1
|
Xu J, Liu B, Shang G, Feng Z, Yang H, Chen Y, Yu X, Mao Z. Efficacy and Safety of Bilateral Deep Brain Stimulation (DBS) for Severe Alzheimer's Disease: A Comparative Analysis of Fornix Versus Basal Ganglia of Meynert. CNS Neurosci Ther 2025; 31:e70285. [PMID: 40243219 PMCID: PMC12004396 DOI: 10.1111/cns.70285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 01/15/2025] [Accepted: 02/07/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is a novel therapy for severe Alzheimer's disease (AD). However, there is an ongoing debate regarding the optimal target for DBS, particularly the fornix and the basal ganglia of Meynert (NBM). OBJECTIVE This study aimed to investigate the safety and efficacy of DBS for severe AD and to compare the fornix and the NBM as potential targets. METHODS We conducted a prospective, nonrandomized clinical study involving 20 patients with severe AD (MMSE score 0 to 10, CDR level 3) from January 2015 to August 2022, comprising 12 males and eight females, with a mean age of 59.05 ± 6.45 years. All patients underwent DBS treatment, among which 14 received bilateral fornix implantation, while six received bilateral implantation in the NBM. Electrical stimulation commenced 1 month postoperatively. We assessed the patients before surgery, followed by evaluations at 1 month, 3 months, 6 months, and 12 months poststimulation. Primary outcome measures focused on changes in cognitive function, assessed using the MMSE, MoCA, ADAS-Cog, and CDR scales. Secondary measures encompassed quality of life, caregiver burden, neuropsychiatric symptoms, and sleep disturbances, evaluated through the BI, FAQ, FIM, ZBI, NPI, HAMA, HAMD, and PSQI scales. RESULTS All patients tolerated DBS well, with no serious adverse effects reported. Early on, DBS significantly improved cognitive function and quality of life. Long-term benefits include the improvement of neuropsychiatric symptoms and sleep disorders and the alleviation of caregiver burden. Comparison between DBS targeting the NBM and fornix revealed no significant differences in overall scale scores. However, upon deeper analysis, NBM-DBS exhibited a more pronounced improvement in neuropsychiatric symptoms, particularly in NPI scores. CONCLUSION DBS is a potential therapeutic approach for severe AD, capable of improving patients' cognitive function, quality of life, and neuropsychiatric symptoms. Notably, NBM-DBS showed distinct advantages in ameliorating neuropsychiatric symptoms, providing valuable insights for clinically selecting the optimal DBS target. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT03115814.
Collapse
Affiliation(s)
- Junpeng Xu
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Bin Liu
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Guosong Shang
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | | | - Haonan Yang
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Yuhan Chen
- The First Clinical Medical College of Hebei North UniversityZhangjiakouChina
| | - Xinguang Yu
- Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Zhiqi Mao
- Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
2
|
Zhang X, Wang M, Liu Z, Wang Y, Chen L, Guo J, Zhang W, Zhang Y, Yu C, Bie T, Yu Y, Guan B. Transnasal-brain delivery of nanomedicines for neurodegenerative diseases. FRONTIERS IN DRUG DELIVERY 2023; 3. [DOI: 10.3389/fddev.2023.1247162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Neurodegenerative diseases (NDs) have become a serious global health problem as the population ages. Traditionally, treatment strategies for NDs have included oral and intravenous administration; however, the blood–brain barrier (BBB) can prevent drugs from reaching the brain, rendering the treatment incomplete and the effect unsatisfactory. Additionally, the prolonged or excessive use of drugs that can cross the BBB can damage liver and kidney function. Recent studies have shown that nose-to-brain drug delivery can noninvasively bypass the BBB, allowing drugs to enter the brain through the olfactory or trigeminal nerve pathways; additionally, nanoparticle carriers can enhance drug delivery. This review introduces drug carrier nanoparticles for nose-to-brain delivery systems, compares the advantages and disadvantages of different nanoparticles, and discusses the factors influencing nose-to-brain nanomedicine delivery and enhancement strategies. We also summarize nose-to-brain delivery and nanomedicines for treating NDs, the current challenges of this approach, and the future promise of nanomedicine-based ND treatment.
