1
|
Zhang Q, Lu C, Fan W, Yin Y. Exploring the molecular mechanism of sepsis-associated encephalopathy by integrated analysis of multiple datasets. Cytokine 2024; 180:156609. [PMID: 38781871 DOI: 10.1016/j.cyto.2024.156609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/06/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND We aim to deal with the Hub-genes and signalling pathways connected with Sepsis-associated encephalopathy (SAE). METHODS The raw datasets were acquired from the Gene Expression Omnibus (GEO) database (GSE198861 and GSE167610). R software filtered the differentially expressed genes (DEGs) for hub genes exploited for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Hub genes were identified from the intersection of DEGs via protein-protein interaction (PPI) network. And the single-cell dataset (GSE101901) was used to authenticate where the hub genes express in hippocampus cells. Cell-cell interaction analysis and Gene Set Variation Analysis (GSVA) analysis of the whole transcriptome validated the interactions between hippocampal cells. RESULTS A total of 161 DEGs were revealed in GSE198861 and GSE167610 datasets. Biological function analysis showed that the DEGs were primarily involved in the phagosome pathway and significantly enriched. The PPI network extracted 10 Hub genes. The M2 Macrophage cell decreased significantly during the acute period, and the hub gene may play a role in this biological process. The hippocampal variation pathway was associated with the MAPK signaling pathway. CONCLUSION Hub genes (Pecam1, Cdh5, Fcgr, C1qa, Vwf, Vegfa, C1qb, C1qc, Fcgr4 and Fcgr2b) may paticipate in the biological process of SAE.
Collapse
Affiliation(s)
- Qiulei Zhang
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, NO.218 Ziqiang Street, Changchun 130041, China
| | - Chang Lu
- Department of Anesthesiology, The Second Hospital of Jilin University, NO.218 Ziqiang Street, Changchun 130041, China
| | - Weixuan Fan
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, NO.218 Ziqiang Street, Changchun 130041, China
| | - Yongjie Yin
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, NO.218 Ziqiang Street, Changchun 130041, China.
| |
Collapse
|
2
|
Valvassori SS, Possamai-Della T, Aguiar-Geraldo JM, Sant’Ana RG, Dal-Pont GC, Pescador B, Zugno AI, Quevedo J, Dal-Pizzol F. Sepsis sensitizes behavioural amphetamine responses while inducing inflammatory and neurotrophic vulnerability in the cecal ligation and puncture model. Eur J Neurosci 2024; 59:1153-1168. [PMID: 37350331 PMCID: PMC10746835 DOI: 10.1111/ejn.16064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
The present study aimed to evaluate if sepsis sensitizes behavioural and biochemical responses induced by m-amphetamine. For this, Wistar rats were submitted to the cecal ligation and puncture. After 30 days of cecal ligation and puncture procedure, the animals were submitted to a single intraperitoneal injection of saline or m-amphetamine (.25, .50, or 1.0 mg/kg). Locomotor behaviour was assessed 2 h after the administration. Interleukin (IL)-1β, IL-6, IL-10, tumour necrosis factor-α, dopamine-cAMP-regulated phosphoprotein of 32,000 kDa (DARPP-32) and neuronal calcium sensor (NCS-1) levels were evaluated in the frontal cortex, hippocampus and striatum. Also, brain-derived neurotrophic factor (BDNF), neuronal growth factor and glial-derived neurotrophic factor levels were assessed in the hippocampus. M-amphetamine alone (.25 and 1.0 mg/kg) increased rats' locomotion and exploratory behaviour compared with the Sham + Sal. Animals from the cecal ligation and puncture + m-amphetamine (.5 and/or 1.0 mg/kg) group showed an increase in locomotion, exploratory and risk-like behaviour when compared with the Sham + Saline group and with its respective Sham groups. Cecal ligation and puncture increased interleukin levels compared with the Sham + Sal. However, cecal ligation and puncture animals that received m-amphetamine (1 mg/kg) increased even more, these inflammatory parameters compared with the Sham + Sal and the cecal ligation and puncture + saline group. M-amphetamine at lower doses increased neurotrophic factors, but higher doses decreased these parameters in the brain of cecal ligation and puncture rats. M-amphetamine dose-dependently increased DARPP-32 and NCS-1 levels in cecal ligation and puncture rats in some structures. In conclusion, these results demonstrate that sepsis sensitizes behavioural amphetamine responses while inducing inflammatory and neurotrophic vulnerability in the cecal ligation and puncture model.
