1
|
Cui S, Zheng H, Xu Y, Wu Q, Liu W, Cai Y, Fan L, Tian Y, Qian H, Ding Y, Zhang X, Zhang J, Wu X, Wang R, Li X, Chen X. Plasma proteomic biomarkers predict therapeutic responses in advanced biliary tract cancer patients receiving Camrelizumab plus the GEMOX treatment. NPJ Precis Oncol 2025; 9:102. [PMID: 40195413 PMCID: PMC11977001 DOI: 10.1038/s41698-025-00879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/13/2025] [Indexed: 04/09/2025] Open
Abstract
Biliary tract cancer (BTC) has greatly influenced patient survival for years. Nowadays, immunotherapy represents a promising breakthrough and proteomics is one of powerful technologies in biomarker research. We collected plasma and tissue samples from 37 patients with advanced BTC and 92 proteins were analyzed by proximity extension assay (PEA). Through linear mixed effect models, compared to partial response (PR) group, 8 proteins, IL7, ANGPT2, IL15, HO-1, CXCL1, CXCL5, IL33, and VEGFA, exhibited significantly higher expression in stable disease and progressive disease (SD_PD) group in response-effect analysis. It was also revealed that a subset of proteins increased over time, including PDCD1, TNFRSF4, DCN, CRTAM, VEGFR-2 and ADA in PR group and PDCD1, IL10, ADA, CD28, and PTN in SD_PD group. In interaction-effect analysis, HO-1, ANGPT2, IL15 were three significant differentially expressed proteins (DEPs). Receiver operating characteristic (ROC) analysis further demonstrated that HO-1, ANGPT2, IL15 showed high accuracy in patients with immune checkpoint blockade (ICB) treatment plus chemotherapy (AUC = 0.74). In addition, based on the obtained plasma and tissue samples, two nomogram models were constructed for predicting the prognosis of BTC by genome combined with proteomics. Collectively meaningful proteomic biomarkers are beneficial to evaluate the efficacy of immunotherapy, and these discovered biomarkers may be included in the scope of treatments' evaluation and improvement in future study.
Collapse
Affiliation(s)
- Shiyun Cui
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
- Department of oncology, Chongqing Hospital of Jiangsu Province Hospital (The People's Hospital of Qijiang District), Chongqing, 401420, China
| | - Hejian Zheng
- Department of oncology, Chongqing Hospital of Jiangsu Province Hospital (The People's Hospital of Qijiang District), Chongqing, 401420, China
| | - Yiyang Xu
- Nanjing Medical University, Nanjing, 210029, China
| | - Qiuyu Wu
- Nanjing Medical University, Nanjing, 210029, China
| | - Weici Liu
- Nanjing Medical University, Nanjing, 210029, China
| | - Yucheng Cai
- Nanjing Medical University, Nanjing, 210029, China
| | - Lei Fan
- Department of General Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Yitong Tian
- Nanjing Medical University, Nanjing, 210029, China
| | - Hao Qian
- Nanjing Medical University, Nanjing, 210029, China
| | - Yuting Ding
- Nanjing Medical University, Nanjing, 210029, China
| | - Xinyi Zhang
- Nanjing Medical University, Nanjing, 210029, China
| | | | - Xiaofeng Wu
- Hepatobiliar k77y Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Rong Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China.
| | - Xiangcheng Li
- Hepatobiliar k77y Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Xiaofeng Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China.
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.
| |
Collapse
|
2
|
Ouyang X, Wang J, Qiu X, Hu D, Cui J. Current developments of pharmacotherapy targeting heme oxygenase 1 in cancer (Review). Int J Oncol 2025; 66:26. [PMID: 39981901 DOI: 10.3892/ijo.2025.5732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
Malignant tumors are non-communicable diseases that impact human health and quality of life. Identifying and targeting the underlying genetic drivers is a challenge. Heme oxygenase-1 (HO-1), a stress-inducible enzyme also known as heat shock protein 32, plays a crucial role in maintaining cellular homeostasis. It mitigates oxidative stress-induced damage and exhibits anti-apoptotic properties. HO-1 is expressed in a wide range of malignancies and is associated with tumor growth. However, the precise role of HO-1 in tumor development remains controversial. Drugs, both naturally occurring and chemically synthesized, can inhibit tumor growth by modulating HO-1 expression in cancer cells. The present review aimed to discuss biological functions of HO-1 pharmacological therapies targeting HO-1.
Collapse
Affiliation(s)
- Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jingbo Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaoyuan Qiu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jing Cui
- Health Management Center, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, Hubei 430015, P.R. China
| |
Collapse
|
3
|
Yang Z, Zhang T, Zhu X, Zhang X. Ferroptosis-Related Transcriptional Level Changes and the Role of CIRBP in Glioblastoma Cells Ferroptosis. Biomedicines 2024; 13:41. [PMID: 39857625 PMCID: PMC11761263 DOI: 10.3390/biomedicines13010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVE We aimed to elucidate the roles of ferroptosis-associated differentially expressed genes (DEGs) in glioblastoma and provide a comprehensive resource for researchers in the field of glioblastoma cell ferroptosis. METHODS We used RNA sequencing to identify the DEGs associated with erastin-induced ferroptosis in glioblastoma cells. We further unraveled the biological functions and clinical implications of cold-inducible RNA-binding protein (CIRBP) in the context of glioblastoma by using a multifaceted approach, encompassing gene expression profiling, survival analysis, and functional assays to elucidate its role in glioblastoma cell mortality and its potential influence on patient prognosis. RESULTS We identified and validated the gene encoding CIRBP, the expression of which is altered during glioblastoma ferroptosis. Our findings highlight the relationship between CIRBP expression and ferroptosis in glioblastoma cells. We demonstrated that CIRBP modulates key aspects of cell death, thereby altering the sensitivity of glioblastoma cells to erastin-induced ferroptosis. A prognostic model, constructed based on CIRBP expression levels, revealed an association between lower CIRBP levels and poorer prognosis in glioma patients; this finding was corroborated by our comprehensive in vitro and in vivo assays that highlighted the impact of modulating CIRBP expression on glioblastoma cell viability and ferroptotic response. CONCLUSION Our research unravels the complex molecular dynamics of ferroptosis in glioblastoma and underscores CIRBP as a potential biomarker and therapeutic target. This improved understanding of the role of CIRBP in ferroptosis paves the way for more precise and efficacious treatments for glioblastoma, potentially improving patient outcomes.