Collapse
|
3
|
Ananth MR, Rajebhosale P, Kim R, Talmage DA, Role LW. Basal forebrain cholinergic signalling: development, connectivity and roles in cognition. Nat Rev Neurosci 2023; 24:233-251. [PMID: 36823458 PMCID: PMC10439770 DOI: 10.1038/s41583-023-00677-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/18/2023] [Indexed: 02/25/2023]
Abstract
Acetylcholine plays an essential role in fundamental aspects of cognition. Studies that have mapped the activity and functional connectivity of cholinergic neurons have shown that the axons of basal forebrain cholinergic neurons innervate the pallium with far more topographical and functional organization than was historically appreciated. Together with the results of studies using new probes that allow release of acetylcholine to be detected with high spatial and temporal resolution, these findings have implicated cholinergic networks in 'binding' diverse behaviours that contribute to cognition. Here, we review recent findings on the developmental origins, connectivity and function of cholinergic neurons, and explore the participation of cholinergic signalling in the encoding of cognition-related behaviours.
Collapse
Affiliation(s)
- Mala R Ananth
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Prithviraj Rajebhosale
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ronald Kim
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - David A Talmage
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Lorna W Role
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Koevoet D, Deschamps PKH, Kenemans JL. Catecholaminergic and cholinergic neuromodulation in autism spectrum disorder: A comparison to attention-deficit hyperactivity disorder. Front Neurosci 2023; 16:1078586. [PMID: 36685234 PMCID: PMC9853424 DOI: 10.3389/fnins.2022.1078586] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by social impairments and restricted, repetitive behaviors. Treatment of ASD is notoriously difficult and might benefit from identification of underlying mechanisms that overlap with those disturbed in other developmental disorders, for which treatment options are more obvious. One example of the latter is attention-deficit hyperactivity disorder (ADHD), given the efficacy of especially stimulants in treatment of ADHD. Deficiencies in catecholaminergic systems [dopamine (DA), norepinephrine (NE)] in ADHD are obvious targets for stimulant treatment. Recent findings suggest that dysfunction in catecholaminergic systems may also be a factor in at least a subgroup of ASD. In this review we scrutinize the evidence for catecholaminergic mechanisms underlying ASD symptoms, and also include in this analysis a third classic ascending arousing system, the acetylcholinergic (ACh) network. We complement this with a comprehensive review of DA-, NE-, and ACh-targeted interventions in ASD, and an exploratory search for potential treatment-response predictors (biomarkers) in ASD, genetically or otherwise. Based on this review and analysis we propose that (1) stimulant treatment may be a viable option for an ASD subcategory, possibly defined by genetic subtyping; (2) cerebellar dysfunction is pronounced for a relatively small ADHD subgroup but much more common in ASD and in both cases may point toward NE- or ACh-directed intervention; (3) deficiency of the cortical salience network is sizable in subgroups of both disorders, and biomarkers such as eye blink rate and pupillometric data may predict the efficacy of targeting this underlying deficiency via DA, NE, or ACh in both ASD and ADHD.
Collapse
Affiliation(s)
- Damian Koevoet
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands,*Correspondence: Damian Koevoet,
| | - P. K. H. Deschamps
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. L. Kenemans
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
5
|
Fan B, Pang L, Li S, Zhou X, Lv Z, Chen Z, Zheng J. Correlation Between the Functional Connectivity of Basal Forebrain Subregions and Vigilance Dysfunction in Temporal Lobe Epilepsy With and Without Focal to Bilateral Tonic-Clonic Seizure. Front Psychiatry 2022; 13:888150. [PMID: 35722568 PMCID: PMC9201520 DOI: 10.3389/fpsyt.2022.888150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/12/2022] [Indexed: 12/02/2022] Open
Abstract
PURPOSE Previous research has shown that subcortical brain regions are related to vigilance in temporal lobe epilepsy (TLE). However, it is unknown whether alterations in the function and structure of basal forebrain (BF) subregions are associated with vigilance impairment in distinct kinds of TLE. We aimed to investigate changes in the structure and function BF subregions in TLE patients with and without focal to bilateral tonic-clonic seizures (FBTCS) and associated clinical features. METHODS A total of 50 TLE patients (25 without and 25 with FBTCS) and 25 healthy controls (HCs) were enrolled in this study. The structural and functional alterations of BF subregions in TLE were investigated using voxel-based morphometry (VBM) and resting-state functional connectivity (rsFC) analysis. Correlation analyses were utilized to investigate correlations between substantially altered imaging characteristics and clinical data from patients. RESULTS FBTCS patients had a lower rsFC between Ch1-3 and the bilateral striatum as well as the left cerebellum posterior lobe than non-FBTCS patients. In comparison to non-FBTCS patients, the rsFC between Ch4 and the bilateral amygdala was also lower in FBTCS patients. Compared to HCs, the TLE patients had reduced rsFC between the BF subregions and the cerebellum, striatum, default mode network, frontal lobe, and occipital lobes. In the FBTCS group, the rsFC between the left Ch1-3 and striatum was positive correlated with the vigilance measures. In the non-FBTCS group, the rsFC between the left Ch4 and striatum was significantly negative correlated with the alertness measure. CONCLUSION These results extend current understanding of the pathophysiology of impaired vigilance in TLE and imply that the BF subregions may serve as critical nodes for developing and categorizing TLE biomarkers.