Collapse
Affiliation(s)
- Samira S. Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Jorge M. Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Rômulo Goronci Sant’Ana
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gustavo C. Dal-Pont
- Translational Health Research Laboratory, Alto Vale do Rio do Peixe University, Caçador, Brazil
| | - Bruna Pescador
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Alexandra I. Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavior Sciences, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| |
Collapse
|
3
|
Fang J, Guan H. γ-Secretase inhibitor alleviates lipopolysaccharide-induced myocardial injury through regulating JAK2/STAT3 signaling. ENVIRONMENTAL TOXICOLOGY 2024; 39:135-147. [PMID: 37671635 DOI: 10.1002/tox.23962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/17/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Septic myocardial injury is one of the most life-threatening organ dysfunction. The γ-secretase-based approaches have been developed as potential strategies for diverse diseases management. Unfortunately, the role of γ-secretase inhibitor in septic myocardial injury is unclarified. The present study aims to investigate the effect of γ-secretase inhibitor in septic myocardial injury and reveal its mechanism. METHODS The mouse model of septic myocardial injury was established by intraperitoneally injection of lipopolysaccharide (LPS), and γ-secretase inhibitor MW167 was applied in this model. RNA-sequencing analysis and further bioinformatics analyses were used to screen differential expressed genes (DEGs) and potentially enriched pathways between LPS and LPS + MW167 mice. Pathological examination was performed using haematoxylin and eosin (HE) staining. SD-1029 was used to block JAK2/STAT3 signaling in H9C2 cells and western blot analysis quantified JAK2/STAT3-related proteins. RESULTS LPS induced myocardial injury accompanied with significant inflammatory infiltration and more apoptotic cells. Transcriptome sequencing screened 36 DEGs and bioinformatics identified JAK2/STAT3 signaling pathway was significantly enriched. Further in vitro experiments showed that γ-secretase inhibitor MW167 activated JAK2/STAT3 pathway. Additionally, MW167 restored cell viability, decreased myocardial injury markers including cardiac troponin I (cTnI) and brain natriuretic peptide (BNP), inhibited pro-inflammatory cytokines such as interleukin (IL)-1β and tumor necrosis factor-α (TNF-α) and reduced nitric oxide (NO), cyclooxygenase-2 (COX2) and inducible nitric oxide synthase (iNOS) release. Application of SD-1029 reversely deteriorated LPS-induced myocardial injury and inflammatory response in γ-secretase inhibitor-treated myocardial cells. CONCLUSION The results demonstrate that γ-secretase inhibitor alleviates septic myocardial injury via activating JAK2/STAT3 signaling, and provide novel therapeutic direction for septic myocardial injury.
Collapse
Affiliation(s)
- Jingyun Fang
- Department of Emergency, Ganzhou People's Hospital, Ganzhou, China
| | - Huan Guan
- Department of Emergency, Ganzhou People's Hospital, Ganzhou, China
| |
Collapse
|
4
|
Ju IG, Lee S, Choi JG, Kim N, Huh E, Lee JK, Oh MS. Aerial part of Houttuynia cordata reverses memory impairment by regulating amyloid beta accumulation and neuroinflammation in Alzheimer's disease model. Phytother Res 2023. [PMID: 36814130 DOI: 10.1002/ptr.7781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/10/2023] [Accepted: 02/05/2023] [Indexed: 02/24/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by amyloid-β (Aβ) deposition, accompanied by neuroinflammation and memory dysfunction. Houttuyniae Herba (aerial parts of Houttuynia cordata, also known as fish mint; HH), an herbal medicine traditionally used to treat fever, urinary disorders, and pus, is revealed to protect neurons from Aβ toxicity and regulate cholinergic dysfunction in AD models. In this study, we aimed to investigate the effects of HH on excessive accumulation of Aβ followed by neuroinflammation, synaptic degeneration, and memory impairment. Two-month-old 5xFAD transgenic mice were administered HH at 100 mg/kg for 4 months. We observed that HH treatment ameliorated memory impairment and reduced Aβ deposits in the brains of the mice. HH directly inhibited Aβ aggregation in vitro using the Thioflavin T assay and indirectly suppressed the amyloidogenic pathway by increasing alpha-secretase expression in the mice brain. In addition, HH exerted antineuroinflammatory effects by reducing of glial activation and p38 phosphorylation. Moreover, HH treatment increased the expression of synaptophysin, a presynaptic marker protein. Overall, HH alleviates memory impairment in AD by facilitating nonamyloidogenic pathway and inhibiting neuroinflammation. Therefore, we suggest that HH can be a promising herbal drug for patients with AD requiring multifaceted improvement.