Collapse
Affiliation(s)
- Zijiang Yang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China;
| | - Ting Zhang
- Department of Central Laboratory, Jiangyin Clinical College of Xuzhou Medical University, Jiangyin 214400, China;
| | - Xuanlin Zhu
- School of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai 200433, China;
| | - Xiaobiao Zhang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China;
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Digital Medical Research Center, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Consonni FM, Incerti M, Bertolotti M, Ballerini G, Garlatti V, Sica A. Heme catabolism and heme oxygenase-1-expressing myeloid cells in pathophysiology. Front Immunol 2024; 15:1433113. [PMID: 39611159 PMCID: PMC11604077 DOI: 10.3389/fimmu.2024.1433113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024] Open
Abstract
Although the pathological significance of myeloid cell heterogeneity is still poorly understood, new evidence indicates that distinct macrophage subsets are characterized by specific metabolic programs that influence disease onset and progression. Within this scenario, distinct subsets of macrophages, endowed with high rates of heme catabolism by the stress-responsive enzyme heme oxygenase-1 (HO-1), play critical roles in physiologic and pathological conditions. Of relevance, the substrates of HO-1 activity are the heme groups that derive from cellular catabolism and are converted into carbon monoxide (CO), biliverdin and Fe2+, which together elicit anti-apoptotic, anti-inflammatory activities and control oxidative damage. While high levels of expression of HO-1 enzyme by specialized macrophage populations (erythrophagocytes) guarantee the physiological disposal of senescent red blood cells (i.e. erythrocateresis), the action of HO-1 takes on pathological significance in various diseases, and abnormal CO metabolism has been observed in cancer, hematological diseases, hypertension, heart failure, inflammation, sepsis, neurodegeneration. Modulation of heme catabolism and CO production is therefore a feasible therapeutic opportunity in various diseases. In this review we discuss the role of HO-1 in different pathological contexts (i.e. cancer, infections, cardiovascular, immune-mediated and neurodegenerative diseases) and highlight new therapeutic perspectives on the modulation of the enzymatic activity of HO-1.
Collapse
Affiliation(s)
- Francesca Maria Consonni
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Martina Incerti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Milena Bertolotti
- Navita S.r.l., University of Eastern Piedmont A. Avogadro, Novara, Italy
| | - Giulia Ballerini
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Valentina Garlatti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
5
|
Kaynar A, Kim W, Ceyhan AB, Zhang C, Uhlén M, Turkez H, Shoaie S, Mardinoglu A. Unveiling the Molecular Mechanisms of Glioblastoma through an Integrated Network-Based Approach. Biomedicines 2024; 12:2237. [PMID: 39457550 PMCID: PMC11504402 DOI: 10.3390/biomedicines12102237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Despite current treatments extending the lifespan of Glioblastoma (GBM) patients, the average survival time is around 15-18 months, underscoring the fatality of GBM. This study aims to investigate the impact of sample heterogeneity on gene expression in GBM, identify key metabolic pathways and gene modules, and explore potential therapeutic targets. Methods: In this study, we analysed GBM transcriptome data derived from The Cancer Genome Atlas (TCGA) using genome-scale metabolic models (GEMs) and co-expression networks. We examine transcriptome data incorporating tumour purity scores (TPSs), allowing us to assess the impact of sample heterogeneity on gene expression profiles. We analysed the metabolic profile of GBM by generating condition-specific GEMs based on the TPS group. Results: Our findings revealed that over 90% of genes showing brain and glioma specificity in RNA expression demonstrate a high positive correlation, underscoring their expression is dominated by glioma cells. Conversely, negatively correlated genes are strongly associated with immune responses, indicating a complex interaction between glioma and immune pathways and non-tumorigenic cell dominance on gene expression. TPS-based metabolic profile analysis was supported by reporter metabolite analysis, highlighting several metabolic pathways, including arachidonic acid, kynurenine and NAD pathway. Through co-expression network analysis, we identified modules that significantly overlap with TPS-correlated genes. Notably, SOX11 and GSX1 are upregulated in High TPS, show a high correlation with TPS, and emerged as promising therapeutic targets. Additionally, NCAM1 exhibits a high centrality score within the co-expression module, which shows a positive correlation with TPS. Moreover, LILRB4, an immune-related gene expressed in the brain, showed a negative correlation and upregulated in Low TPS, highlighting the importance of modulating immune responses in the GBM mechanism. Conclusions: Our study uncovers sample heterogeneity's impact on gene expression and the molecular mechanisms driving GBM, and it identifies potential therapeutic targets for developing effective treatments for GBM patients.
Collapse
Affiliation(s)
- Ali Kaynar
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (A.B.C.); (S.S.)
| | - Woonghee Kim
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171211 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Atakan Burak Ceyhan
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (A.B.C.); (S.S.)
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171211 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Mathias Uhlén
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171211 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Hasan Turkez
- Medical Biology Department, Faculty of Medicine, Atatürk University, Erzurum 25240, Türkiye;
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (A.B.C.); (S.S.)
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171211 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (A.B.C.); (S.S.)
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171211 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| |
Collapse
|
6
|
D’Amico AG, Maugeri G, Vanella L, Consoli V, Sorrenti V, Bruno F, Federico C, Fallica AN, Pittalà V, D’Agata V. Novel Acetamide-Based HO-1 Inhibitor Counteracts Glioblastoma Progression by Interfering with the Hypoxic-Angiogenic Pathway. Int J Mol Sci 2024; 25:5389. [PMID: 38791428 PMCID: PMC11121434 DOI: 10.3390/ijms25105389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastoma multiforme (GBM) represents the deadliest tumor among brain cancers. It is a solid tumor characterized by uncontrolled cell proliferation generating the hypoxic niches in the cancer core. By inducing the transcription of hypoxic inducible factor (HIF), hypoxia triggers many signaling cascades responsible for cancer progression and aggressiveness, including enhanced expression of vascular endothelial growth factor (VEGF) or antioxidant enzymes, such as heme oxygenase-1 (HO-1). The present work aimed to investigate the link between HO-1 expression and the hypoxic microenvironment of GBM by culturing two human glioblastoma cell lines (U87MG and A172) in the presence of a hypoxic mimetic agent, deferoxamine (DFX). By targeting hypoxia-induced HO-1, we have tested the effect of a novel acetamide-based HO-1 inhibitor (VP18/58) on GBM progression. Results have demonstrated that hypoxic conditions induced upregulation and nuclear expression of HO-1 in a cell-dependent manner related to malignant phenotype. Moreover, our data demonstrated that the HO-1 inhibitor counteracted GBM progression by modulating the HIFα/HO-1/VEGF signaling cascade in cancer cells bearing more malignant phenotypes.