Collapse
Affiliation(s)
- Binglin Fan
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Linlin Pang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Siyi Li
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zongxia Lv
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zexiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinou Zheng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Ren H, Zhang Z, Zhang J. Physical Exercise Exerts Neuroprotective Effect on Memory Impairment by Mitigate the Decline of Striatum Catecholamine and Spine Density in a Vascular Dementia Rat Model. Am J Alzheimers Dis Other Demen 2022; 37:15333175221144367. [PMID: 36515911 PMCID: PMC10581139 DOI: 10.1177/15333175221144367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The present study aims to investigate the underlying neurochemical mechanism of physical exercise on striatum synapsis and memory function in vascular dementia model. METHODS 32 Sprague-Dawley (SD) rats were randomly divided into 4 groups: control group (C group, n = 6), vascular dementia group (Vascular dementia group, n = 7), physical exercise and vascular dementia group (Exe-VD group, n = 6), physical exercise and black group (Exe group, n = 6). 4 weeks of voluntary wheel running were used as pre-exercise training. Vascular dementia model was established by bilateral common carotid arteries occlusion (BCCAo) for 1 week. Passive avoidance test (PAT) were used to test memory function. The level of striatum catecholamine in the microdialysate were detected by enzyme linked immunosorbent assy (ELISA). Golgi staining was used to analyze striatum neuronal spine density. RESULTS Behavioral data indicated that 4 weeks of physical exercise ameliorated memory impairment in vascular dementia model. Striatum catecholamine level significantly decreased in VD group when compared with C group (P < .001). But this phenomenon can be rescue by physical exercise (P < .001). In addition, compared with C group, neuronal spine density significantly decreased in VD group (P < .01), but 4 weeks of physical exercise can rescue this phenomenon (P < .05). CONCLUSION 4 weeks of physical exercise improves memory function by mitigate the decline of striatum catecholamine and spine density in VD model.
Collapse
Affiliation(s)
- Hangzhou Ren
- College of Art and Design, Zhengzhou University of Economics and Business, Zhengzhou, China
| | - Zhongyuan Zhang
- College of Art and Design, Zhengzhou University of Economics and Business, Zhengzhou, China
| | - Jianwei Zhang
- College of Art and Design, Zhengzhou University of Economics and Business, Zhengzhou, China
| |
Collapse
|
7
|
Hildesheim FE, Benedict RHB, Zivadinov R, Dwyer MG, Fuchs T, Jakimovski D, Weinstock-Guttman B, Bergsland N. Nucleus basalis of Meynert damage and cognition in patients with multiple sclerosis. J Neurol 2021; 268:4796-4808. [PMID: 33997915 PMCID: PMC8568637 DOI: 10.1007/s00415-021-10594-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The nucleus basalis of Meynert (NBM), representing the major source of cerebral cholinergic innervations, is vulnerable to neurodegeneration in Alzheimer's and Parkinson's disease. OBJECTIVE To determine associations between NBM properties and cognitive outcomes in patients with multiple sclerosis (PwMS). METHODS 84 PwMS and 19 controls underwent 3T MRI, the Paced Auditory Serial Addition Test (PASAT) and subtests of the Brief International Cognitive Assessment for MS (BICAMS). NBM volume, fractional anisotropy, mean diffusivity (MD), axial diffusivity and radial diffusivity (D⊥) were calculated. Analyses assessed relationships between cognition and NBM measures. Linear regressions evaluated the prognostic value of baseline measures in predicting cognitive change over 3 years of follow-up (n = 67). RESULTS Cognitive tests correlated with NBM diffusivity in PwMS (range r = - 0.29 to r = - 0.40, p < 0.05). After accounting for NBM volume, NBM MD and D⊥ explained additional variance (adjusted R2 range 0.08-0.20, p < 0.05). Correlations between NBM imaging metrics and cognitive tests remained significant when including imaging parameters of other cognitive key brain regions in the models. After controlling for age, education, and baseline cognitive test score, NBM measures predicted change in cognition over follow-up in 5 of 10 and 2 of 10 assessments in the relapsing-remitting sample (n = 43) (adjusted R2 range from 0.23 to 0.38, p < 0.05) and secondary progressive sample (adjusted R2 of 0.280 and 0.183), respectively. CONCLUSIONS NBM damage is linked to cognitive impairment in PwMS.