Collapse
Affiliation(s)
- In Gyoung Ju
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Seungmin Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jin Gyu Choi
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Namkwon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate school, Kyung Hee University, Seoul, Republic of Korea
| | - Eugene Huh
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Jong Kil Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.,Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, Graduate school, Kyung Hee University, Seoul, Republic of Korea.,Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Consecutive Injection of High-Dose Lipopolysaccharide Modulates Microglia Polarization via TREM2 to Alter Status of Septic Mice. Brain Sci 2023; 13:brainsci13010126. [PMID: 36672106 PMCID: PMC9856382 DOI: 10.3390/brainsci13010126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The neuroinflammation of the central nervous system (CNS) is a prevalent syndrome of brain dysfunction secondary to severe sepsis and is regulated by microglia. Triggering the receptor expressed on myeloid cells 2 (TREM2) is known to have protective functions that modulate the microglial polarization of M2 type to reduce inflammatory responses, thereby improving cognition. METHODS We examined the effect of TREM2 on the polarization state of microglia during the progression of neuroinflammation. After consecutive intraperitoneal injections of lipopolysaccharide for 7 days, we evaluated the inflammation of a septic mice model by hematoxylin-eosin (H&E) and electron microscopy, and we used immunofluorescence (IF) assays and Western blotting to visualize hippocampal sections in C57BL/6 mice to assess TREM2 expression. In addition, we analyzed the state of microglia polarization with quantitative RT-PCR. RESULT The consecutive injection of LPS for 4 days elevated systemic inflammation and caused behavioral cognitive dysfunction in the septic model. However, on Day 7, the neuroinflammation was considerably attenuated. Meanwhile, TREM2 decreased on Day 4 and increased on Day 7 in vivo. Consistently, LPS could reduce the expression of TREM2 while IFN-β enhanced TREM2 expression in vitro. TREM2 regulated the microglial M1 phenotype's conversion to the M2 phenotype. CONCLUSION Our aim in this study was to investigate the interconnection between microglia polarization and TREM2 in neuroinflammation. Our results suggested that IFN-β could modulate TREM2 expression to alter the polarization state of microglia, thereby reducing LPS-induced neuroinflammation. Therefore, TREM2 is a novel potential therapeutic target for neuroinflammation.