Collapse
Affiliation(s)
- Agata Grazia D’Amico
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (V.C.); (V.S.); (V.P.)
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (V.C.); (V.S.); (V.P.)
| | - Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (V.C.); (V.S.); (V.P.)
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (V.C.); (V.S.); (V.P.)
| | - Francesca Bruno
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, 95123 Catania, Italy (C.F.)
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, 95123 Catania, Italy (C.F.)
| | - Antonino Nicolò Fallica
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (V.C.); (V.S.); (V.P.)
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (V.C.); (V.S.); (V.P.)
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama 329, Bahrain
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy
| |
Collapse
|
7
|
Virtuoso A, D’Amico G, Scalia F, De Luca C, Papa M, Maugeri G, D’Agata V, Caruso Bavisotto C, D’Amico AG. The Interplay between Glioblastoma Cells and Tumor Microenvironment: New Perspectives for Early Diagnosis and Targeted Cancer Therapy. Brain Sci 2024; 14:331. [PMID: 38671983 PMCID: PMC11048111 DOI: 10.3390/brainsci14040331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) stands out as the most tremendous brain tumor, constituting 60% of primary brain cancers, accompanied by dismal survival rates. Despite advancements in research, therapeutic options remain limited to chemotherapy and surgery. GBM molecular heterogeneity, the intricate interaction with the tumor microenvironment (TME), and non-selective treatments contribute to the neoplastic relapse. Diagnostic challenges arise from GBM advanced-stage detection, necessitating the exploration of novel biomarkers for early diagnosis. Using data from the literature and a bioinformatic tool, the current manuscript delineates the molecular interplay between human GBM, astrocytes, and myeloid cells, underscoring selected protein pathways belonging to astroglia and myeloid lineage, which can be considered for targeted therapies. Moreover, the pivotal role of extracellular vesicles (EVs) in orchestrating a favorable microenvironment for cancer progression is highlighted, suggesting their utility in identifying biomarkers for GBM early diagnosis.
Collapse
Affiliation(s)
- Assunta Virtuoso
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.); (M.P.)
| | - Giuseppa D’Amico
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), Human Anatomy Section, University of Palermo, 90127 Palermo, Italy; (G.D.); (F.S.)
| | - Federica Scalia
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), Human Anatomy Section, University of Palermo, 90127 Palermo, Italy; (G.D.); (F.S.)
| | - Ciro De Luca
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.); (M.P.)
| | - Michele Papa
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.); (M.P.)
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; (G.M.); (V.D.)
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; (G.M.); (V.D.)
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), Human Anatomy Section, University of Palermo, 90127 Palermo, Italy; (G.D.); (F.S.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Agata Grazia D’Amico
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy;
| |
Collapse
|
8
|
Tonelotto V, Costa-Garcia M, O'Reilly E, Smith KF, Slater K, Dillon ET, Pendino M, Higgins C, Sist P, Bosch R, Passamonti S, Piulats JM, Villanueva A, Tramer F, Vanella L, Carey M, Kennedy BN. 1,4-dihydroxy quininib activates ferroptosis pathways in metastatic uveal melanoma and reveals a novel prognostic biomarker signature. Cell Death Discov 2024; 10:70. [PMID: 38341410 DOI: 10.1038/s41420-023-01773-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024] Open
Abstract
Uveal melanoma (UM) is an ocular cancer, with propensity for lethal liver metastases. When metastatic UM (MUM) occurs, as few as 8% of patients survive beyond two years. Efficacious treatments for MUM are urgently needed. 1,4-dihydroxy quininib, a cysteinyl leukotriene receptor 1 (CysLT1) antagonist, alters UM cancer hallmarks in vitro, ex vivo and in vivo. Here, we investigated the 1,4-dihydroxy quininib mechanism of action and its translational potential in MUM. Proteomic profiling of OMM2.5 cells identified proteins differentially expressed after 1,4-dihydroxy quininib treatment. Glutathione peroxidase 4 (GPX4), glutamate-cysteine ligase modifier subunit (GCLM), heme oxygenase 1 (HO-1) and 4 hydroxynonenal (4-HNE) expression were assessed by immunoblots. Biliverdin, glutathione and lipid hydroperoxide were measured biochemically. Association between the expression of a specific ferroptosis signature and UM patient survival was performed using public databases. Our data revealed that 1,4-dihydroxy quininib modulates the expression of ferroptosis markers in OMM2.5 cells. Biochemical assays validated that GPX4, biliverdin, GCLM, glutathione and lipid hydroperoxide were significantly altered. HO-1 and 4-HNE levels were significantly increased in MUM tumor explants from orthotopic patient-derived xenografts (OPDX). Expression of genes inhibiting ferroptosis is significantly increased in UM patients with chromosome 3 monosomy. We identified IFerr, a novel ferroptosis signature correlating with UM patient survival. Altogether, we demontrated that in MUM cells and tissues, 1,4-dihydroxy quininib modulates key markers that induce ferroptosis, a relatively new type of cell death driven by iron-dependent peroxidation of phospholipids. Furthermore, we showed that high expression of specific genes inhibiting ferroptosis is associated with a worse UM prognosis, thus, the IFerr signature is a potential prognosticator for which patients develop MUM. All in all, ferroptosis has potential as a clinical biomarker and therapeutic target for MUM.