Collapse
Affiliation(s)
- Franziska E Hildesheim
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA
| | - Ralph H B Benedict
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Jacobs Comprehensive MS Treatment and Research Center, University at Buffalo, Buffalo, NY, USA
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Tom Fuchs
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA
| | - Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Jacobs Comprehensive MS Treatment and Research Center, University at Buffalo, Buffalo, NY, USA
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA.
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.
| |
Collapse
|
8
|
Ma X, Fu S, Yin Y, Wu Y, Wang T, Xu G, Liu M, Xu Y, Tian J, Jiang G. Aberrant Functional Connectivity of Basal Forebrain Subregions with Cholinergic System in Short-term and Chronic Insomnia Disorder. J Affect Disord 2021; 278:481-487. [PMID: 33011526 DOI: 10.1016/j.jad.2020.09.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND To systematically investigate structural and functional abnormalities in subregions of the basal forebrain (BF) using structural and resting-state fMRI, and to examine their clinical relevance in short-term and chronic insomnia disorder (ID). METHODS Thirty-four patients with short-term ID, 41 patients with chronic ID, and 46 healthy controls (HCs) were recruited. Grey matter volume and seed-based resting-state functional connectivity (RSFC) in each BF subregion (Ch1,2,3 and 4) were computed and compared among the three groups. Spearman correlation was used to estimate the relationships between MRI-based alterations and clinical variables. RESULTS The short-term group exhibited lower RSFC with the bilateral striatum and bilateral Ch_4 than HCs and the chronic group. In the left Ch_4, subjects in the chronic group exhibited lower RSFC with the left middle cingulate cortex than HCs and the short-term group. The short-term group exhibited lower RSFC with the left parahippocampal gyrus (PHG) than HCs and the chronic group. The chronic group exhibited the highest RSFC with the left middle frontal gyrus (MFG), followed by HCs and the short-term group. In the right Ch_4, the chronic group exhibited the lowest RSFC with the right superior temporal gyrus, followed by HCs and the short-term group. Moreover, in the short-term group, negative correlations were found between the left Ch_4 and left MFG RSFC and Epworth Sleepiness Scale scores. CONCLUSIONS These findings suggest that the Ch_4 may be a key node for establishing diagnostic and categorical biomarkers of ID, which could be useful in developing more effective treatment strategies for insomnia.
Collapse
Affiliation(s)
- Xiaofen Ma
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Shishun Fu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Yi Yin
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Yunfan Wu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Tianyue Wang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Guang Xu
- Department of Neurology, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Mengchen Liu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medial University, Guangzhou, 510515, P. R. China
| | - Junzhang Tian
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China.
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China.
| |
Collapse
|
9
|
Florio TM. Stereotyped, automatized and habitual behaviours: are they similar constructs under the control of the same cerebral areas? AIMS Neurosci 2020; 7:136-152. [PMID: 32607417 PMCID: PMC7321770 DOI: 10.3934/neuroscience.2020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/18/2020] [Indexed: 11/19/2022] Open
Abstract
Comprehensive knowledge about higher executive functions of motor control has been covered in the last decades. Critical goals have been targeted through many different technological approaches. An abundant flow of new results greatly progressed our ability to respond at better-posited answers to look more than ever at the challenging neural system functioning. Behaviour is the observable result of the invisible, as complex cerebral functioning. Many pathological states are approached after symptomatology categorisation of behavioural impairments is achieved. Motor, non-motor and psychiatric signs are greatly shared by many neurological/psychiatric disorders. Together with the cerebral cortex, the basal ganglia contribute to the expression of behaviour promoting the correct action schemas and the selection of appropriate sub-goals based on the evaluation of action outcomes. The present review focus on the basic classification of higher motor control functioning, taking into account the recent advances in basal ganglia structural knowledge and the computational model of basal ganglia functioning. We discuss about the basal ganglia capability in executing ordered motor patterns in which any single movement is linked to each other into an action, and many actions are ordered into each other, giving them a syntactic value to the final behaviour. The stereotypic, automatized and habitual behaviour's constructs and controls are the expression of successive stages of rule internalization and categorisation aimed in producing the perfect spatial-temporal control of motor command.
