai'an, China
| | - Hyo Won Jung
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju-si, South Korea.,Korean Medicine R&D Center, Dongguk University, Gyeongju-si, South Korea
| | - Jianxun Liu
- Beijing Key Laboratory of TCM Pharmacology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bing Chun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, China.,Department of Neurology, Affiliated Hospital, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|