Collapse
Affiliation(s)
- Valentina Tonelotto
- UCD Conway Institute, University College Dublin, D04 V1W8, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Marcel Costa-Garcia
- Medical Oncology Department, Catalan Institute of Cancer (ICO), IDIBELL-OncoBell, Barcelona, Spain
| | - Eve O'Reilly
- UCD Conway Institute, University College Dublin, D04 V1W8, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Kaelin Francis Smith
- UCD Conway Institute, University College Dublin, D04 V1W8, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Kayleigh Slater
- UCD Conway Institute, University College Dublin, D04 V1W8, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Eugene T Dillon
- Mass Spectrometry Resource, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Marzia Pendino
- UCD Conway Institute, University College Dublin, D04 V1W8, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Catherine Higgins
- UCD School of Mathematics & Statistics, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Paola Sist
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Rosa Bosch
- Xenopat S.L., Business Bioincubator, Bellvitge Health Science Campus, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Josep M Piulats
- Medical Oncology Department, Catalan Institute of Cancer (ICO), IDIBELL-OncoBell, Barcelona, Spain
| | - Alberto Villanueva
- Xenopat S.L., Business Bioincubator, Bellvitge Health Science Campus, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Program Against Cancer Therapeutic Resistance (ProCURE), ICO, IDIBELL, Barcelona, Spain
| | - Federica Tramer
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT-Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Michelle Carey
- Mass Spectrometry Resource, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Breandán N Kennedy
- UCD Conway Institute, University College Dublin, D04 V1W8, Dublin, Ireland.
- UCD School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8, Dublin, Ireland.
| |
Collapse
|
9
|
Shen CK, Huang BR, Charoensaensuk V, Yang LY, Tsai CF, Liu YS, Lu DY, Yeh WL, Lin C. Bradykinin B1 Receptor Affects Tumor-Associated Macrophage Activity and Glioblastoma Progression. Antioxidants (Basel) 2023; 12:1533. [PMID: 37627528 PMCID: PMC10451655 DOI: 10.3390/antiox12081533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Bradykinin is a small active peptide and is considered an inflammatory mediator in several pathological conditions. Bradykinin exerts its effects by coupling to its receptors, including bradykinin B1 (B1R) and bradykinin B2. B1R has been implicated in the development of various cancers. Our previous study reported that B1R promoted glioblastoma (GBM) development by supporting the migration and invasion of GBM cells. However, the mechanisms underlying the effects of B1R on tumor-associated macrophages (TAMs) and GBM progression remain unknown. Accordingly, to explore the regulatory effects of B1R overexpression (OE) in GBM on tumor-associated immune cells and tumor progression, we constructed a B1R wild-type plasmid and developed a B1R OE model. The results reveal that B1R OE in GBM promoted the expression of ICAM-1 and VCAM-1-cell adhesion molecules-in GBM. Moreover, B1R OE enhanced GBM cell migration ability and monocyte attachment. B1R also regulated the production of the protumorigenic cytokines and chemokines IL-6, IL-8, CXCL11, and CCL5 in GBM, which contributed to tumor progression. We additionally noted that B1R OE in GBM increased the expression of CD68 in TAMs. Furthermore, B1R OE reduced the level of reactive oxygen species in GBM cells by upregulating heme oxygenase-1, an endogenous antioxidant protein, thereby protecting GBM cells from oxidative stress. Notably, B1R OE upregulated the expression of programmed death-ligand 1 in both GBM cells and macrophages, thus providing resistance against T-cell response. B1R OE in GBM also promoted tumor growth and reduced survival rates in an intracranial xenograft mouse model. These results indicate that B1R expression in GBM promotes TAM activity and modulates GBM progression. Therefore, B1R could be an effective target for therapeutic methods in GBM.
Collapse
Affiliation(s)
- Ching-Kai Shen
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan;
| | - Bor-Ren Huang
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
| | - Vichuda Charoensaensuk
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan (D.-Y.L.)
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan (D.-Y.L.)
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan (D.-Y.L.)
- Department of Photonics and Communication Engineering, Asia University, Taichung 41354, Taiwan
| | - Wei-Lan Yeh
- Department of Biochemistry, School of Medicine, China Medical University, Taichung 40402, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Chingju Lin
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
10
|
Zhang X, Jing F, Guo C, Li X, Li J, Liang G. Tumor-suppressive function and mechanism of miR-873-5p in glioblastoma: evidence based on bioinformatics analysis and experimental validation. Aging (Albany NY) 2023; 15:5412-5425. [PMID: 37382594 PMCID: PMC10333085 DOI: 10.18632/aging.204800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 06/30/2023]
Abstract
This study aims to clarify the mechanistic actions of microRNA-873-5p (miR-873-5p) on glioblastoma (GBM) progression. The most differentially expressed miRNAs were retrieved from the GEO database. It was established that miR-873-5p was downregulated in GBM tissues and cells. Based on in silico prediction and experimental data, HMOX1 was demonstrated to be a target gene of miR-873-5p. Further, miR-873-5p was then ectopically expressed in GBM cells to examine its effect on the malignant behaviors of GBM cells. Overexpression of miR-873-5p inhibited GBM cell proliferation and invasion by targeting HMOX1. HMOX1 promoted SPOP expression by increasing HIF1α expression, thus stimulating GBM cell malignant phenotypes. miR-873-5p suppressed the malignant phenotypes of GBM cells and tumorigenesis in vitro and in vivo by inhibiting the HMOX1/HIF1α/SPOP signaling axis. This study uncovers a novel miR-873-5p/HMOX1/HIF1α/SPOP axis in GBM, providing new insights into GBM progression and therapeutic targets for GBM treatment.
Collapse
Affiliation(s)
- Xiaobin Zhang
- Department of Neurosurgery, General Hospital of the Northern Theater Command of Chinese People’s Liberation Army, Shenyang 110000, China
| | - Fangkun Jing
- Department of Neurosurgery, Jinqiu Hospital of Liaoning Province, Shenyang 110000, China
| | - Chen Guo
- Department of Neurosurgery, General Hospital of the Northern Theater Command of Chinese People’s Liberation Army, Shenyang 110000, China
| | - Xinning Li
- Department of Neurosurgery, General Hospital of the Northern Theater Command of Chinese People’s Liberation Army, Shenyang 110000, China
| | - Jianan Li
- Department of Neurosurgery, General Hospital of the Northern Theater Command of Chinese People’s Liberation Army, Shenyang 110000, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of the Northern Theater Command of Chinese People’s Liberation Army, Shenyang 110000, China
| |
Collapse
|
11
|
Wan S, Zhang G, Liu R, Abbas MN, Cui H. Pyroptosis, ferroptosis, and autophagy cross-talk in glioblastoma opens up new avenues for glioblastoma treatment. Cell Commun Signal 2023; 21:115. [PMID: 37208730 DOI: 10.1186/s12964-023-01108-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/22/2023] [Indexed: 05/21/2023] Open
Abstract
Glioma is a common primary tumor of the central nervous system (CNS), with glioblastoma multiforme (GBM) being the most malignant, aggressive, and drug resistant. Most drugs are designed to induce cancer cell death, either directly or indirectly, but malignant tumor cells can always evade death and continue to proliferate, resulting in a poor prognosis for patients. This reflects our limited understanding of the complex regulatory network that cancer cells utilize to avoid death. In addition to classical apoptosis, pyroptosis, ferroptosis, and autophagy are recognized as key cell death modalities that play significant roles in tumor progression. Various inducers or inhibitors have been discovered to target the related molecules in these pathways, and some of them have already been translated into clinical treatment. In this review, we summarized recent advances in the molecular mechanisms of inducing or inhibiting pyroptosis, ferroptosis, or autophagy in GBM, which are important for treatment or drug tolerance. We also discussed their links with apoptosis to better understand the mutual regulatory network among different cell death processes. Video Abstract.