Collapse
|
6
|
Chen Y, Hu Y, Li X, Chen P, Wang C, Wang J, Wu J, Sun Y, Zheng G, Lu Y, Guo Y. Clinical Features and Factors Associated With Sepsis-Associated Encephalopathy in Children: Retrospective Single-Center Clinical Study. Front Neurol 2022; 13:838746. [PMID: 35711261 PMCID: PMC9196026 DOI: 10.3389/fneur.2022.838746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
Background Sepsis-associated encephalopathy (SAE) is a common complication in septic patients with a higher ICU and hospital mortality in adults and poorer long-term outcomes. Clinical presentation may range from mild confusion to convulsions and deep coma; however, little is known about SAE in children. We aimed to retrospectively analyze the data for children with sepsis, to illustrate the epidemiology, performance, and adverse outcome, and to evaluate the association between risk factors and SAE in children. Methods All children with sepsis who were admitted to the Department of Pediatrics, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, China from January 2010 to December 2020 were retrospectively analyzed. Results A total of 210 patients with sepsis were retrospectively assigned to the SAE and non-SAE groups, of which 91 (43.33%) were diagnosed with SAE with a mortality of 6.70% (14/210). Significant differences were observed in the level of white blood platelet, platelets, international normalized ratio, prothrombin time, activated partial thromboplastin time, total protein, Ccr, UREA, blood urea nitrogen, alanine transaminase, aspartate transaminase, creatine kinase, creatine kinase isoenzymes, lactate dehydrogenase, procalcitonin, and lactic acid (p < 0.05). In the risk assessment scales, significant differences were observed in the modified Glasgow Coma score, PCIS, Pediatric Logistic Organ Dysfunction Score 2 (PELOD-2), Pediatric Sequential Organ Failure Assessment Score, and Pediatric Risk of Mortality III (p < 0.05). The incidence of septic shock, acute kidney disease, liver dysfunction, and coagulation disorder were higher in the SAE group (p < 0.05). The mechanical ventilation time ([6.57 d ± 16.86 d] vs. [2.05 d ± 5.79 d]; p < 0.001), CRRT time ([1.74 d ± 6.77 d] vs. [0.11 d ± 0.63 d]; p < 0.001), ICU stay time ([299.90 h ± 449.50 h] vs. [177.67 h ± 245.36 h]); p < 0.001 was longer than that of non-SAE. Both the PCT, Ca2+, septic shock, PELOD-2, and midazolam were identified as independent risk factors, and fentanyl was a protective factor for SAE in pediatric patients (p < 0.05). The main clinical neurological symptoms consisted of agitation, hypnosia, hypnosis alternates agitated, anterior fontanelle full/bulging/high tension, coma, muscle hypertonia, muscle hypotonia, hyperreflexia, focal seizure, and generalized seizure. Conclusions The incidence of SAE in children was found high and the prognosis poor. In this retrospective study, the identified patients were more susceptible to SAE, with an inflammatory storm with hypocalcemia or septic shock. The use of midazolam will increase the occurrence of SAE, whereas fentanyl will reduce the incidence of SAE, and PELOD-2 may predict the occurrence of SAE.
Collapse
Affiliation(s)
- Yihao Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan Hu
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xufeng Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Peiling Chen
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chun Wang
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jing Wang
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiaxing Wu
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yueyu Sun
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guilang Zheng
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yiyun Lu
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuxiong Guo
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
7
|
Rocha-Gomes A, Teixeira AE, Santiago CMO, Oliveira DGD, Silva AAD, Lacerda ACR, Riul TR, Mendonça VA, Rocha-Vieira E, Leite HR. Prenatal LPS exposure increases hippocampus IL-10 and prevents short-term memory loss in the male adolescent offspring of high-fat diet fed dams. Physiol Behav 2022; 243:113628. [PMID: 34695488 DOI: 10.1016/j.physbeh.2021.113628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
Abstract
Lipopolysaccharide (LPS) tolerance can reduce the neuroinflammation caused by high fat maternal diets; however, there are no reports that have evaluated the effects of prenatal LPS exposure on the memories of the offspring of high-fat diet fed dams. This study evaluated the effects of prenatal LPS exposure on the inflammatory parameters and redox status in the brain, as well as the object recognition memory of adolescent offspring of Wistar rat dams that were treated with a high-fat diet during gestation and lactation. Female pregnant Wistar rats randomly received a standard diet (17.5% fat) or a high-fat diet (45.0% fat) during gestation and lactation. On gestation days 8, 10, and 12, half of the females in each group were intraperitoneally treated with LPS (0.1 mg.kg-1). After weaning, the male offspring were placed in cages in standard conditions, and at 6 weeks old, animals underwent the novel object recognition test (for short- and long-term memory). The offspring of the high-fat diet fed dams showed increased hippocampus IL-6 levels (21-days-old) and impaired short-term memories. These effects were avoided in the offspring of high-fat diet fed dams submitted to prenatal LPS exposure, which showed greater hippocampus IL-10 levels (at 21- and 50-days-old), increased antioxidant activity (50-days-old) in the hippocampus and prefrontal cortex, without memory impairments (short- and long-term memory). IL-6 has been consistently implicated in memory deficits and as an endogenous mechanism for limiting plasticity, while IL-10 regulates glial activation and has a strong association with improvements in cognitive function. Prenatal LPS exposure preventing the increase of IL-6 in the hippocampus and the impairment to short-term object recognition memory caused by the high-fat maternal diet.