Collapse
Affiliation(s)
- Tiziana M Florio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| |
Collapse
|
10
|
Propofol Causes Consciousness Loss by Affecting GABA-A Receptor in the Nucleus Basalis of Rats. Behav Neurol 2020; 2020:9370891. [PMID: 32148565 PMCID: PMC7053451 DOI: 10.1155/2020/9370891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/03/2020] [Indexed: 11/28/2022] Open
Abstract
Objective Propofol is a classical anesthetic and induces consciousness loss, and gamma-aminobutyric-acid-type-A (GABA-A) receptor is its target. Righting reflex is associated with conscious response. The nucleus basalis (NB) acts as a major relay between the reticular activating system and the frontal cortex (FC). Propofol may mediate righting reflex by affecting GABA-A receptor in NB. Methods Fifty male SD rats (250-350 g) were divided into parts I and II. In part I, 20 male SD rats were randomly divided into control group (CG) and NB-lesion group (NG, ibotenic acid-induced NB lesion). In part II, 30 male SD rats were treated with saline (0.9% NaCl, SG group), muscimol (a GABA-A receptor agonist, MG group), and gabazine (a GABA-A receptor antagonist, GG group) in NB, respectively. Two weeks later, the activity of the rats was measured between CG and NG groups. The rats were intravenously injected with propofol (50 mg/kg/h) to test the time of loss of righting reflex (LORR) in all rats. When LORR occurred, the rats received single administration of propofol (12 mg/kg) to measure the time of return of righting reflex (RORR). Electroencephalogram (EEG) activity of the frontal cortex (FC) was recorded. Results The numbers of NB neurons were reduced by 44% in the NG group compared to the CG group (p < 0.05) whereas the activity of rats was reduced a little in the NG group when compared with the CG group, but the statistical difference was insignificant (p < 0.05) whereas the activity of rats was reduced a little in the NG group when compared with the CG group, but the statistical difference was insignificant (p < 0.05) whereas the activity of rats was reduced a little in the NG group when compared with the CG group, but the statistical difference was insignificant (p < 0.05) whereas the activity of rats was reduced a little in the NG group when compared with the CG group, but the statistical difference was insignificant (p < 0.05) whereas the activity of rats was reduced a little in the NG group when compared with the CG group, but the statistical difference was insignificant (p < 0.05) whereas the activity of rats was reduced a little in the NG group when compared with the CG group, but the statistical difference was insignificant ( Conclusions The unilateral NB lesion increased the recovery time and FC delta power, and the NB region might be involved in the emergence after propofol administration. Propofol plays a crucial role for causing conscious loss by affecting GABA-A receptor in NB.
Collapse
|
11
|
Cohan CH, Youbi M, Saul I, Ruiz AA, Furones CC, Patel P, Perez E, Raval AP, Dave KR, Zhao W, Dong C, Rundek T, Koch S, Sacco RL, Perez-Pinzon MA. Sex-Dependent Differences in Physical Exercise-Mediated Cognitive Recovery Following Middle Cerebral Artery Occlusion in Aged Rats. Front Aging Neurosci 2019; 11:261. [PMID: 31619985 PMCID: PMC6759590 DOI: 10.3389/fnagi.2019.00261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/04/2019] [Indexed: 01/14/2023] Open
Abstract
Stroke remains a leading cause of death and disability in the United States. No current treatments exist to promote cognitive recovery in survivors of stroke. A previous study from our laboratory determined that an acute bout of forced treadmill exercise was able to promote cognitive recovery in 3 month old male rats after middle cerebral artery occlusion (MCAo). In this study, we tested the hypothesis that 6 days of intense acute bout of forced treadmill exercise (physical exercise – PE) promotes cognitive recovery in 11–14 month old male rats. We determined that PE was able to ameliorate cognitive deficits as determined by contextual fear conditioning. Additionally, we also tested the hypothesis that PE promotes cognitive recovery in 11–13 month old reproductive senescent female rats. In contrast to males, the same intensity of exercise that decrease cognitive deficits in males was not able to promote cognitive recovery in female rats. Additionally, we determined that exercise did not lessen infarct volume in both male and female rats. There are many factors that contribute to higher stroke mortality and morbidities in women and thus, future studies will investigate the effects of PE in aged female rats to identify sex differences.
Collapse
Affiliation(s)
- Charles H Cohan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Mehdi Youbi
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Isabel Saul
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alex A Ruiz
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Concepcion C Furones
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Pujan Patel
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Edwin Perez
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kunjan R Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Weizhao Zhao
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Chuanhui Dong
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Tatjana Rundek
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sebastian Koch
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ralph L Sacco
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Miguel A Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|