Collapse
Affiliation(s)
- Sicheng Wan
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Guanghui Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
12
|
Fuochi V, Spampinato M, Distefano A, Palmigiano A, Garozzo D, Zagni C, Rescifina A, Li Volti G, Furneri PM. Soluble peptidoglycan fragments produced by Limosilactobacillus fermentum with antiproliferative activity are suitable for potential therapeutic development: A preliminary report. Front Mol Biosci 2023; 10:1082526. [PMID: 36876040 PMCID: PMC9975264 DOI: 10.3389/fmolb.2023.1082526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Currently, the use of probiotic strains and their products represents a promising innovative approach as an antagonist treatment against many human diseases. Previous studies showed that a strain of Limosilactobacillus fermentum (LAC92), previously defined as Lactobacillus fermentum, exhibited a suitable amensalistic property. The present study aimed to purify the active components from LAC92 to evaluate the biological properties of soluble peptidoglycan fragments (SPFs). The cell-free supernatant (CFS) and bacterial cells were separated after 48 h of growth in MRS medium broth and treated for isolation of SPFs. Antimicrobial activity and proliferation analysis on the human cell line HTC116 were performed using technologies such as xCELLigence, count and viability, and clonogenic analysis. MALDI-MS investigation and docking analysis were performed to determine the molecular structure and hypothetical mode of action, respectively. Our results showed that the antimicrobial activity was mainly due to SPFs. Moreover, the results obtained when investigating the SPF effect on the cell line HCT116 showed substantial preliminary evidence, suggesting their significant cytostatic and quite antiproliferative properties. Although MALDI was unable to identify the molecular structure, it was subsequently revealed by analysis of the bacterial genome. The amino acid structure is called peptide 92. Furthermore, we confirmed by molecular docking studies the interaction of peptide 92 with MDM2 protein, the negative regulator of p53. This study showed that SPFs from the LAC92 strain exerted anticancer effects on the human colon cancer HCT116 cell line via antiproliferation and inducing apoptosis. These findings indicated that this probiotic strain might be a potential candidate for applications in functional products in the future. Further examination is needed to understand the specific advantages of this probiotic strain and improve its functional features to confirm these data. Moreover, deeper research on peptide 92 could increase our knowledge and help us understand if it will be possible to apply to specific diseases such as CRC.
Collapse
Affiliation(s)
- Virginia Fuochi
- Dipartimento di Scienze Biomediche e Biotecnologiche (BIOMETEC), Università di Catania, Catania, Italy.,Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Catania, Italy
| | - Mariarita Spampinato
- Dipartimento di Scienze Biomediche e Biotecnologiche (BIOMETEC), Università di Catania, Catania, Italy
| | - Alfio Distefano
- Dipartimento di Scienze Biomediche e Biotecnologiche (BIOMETEC), Università di Catania, Catania, Italy
| | - Angelo Palmigiano
- CNR, Institute for Polymers, Composites and Biomaterials (IPCB), Catania, Italy
| | - Domenico Garozzo
- CNR, Institute for Polymers, Composites and Biomaterials (IPCB), Catania, Italy
| | - Chiara Zagni
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Catania, Italy
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Catania, Italy
| | - Giovanni Li Volti
- Dipartimento di Scienze Biomediche e Biotecnologiche (BIOMETEC), Università di Catania, Catania, Italy.,Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Catania, Italy
| | - Pio Maria Furneri
- Dipartimento di Scienze Biomediche e Biotecnologiche (BIOMETEC), Università di Catania, Catania, Italy.,Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Catania, Italy
| |
Collapse
|
13
|
Ma J, You D, Chen S, Fang N, Yi X, Wang Y, Lu X, Li X, Zhu M, Xue M, Tang Y, Wei X, Huang J, Zhu Y. Epigenetic association study uncovered H3K27 acetylation enhancers and dysregulated genes in high-fat-diet-induced nonalcoholic fatty liver disease in rats. Epigenomics 2022; 14:1523-1540. [PMID: 36851897 DOI: 10.2217/epi-2022-0362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Aim: To evaluate the regulatory landscape underlying the active enhancer marked by H3K27ac in high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) in rats. Materials & methods: H3K27ac chromatin immunoprecipitation and high-throughput RNA sequencing to construct regulatory profiles and transcriptome of liver from NAFLD rat model induced by HFD. De novo motif analysis for differential H3K27ac peaks. Functional enrichment, Kyoto Encyclopedia of Genes and Genomes pathway and protein-protein interaction network were examined for differential peak-genes. The mechanism was further verified by western blot, chromatin immunoprecipitation-quantitative PCR and real-time PCR. Results: A total of 1831 differential H3K27ac peaks were identified significantly correlating with transcription factors and target genes (CYP8B1, PLA2G12B, SLC27A5, CYP7A1 and APOC3) involved in lipid and energy homeostasis. Conclusion: Altered acetylation induced by HFD leads to the dysregulation of gene expression, further elucidating the epigenetic mechanism in the etiology of NAFLD.