Collapse
Affiliation(s)
- Arthur Rocha-Gomes
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil; Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil.
| | - Amanda Escobar Teixeira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Camilla Mainy Oliveira Santiago
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Dalila Gomes de Oliveira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Alexandre Alves da Silva
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Ana Cristina Rodrigues Lacerda
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Vanessa Amaral Mendonça
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Etel Rocha-Vieira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Hércules Ribeiro Leite
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil; Departamento de Fisioterapia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901 Brasil.
| |
Collapse
|
8
|
Jun G, Yong Y, Lu L, Gao H, Yin Z, Wei P, Sun L, Ruan W, Zou Y, He H, Song W, Tong Q, Wang X, Wang Y, Song J. Electroacupuncture treatment ameliorated the long-term cognitive impairment via activating eNOS/NO pathway and related Aβ downregulation in sepsis-survivor mice. Physiol Behav 2022; 243:113646. [PMID: 34780728 DOI: 10.1016/j.physbeh.2021.113646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Sepsis is a major challenge in intensive care unit worldwide and the septic survivors are left with long-term cognitive deficits. This work aims to explore the effects of electroacupuncture (EA) on long-term cognitive function and its underlying mechanism in sepsis-survivor mice. METHODS Sepsis was induced by cecal ligation and puncture in C57BL/6 male mice. Seven days post-surgery, sepsis-survivor mice were treated with EA or nonacupoint EA for 17 days twice daily. Then, cognitive function was evaluated by Morris water maze task. The hippocampus tissue were collected from the mice at 30 days post-surgery. The level of nitric oxide and the expression of endothelial nitric oxide (eNOS), phospho-eNOS (p-eNOS), and amyloid β-peptide (Aβ) were measured. RESULTS Compared with the sham-operated control, sepsis-survivors had significant cognitive deficits evidenced by the increased time of escape latency and reduced crossing number in Morris water maze task, as well as lower NO and p-eNOS level and higher Aβ level. EA treatment at GV20 and ST36 acupoints but not at a nonacupoint improved the cognitive function, increased the NO and p-eNOS level, and decreased Aβ generation; while eNOS inhibitor (l-NAME) undermined the efficacy of EA treatment. CONCLUSION In conclusion, repeated EA treatment could ameliorate the long-term cognitive impairment via manipulating the expression of p-eNOS and related Aβ in sepsis-survivor mice.
Collapse
Affiliation(s)
- Guo Jun
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yue Yong
- Research Institute of Acupuncture Anesthesia, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Liyue Lu
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Hao Gao
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zhiyu Yin
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Pan Wei
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Long Sun
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Wenqing Ruan
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yinghua Zou
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - He He
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Wei Song
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Qiuyu Tong
- Research Institute of Acupuncture Anesthesia, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Xiongbiao Wang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.
| | - Yongqiang Wang
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.
| | - Jiangang Song
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.
| |
Collapse
|
9
|
Dominguini D, Steckert AV, Abatti MR, Generoso JS, Barichello T, Dal-Pizzol F. The Protective Effect of PK-11195 on Cognitive Impairment in Rats Survived of Polymicrobial Sepsis. Mol Neurobiol 2021; 58:2724-2733. [PMID: 33495933 DOI: 10.1007/s12035-021-02294-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
Sepsis is an organ dysfunction caused by a host's unregulated response to infection, causing long-term brain dysfunction with microglial activation, the release of inflammatory components, and mitochondrial changes. Neuroinflammation can increase the expression of the 18-kD translocator protein (TSPO) in the mitochondria, leading to the activation of the microglia and the release of inflammatory components. The antagonist PK-11195 can modulate TSPO and reduce microglial activation and cognitive damage presented in an animal model of sepsis. The aim of this was to evaluate the effects of PK-11195 on long-term brain inflammation and cognitive impairment in an animal model of sepsis. Wistar rats, 60 days old, were submitted to cecal ligation and puncture (CLP) surgery, divided into groups control/saline, control/PK-11195, sepsis/saline, and sepsis/PK-11195. Immediately after surgery, the antagonist PK-11195 was administered at a dose of 3 mg/kg. Ten days after CLP surgery, the animals were submitted to behavioral tests and determination of brain inflammatory parameters. The sepsis/saline group presented cognitive damage. However, there was damage prevention in animals that received PK-11195. Besides, the sepsis increased the levels of cytokines and M1 microglia markers and caused oxidative damage. However, PK-11195 had the potential to decrease inflammation. These events show that the modulation of neuroinflammation during sepsis by PK-11195, possibly related to changes in TSPO, improves mitochondrial function in the animals' brains. In conclusion, the antagonist PK-11195 attenuated brain inflammation and prevented cognitive impairment in animals subjected to sepsis.