Collapse
Affiliation(s)
- Jinhu Ma
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
| | - Dandan You
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
| | - Shuwen Chen
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
| | - Nana Fang
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
| | - Xinrui Yi
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
| | - Yi Wang
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
| | - Xuejin Lu
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
| | - Xinyu Li
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
| | - Meizi Zhu
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
| | - Min Xue
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
| | - Yunshu Tang
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
| | - Xiaohui Wei
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
| | - Jianzhen Huang
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yaling Zhu
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
14
|
Modulation and function of Pumilio proteins in cancer. Semin Cancer Biol 2022; 86:298-309. [PMID: 35301091 DOI: 10.1016/j.semcancer.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 01/27/2023]
Abstract
Post-transcriptional regulation is involved in tumorigenesis, and in this control, RNA-binding proteins are the main protagonists. Pumilio proteins are highly conserved RNA-binding proteins that regulate many aspects of RNA processing. The dysregulation of Pumilio expression is associated with different types of cancer. This review summarizes the roles of Pumilio 1 and Pumilio 2 in cancer and discusses the factors that account for their distinct biological functions. Pumilio levels seem to be related to tumor progression and poor prognoses in some kinds of tumors, such as lung, pancreatic, prostate, and cervical cancers. Pumilio 1 is associated with cancer proliferation, migration, and invasion, and so is Pumilio 2, although there are contradictory reports regarding the latter. Furthermore, the circular RNA, circPUM1, has been described as a miRNAs sponge, regulating miRNA involved in the cell cycle. The expression and function of Pumilio proteins depend on the fine adjustment of a set of modulators, including miRNAs, lncRNAs, and circRNAs; this demonstrates that Pumilio plays an important role in tumorigenesis through a variety of regulatory axes.
Collapse
|
15
|
Heme Oxygenase-1 Overexpression Promotes Uveal Melanoma Progression and Is Associated with Poor Clinical Outcomes. Antioxidants (Basel) 2022; 11:antiox11101997. [PMID: 36290720 PMCID: PMC9598584 DOI: 10.3390/antiox11101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 12/05/2022] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular tumor in adults. To date, the main strategies to counteract its progression consist of focal radiation on the tumor site and ocular enucleation. Furthermore, many UM patients develop liver metastasis within 10 years following diagnosis, eventually resulting in a poorer prognosis for those patients. Dissecting the molecular mechanism involved in UM progression may lead to identify novel prognostic markers with significative clinical applications. The aim of the present study was to evaluate the role of Heme Oxygenase 1 (HO-1) in regulating UM progression. UM cell lines (92.1) were treated with Hemin (CONC e time), a strong inducer of HO-1, and VP13/47, a selective inhibitor of its enzymatic activity. Interestingly, our results showed an enhanced 92.1 cellular proliferation and wound healing ability following an HO-1 increase, overall unveiling the role played by this protein in tumor progression. Similar results were obtained following treatment with two different CO releasing molecules (CORM-3 and CORM-A1). These results were further confirmed in a clinical setting using our UM cohort. Our results demonstrated an increased median HO-1 expression in metastasizing UM when compared to nonmetastasizing patients. Overall, our results showed that HO-1 derived CO plays a major role in UM progression and HO-1 protein expression may serve as a potential prognostic and therapeutical factor in UM patients.
Collapse
|
16
|
Huang R, Dong R, Wang N, He Y, Zhu P, Wang C, Lan B, Gao Y, Sun L. Adaptive Changes Allow Targeting of Ferroptosis for Glioma Treatment. Cell Mol Neurobiol 2022; 42:2055-2074. [PMID: 33893939 PMCID: PMC11421619 DOI: 10.1007/s10571-021-01092-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Ferroptosis is a type of regulated cell death that plays an essential role in various brain diseases, including cranial trauma, neuronal diseases, and brain tumors. It has been reported that cancer cells rely on their robust antioxidant capacity to escape ferroptosis. Therefore, ferroptosis exploitation could be an effective strategy to prevent tumor proliferation and invasion. Glioma is a common malignant craniocerebral tumor exhibiting complicated drug resistance and survival mechanisms, resulting in a high mortality rate and short survival time. Recent studies have determined that metabolic alterations in glioma offer exploitable therapeutic targets. These metabolic alterations allow targeted therapy to achieve some initial efficacy but have failed to inhibit glioma growth, invasion, and drug resistance effectively. It has been proposed that the reason for the high malignancy and drug resistance observed with glioma is that these tumors can effectively evade ferroptosis. Ferroptosis-inducing drugs were found to exert a positive effect by targeting this particular characteristic of glioma cells. Moreover, gliomas develop enhanced drug resistance through anti-ferroptosis mechanisms. In this study, we provided an overview of the mechanisms by which glioma aggressiveness and drug resistance are mediated by the evasion of ferroptosis. This information might provide new targets for glioma therapy as well as new insights and ideas for future research.
Collapse
Affiliation(s)
- Renxuan Huang
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Rui Dong
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Nan Wang
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Yichun He
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Peining Zhu
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Chong Wang
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Beiwu Lan
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Yufei Gao
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China.
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
17
|
Scuto M, Ontario ML, Salinaro AT, Caligiuri I, Rampulla F, Zimbone V, Modafferi S, Rizzolio F, Canzonieri V, Calabrese EJ, Calabrese V. Redox modulation by plant polyphenols targeting vitagenes for chemoprevention and therapy: Relevance to novel anti-cancer interventions and mini-brain organoid technology. Free Radic Biol Med 2022; 179:59-75. [PMID: 34929315 DOI: 10.1016/j.freeradbiomed.2021.12.267] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022]
Abstract
The scientific community, recently, has focused notable attention on the chemopreventive and therapeutic effects of dietary polyphenols for human health. Emerging evidence demonstrates that polyphenols, flavonoids and vitamins counteract and neutralize genetic and environmental stressors, particularly oxidative stress and inflammatory process closely connected to cancer initiation, promotion and progression. Interestingly, polyphenols can exert antioxidant or pro-oxidant cytotoxic effects depending on their endogenous concentration. Notably, polyphenols at high dose act as pro-oxidants in a wide type of cancer cells by inhibiting Nrf2 pathway and the expression of antioxidant vitagenes, such as NAD(P)H-quinone oxidoreductase (NQO1), glutathione transferase (GT), GPx, heme oxygenase-1 (HO-1), sirtuin-1 (Sirt1) and thioredoxin (Trx) system which play an essential role in the metabolism of reactive oxygen species (ROS), detoxification of xenobiotics and inhibition of cancer progression, by inducing apoptosis and cell cycle arrest according to the hormesis approach. Importantly, mutagenesis of Nrf2 pathway can exacerbate its "dark side" role, representing a crucial event in the initiation stage of carcinogenesis. Herein, we review the hormetic effects of polyphenols and nanoincapsulated-polyphenols in chemoprevention and treatment of brain tumors via activation or inhibition of Nrf2/vitagenes to suppress carcinogenesis in the early stages, and thus inhibit its progression. Lastly, we discuss innovative preclinical approaches through mini-brain tumor organoids to study human carcinogenesis, from basic cancer research to clinical practice, as promising tools to recapitulate the arrangement of structural neuronal tissues and biological functions of the human brain, as well as test drug toxicity and drive personalized and precision medicine in brain cancer.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Vincenzo Zimbone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123, Venezia, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34127, Trieste, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy.