Collapse
Affiliation(s)
- Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil.
| | - Amanda V Steckert
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Mariane R Abatti
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Jaqueline S Generoso
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| |
Collapse
|
10
|
Catarina AV, Branchini G, Bettoni L, De Oliveira JR, Nunes FB. Sepsis-Associated Encephalopathy: from Pathophysiology to Progress in Experimental Studies. Mol Neurobiol 2021; 58:2770-2779. [PMID: 33495934 DOI: 10.1007/s12035-021-02303-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
Sepsis is an organ dysfunction caused by an uncontrolled inflammatory response from the host to an infection. Sepsis is the main cause of morbidity and mortality in intensive care units (ICU) worldwide. One of the first organs to suffer from injuries resulting from sepsis is the brain. The central nervous system (CNS) is particularly vulnerable to damage, mediated by inflammatory and oxidative processes, which can cause the sepsis-associated encephalopathy (SAE), being reported in up to 70% of septic patients. This review aims to bring a summary of the main pathophysiological changes and dysfunctions in SAE, and the main focuses of current experimental studies for new treatments and therapies. The pathophysiology of SAE is complex and multifactorial, combining intertwined processes, and is promoted by countless alterations and dysfunctions resulting from sepsis, such as inflammation, neuroinflammation, oxidative stress, reduced brain metabolism, and injuries to the integrity of the blood-brain barrier (BBB). The treatment is limited once its cause is not completely understood. The patient's sedation is far to provide an adequate treatment to this complex condition. Studies and experimental advances are important for a better understanding of its pathophysiology and for the development of new treatments, medicines, and therapies for the treatment of SAE and to reduce its effects during and after sepsis.
Collapse
Affiliation(s)
- Anderson Velasque Catarina
- Programa de Pós-graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, RS, 90050-170, Brazil.
| | - Gisele Branchini
- Programa de Pós-graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, RS, 90050-170, Brazil
| | - Lais Bettoni
- Programa de Pós-graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, RS, 90050-170, Brazil
| | - Jarbas Rodrigues De Oliveira
- Laboratório de Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Brazil
| | - Fernanda Bordignon Nunes
- Programa de Pós-graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, RS, 90050-170, Brazil.,Laboratório de Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Brazil
| |
Collapse
|
11
|
Abd El-Rhman RH, El-Naga RN, Gad AM, Tadros MG, Hassaneen SK. Dibenzazepine Attenuates Against Cisplatin-Induced Nephrotoxicity in Rats: Involvement of NOTCH Pathway. Front Pharmacol 2020; 11:567852. [PMID: 33381027 PMCID: PMC7768080 DOI: 10.3389/fphar.2020.567852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/06/2020] [Indexed: 02/05/2023] Open
Abstract
Cisplatin is one of the standard anti-cancer agents that are used to treat variety of solid tumors. Nevertheless, due to the accumulation of cisplatin in the renal epithelial cells, nephrotoxicity was found to be the main side effect that limits its clinical use. The current study was conducted to assess the potential nephroprotective effect of dibenzazepine, a Notch inhibitor, against cisplatin-induced nephrotoxicity in rats as well as the possible mechanisms underlying this nephroprotection. The rats were pre-treated with 2 mg/kg dibenzazepine for 7 days before giving a single nephrotoxic dose of cisplatin (7 mg/kg). Cisplatin induced acute nephrotoxicity, where blood urea nitrogen and serum creatinine levels were significantly increased. Besides, lipid peroxidation was markedly elevated and the levels of reduced glutathione and catalase were significantly reduced. Also, the tissue levels of the pro-inflammatory mediators; IL-1β, TNF-α, and NF-kB, were significantly increased in the cisplatin group. The pre-treatment with dibenzazepine significantly mitigated the nephrotoxic effects of cisplatin, the oxidative stress and inflammatory status as well as decreased caspase-3 expression, as compared to the cisplatin group. Furthermore, the up-regulation of Notch-1 and Hes-1 was found to be involved in cisplatin-induced nephrotoxicity and their expression was significantly reduced by dibenzazepine. The nephroprotective effect of dibenzazepine was further confirmed by the histopathological assessment. Moreover, dibenzazepine pre-treatment of hela and PC3 cells in vitro did not antagonize the cisplatin anti-cancer activity. In conclusion, these findings show that dibenzazepine provides protection against cisplatin-induced nephrotoxicity. Moreover, the up-regulation of the Notch pathway was shown to play a role in the pathogenesis of cisplatin-induced renal injury.
Collapse
Affiliation(s)
| | - Reem N. El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amany M. Gad
- Department of Pharmacology, Egyptian Drug Authority (ED), Giza, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, East Kantara Branch, New City, El Ismailia, Egypt
| | - Mariane G. Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
12
|
Savi FF, de Oliveira A, de Medeiros GF, Bozza FA, Michels M, Sharshar T, Dal-Pizzol F, Ritter C. What animal models can tell us about long-term cognitive dysfunction following sepsis: A systematic review. Neurosci Biobehav Rev 2020; 124:386-404. [PMID: 33309906 DOI: 10.1016/j.neubiorev.2020.12.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/28/2023]
Abstract
Survivors of sepsis often develop long-term cognitive impairments. This review aimed at exploring the results of the behavioral tools and tests which have been used to evaluate cognitive dysfunction in different animal models of sepsis. Two independent investigators searched for sepsis- and cognition-related keywords. 6323 publications were found, of which 355 were selected based on their title, and 226 of these were chosen based on manuscript review. LPS was used to induce sepsis in 171 studies, while CLP was used in 55 studies. Inhibitory avoidance was the most widely used method for assessing aversive memory, followed by fear conditioning and continuous multi-trial inhibitory avoidance. With regard to non-aversive memory, most studies used the water maze, open-field, object recognition, Y-maze, plus maze, and radial maze tests. Both CLP and LPS models of sepsis were effective in inducing short- and long-term behavioral impairment. Our findings help elucidate the mechanisms involved in the pathophysiology of sepsis-induced cognitive changes, as well as the available methods and tests used to study this in animal models.
Collapse
Affiliation(s)
- Felipe Figueredo Savi
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | - Alexandre de Oliveira
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | | | - Fernando Augusto Bozza
- Laboratório de Medicina Intensiva, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | - Tarek Sharshar
- Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, Paris, France; Department of Neuro-Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, Paris, France
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil; Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, Paris, France
| | - Cristiane Ritter
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil.