| |
Collapse
|
18
|
Expression Dynamics of Heme Oxygenase-1 in Tumor Cells and the Host Contributes to the Progression of Tumors. J Pers Med 2021; 11:jpm11121340. [PMID: 34945812 PMCID: PMC8704574 DOI: 10.3390/jpm11121340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 01/05/2023] Open
Abstract
Heme oxygenase (HO-1) plays an important role in cellular protection against various stresses. The induction of HO-1 is an effective strategy for reactive oxygen species-related diseases, inflammatory diseases, as well as suppressing carcinogenesis. On the other hand, the high expression of HO-1 is now well known in many tumors. In this study, we investigated the dynamics of HO-1 expression in the host and the tumor. In the mouse sarcoma S180 solid tumor model and the rat hepatoma AH136B ascitic tumor model, HO-1 expression in the tumor, as indicated by the end product of HO-1 activation, i.e., carbon monoxide, gradually increased along with tumor growth. Over-expression of HO-1 expression in mouse colon cancer C26 tumor cells significantly promoted tumor growth as well as lung metastasis, whereas opposite results were found when the HO-1 expression was reduced in the cells. On the other hand, upregulating HO-1 levels in the host by using an HO-1 inducer protected the progression of the xenograft tumor in mice, whereas lowering HO-1 expression in the host with an HO-1 inhibitor showed accelerated tumor growth and lung metastasis after subcutaneous tumor xenograft inoculation. These findings strongly suggest that the balance of HO-1 levels in the host and the tumor cells is essential for the occurrence, progression, and prognosis of cancer. Maintenance of appropriately high HO-1 levels in the host is favorable for cancer prevention, whereas suppression of HO-1 in the tumor cells may thus become a therapeutic strategy for cancer.
Collapse
|
19
|
Appetecchia F, Consalvi S, Berrino E, Gallorini M, Granese A, Campestre C, Carradori S, Biava M, Poce G. A Novel Class of Dual-Acting DCH-CORMs Counteracts Oxidative Stress-Induced Inflammation in Human Primary Tenocytes. Antioxidants (Basel) 2021; 10:antiox10111828. [PMID: 34829699 PMCID: PMC8614895 DOI: 10.3390/antiox10111828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Carbon monoxide (CO) can prevent cell and tissue damage by restoring redox homeostasis and counteracting inflammation. CO-releasing molecules (CORMs) can release a controlled amount of CO to cells and are emerging as a safer therapeutic alternative to delivery of CO in vivo. Sustained oxidative stress and inflammation can cause chronic pain and disability in tendon-related diseases, whose therapeutic management is still a challenge. In this light, we developed three small subsets of 1,5-diarylpyrrole and pyrazole dicobalt(0)hexacarbonyl (DCH)-CORMs to assess their potential use in musculoskeletal diseases. A myoglobin-based spectrophotometric assay showed that these CORMs act as slow and efficient CO-releasers. Five selected compounds were then tested on human primary-derived tenocytes before and after hydrogen peroxide stimulation to assess their efficacy in restoring cell redox homeostasis and counteracting inflammation in terms of PGE2 secretion. The obtained results showed an improvement in tendon homeostasis and a cytoprotective effect, reflecting their activity as CO-releasers, and a reduction of PGE2 secretion. As these compounds contain structural fragments of COX-2 selective inhibitors, we hypothesized that such a composite mechanism of action results from the combination of CO-release and COX-2 inhibition and that these compounds might have a potential role as dual-acting therapeutic agents in tendon-derived diseases.
Collapse
Affiliation(s)
- Federico Appetecchia
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (E.B.); (A.G.)
| | - Sara Consalvi
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (E.B.); (A.G.)
| | - Emanuela Berrino
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (E.B.); (A.G.)
| | - Marialucia Gallorini
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.G.); (C.C.)
| | - Arianna Granese
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (E.B.); (A.G.)
| | - Cristina Campestre
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.G.); (C.C.)
| | - Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.G.); (C.C.)
- Correspondence: (S.C.); (M.B.); (G.P.)
| | - Mariangela Biava
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (E.B.); (A.G.)
- Correspondence: (S.C.); (M.B.); (G.P.)
| | - Giovanna Poce
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (E.B.); (A.G.)
- Correspondence: (S.C.); (M.B.); (G.P.)
| |
Collapse
|
20
|
Floresta G, Fallica AN, Salerno L, Sorrenti V, Pittalà V, Rescifina A. Growing the molecular architecture of imidazole-like ligands in HO-1 complexes. Bioorg Chem 2021; 117:105428. [PMID: 34710668 DOI: 10.1016/j.bioorg.2021.105428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/27/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022]
Abstract
Up-regulation of HO-1 had been frequently reported in different cases and types of human malignancies. Since poor clinical outcomes are reported in these cases, this enzyme's inhibition is considered a valuable and proven anticancer approach. To identify novel HO-1 inhibitors suitable for drug development, we report a structure-guided fragment-based approach to identify new lead compounds. Different parts of the selected molecules were analyzed, and the different series of novel compounds were virtually evaluated. The growing experiments of the classical HO-1 inhibitors structure led us to different hit-compounds. A synthetic pathway for six selected molecules was designed, and the compounds were synthesized. The biological activity revealed that molecules 10 and 12 inhibit the HO-1 activity with an IC50 of 1.01 and 0.90 μM, respectively. This study suggested that our growing approach was successful, and these results are ongoing for further development.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK.
| | - Antonino N Fallica
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Catania, Italy.