| |
Collapse
|
13
|
Gu M, Mei XL, Zhao YN. Sepsis and Cerebral Dysfunction: BBB Damage, Neuroinflammation, Oxidative Stress, Apoptosis and Autophagy as Key Mediators and the Potential Therapeutic Approaches. Neurotox Res 2020; 39:489-503. [PMID: 32876918 DOI: 10.1007/s12640-020-00270-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Sepsis-associated cerebral dysfunction is complex pathophysiology, generated from primary infections that are developed elsewhere in the body. The neonates, elderly population and chronically ill and long-term hospitalized patients are predominantly vulnerable to sepsis and related cerebral damage. Generally, electrophysiological recordings, severity and sedation scales, computerized imaging and spectroscopy techniques are used for its detection and diagnosis. About the underlying mechanisms, enhanced blood-brain barrier permeability and metalloprotease activity, tight junction protein loss and endothelial cell degeneration promote the influx of inflammatory and toxic mediators into the brain, triggering cerebrovascular damage. An altered neutrophil count and phenotype further dysregulate the normal neuroimmune responses and neuroendocrine stability via modulated activation of protein kinase C-delta, nuclear factor kappa-B and sphingolipid signaling. Glial activation, together with pro-inflammatory cytokines and chemokines and the Toll-like receptor, destabilize the immune system. Moreover, superoxides and hydroperoxides generate oxidative stress and perturb mitochondrial dynamics and ATP synthesis, propagating neuronal injury cycle. Activated mitochondrial apoptotic pathway, characterized by increased caspase-3 and caspase-9 cleavage and Bax/Bcl2 ratio in the hippocampal and cortical neurons, stimulate neurocognitive impairments. Additionally, altered LC3-II/I and P62/SQSTM1, p-mTOR, p-AMPK1 and p-ULK1 levels and dysregulated autophagosome-lysosome fusion decrease neuronal and glial energy homeostasis. The therapies and procedures for attenuating sepsis-induced brain damage include early resuscitation, cerebral blood flow autoregulation, implantable electric vagus nerve stimulation, antioxidants, statins, glucocorticoids, neuroimmune axis modulators and PKCδ inhibitors. The current review enumerates the pathophysiology of sepsis-induced brain damage, its diagnosis, the role of critical inducers and mediators and, ultimately, therapeutic measures attenuating cerebrovascular degeneration.
Collapse
Affiliation(s)
- Ming Gu
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Xiang-Lin Mei
- Department of Pathology, The Second Hospital of Jilin University, Changchun, China
| | - Ya-Nan Zhao
- Neurology Department, China-Japan Union Hospital of Jilin University, Changchun, 130000, People's Republic of China.
| |
Collapse
|
14
|
Alessenko AV, Albi E. Exploring Sphingolipid Implications in Neurodegeneration. Front Neurol 2020; 11:437. [PMID: 32528400 PMCID: PMC7254877 DOI: 10.3389/fneur.2020.00437] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past decade, it was found that relatively simple sphingolipids, such as ceramide, sphingosine, sphingosine-1-phosphate, and glucosylceramide play important roles in neuronal functions by regulating rates of neuronal growth and differentiation. Homeostasis of membrane sphingolipids in neurons and myelin is essential to prevent the loss of synaptic plasticity, cell death and neurodegeneration. In our review we summarize data about significant brain cell alterations of sphingolipids in different neurodegenerative diseases such as Alzheimer's disease, Parkinson disease, Amyotrophic Lateral Sclerosis, Gaucher's, Farber's diseases, etc. We reported results obtained in brain tissue from both animals in which diseases were induced and humans in autopsy samples. Moreover, attention was paid on sphingolipids in biofluids, liquor and blood, from patients. In Alzheimer's disease sphingolipids are involved in the processing and aggregation of β-amyloid and in the transmission of the cytotoxic signal β-amyloid and TNFα-induced. Recently, the gangliosides metabolism in transgenic animals and the relationship between blood sphingolipids changes and cognitive impairment in Alzheimer's disease patients have been intensively studied. Numerous experiments have highlighted the involvement of ceramide and monohexosylceramide metabolism in the pathophysiology of the sporadic forms of Parkinson's disease. Moreover, gene mutations of the glucocerebrosidase enzyme were considered as responsible for Parkinson's disease via transition of the monomeric form of α-synuclein to an oligomeric, aggregated toxic form. Disturbances in the metabolism of ceramides were also associated with the appearance of Lewy's bodies. Changes in sphingolipid metabolism were found as a manifestation of Amyotrophic Lateral Sclerosis, both sporadic and family forms, and affected the rate of disease development. Currently, fingolimod (FTY720), a sphingosine-1-phosphate receptor modulator, is the only drug undergoing clinical trials of phase II safety for the treatment of Amyotrophic Lateral Sclerosis. The use of sphingolipids as new diagnostic markers and as targets for innovative therapeutic strategies in different neurodegenerative disorders has been included.
Collapse
Affiliation(s)
- Alice V. Alessenko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Elisabetta Albi
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| |
Collapse
|