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| |
Collapse
|
21
|
Li Y, Hemmersbach L, Krause B, Sitnikov N, Schlundt Née Göderz A, Pastene Maldonado DO, Schmalz HG, Yard B. Head-to-Head Comparison of Selected Extra- and Intracellular CO-Releasing Molecules on Their CO-Releasing and Anti-Inflammatory Properties. Chembiochem 2021; 23:e202100452. [PMID: 34643986 PMCID: PMC9298253 DOI: 10.1002/cbic.202100452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Indexed: 01/31/2023]
Abstract
Over the past decade, a variety of carbon monoxide releasing molecules (CORMs) have been developed and tested. Some CORMs spontaneously release CO once in solution, while others require a trigger mechanism to release the bound CO from its molecular complex. The modulation of biological systems by CORMs depends largely on the spatiotemporal release of CO, which likely differs among the different types of CORMs. In spontaneously releasing CORMs, CO is released extracellularly and crosses the cell membrane to interact with intracellular targets. Other CORMs can directly release CO intracellularly, which may be a more efficient method to modulate biological systems. In the present study, we compared the efficacy of extracellular and intracellular CO-releasing CORMs that either release CO spontaneously or require an enzymatic trigger. The efficacy of such CORMs to modulate HO-1 and VCAM-1 expression in TNF-α-stimulated human umbilical vein endothelial cells (HUVEC) was evaluated.
Collapse
Affiliation(s)
- Yingchun Li
- Vth medical Department, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | | | | | | | | | - Diego O Pastene Maldonado
- Vth medical Department, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | | | - Benito Yard
- Vth medical Department, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
22
|
Fallica A, Sorrenti V, D’Amico AG, Salerno L, Romeo G, Intagliata S, Consoli V, Floresta G, Rescifina A, D’Agata V, Vanella L, Pittalà V. Discovery of Novel Acetamide-Based Heme Oxygenase-1 Inhibitors with Potent In Vitro Antiproliferative Activity. J Med Chem 2021; 64:13373-13393. [PMID: 34472337 PMCID: PMC8474116 DOI: 10.1021/acs.jmedchem.1c00633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 12/25/2022]
Abstract
Heme oxygenase-1 (HO-1) promotes heme catabolism exercising cytoprotective roles in normal and cancer cells. Herein, we report the design, synthesis, molecular modeling, and biological evaluation of novel HO-1 inhibitors. Specifically, an amide linker in the central spacer and an imidazole were fixed, and the hydrophobic moiety required by the pharmacophore was largely modified. In many tumors, overexpression of HO-1 correlates with poor prognosis and chemoresistance, suggesting the inhibition of HO-1 as a possible antitumor strategy. Accordingly, compounds 7i and 7l-p emerged for their potency against HO-1 and were investigated for their anticancer activity against prostate (DU145), lung (A549), and glioblastoma (U87MG, A172) cancer cells. The selected compounds showed the best activity toward U87MG cells. Compound 7l was further investigated for its in-cell enzymatic HO-1 activity, expression levels, and effects on cell invasion and vascular endothelial growth factor (VEGF) extracellular release. The obtained data suggest that 7l can reduce cell invasivity acting through modulation of HO-1 expression.
Collapse
Affiliation(s)
- Antonino
N. Fallica
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Valeria Sorrenti
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Agata G. D’Amico
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Loredana Salerno
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Giuseppe Romeo
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | | | - Valeria Consoli
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Giuseppe Floresta
- Department
of Analytics, Environmental & Forensics, King’s College London, Stamford Street, London SE1 9NH, U.K.
| | - Antonio Rescifina
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Velia D’Agata
- Sections
of Human Anatomy and Histology, Department of Biomedical and Biotechnological
Sciences, University of Catania, 95123 Catania, Italy
| | - Luca Vanella
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Valeria Pittalà
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| |
Collapse
|
23
|
The Role of HO-1 and Its Crosstalk with Oxidative Stress in Cancer Cell Survival. Cells 2021; 10:cells10092401. [PMID: 34572050 PMCID: PMC8471703 DOI: 10.3390/cells10092401] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Heme oxygenases (HOs) act on heme degradation to produce carbon monoxide (CO), free iron, ferritin, and biliverdin. Upregulation of cellular HO-1 levels is signature of oxidative stress for its downstream effects particularly under pro-oxidative status. Subcellular traffics of HO-1 to different organelles constitute a network of interactions compromising a variety of effectors such as pro-oxidants, ROS, mitochondrial enzymes, and nucleic transcription factors. Some of the compartmentalized HO-1 have been demonstrated as functioning in the progression of cancer. Emerging data show the multiple roles of HO-1 in tumorigenesis from pathogenesis to the progression to malignancy, metastasis, and even resistance to therapy. However, the role of HO-1 in tumorigenesis has not been systematically addressed. This review describes the crosstalk between HO-1 and oxidative stress, and following redox regulation in the tumorigenesis. HO-1-regulated signaling pathways are also summarized. This review aims to integrate basic information and current progress of HO-1 in cancer research in order to enhance the understandings and facilitate following studies.
Collapse
|
24
|
Combination of Heme Oxygenase-1 Inhibition and Sigma Receptor Modulation for Anticancer Activity. Molecules 2021; 26:molecules26133860. [PMID: 34202711 PMCID: PMC8270315 DOI: 10.3390/molecules26133860] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a multifactorial disease that may be tackled by targeting different signaling pathways. Heme oxygenase-1 (HO-1) and sigma receptors (σRs) are both overexpressed in different human cancers, including prostate and brain, contributing to the cancer spreading. In the present study, we investigated whether HO-1 inhibitors and σR ligands, as well a combination of the two, may influence DU145 human prostate and U87MG human glioblastoma cancer cells proliferation. In addition, we synthesized, characterized, and tested a small series of novel hybrid compounds (HO-1/σRs) 1–4 containing the chemical features needed for HO-1 inhibition and σR modulation. Herein, we report for the first time that targeting simultaneously HO-1 and σR proteins may be a good strategy to achieve increased antiproliferative activity against DU145 and U87MG cells, with respect to the mono administration of the parent compounds. The obtained outcomes provide an initial proof of concept useful to further optimize the structure of HO-1/σRs hybrids to develop novel potential anticancer agents.
Collapse
|
25
|
Lu JJ, Abudukeyoumu A, Zhang X, Liu LB, Li MQ, Xie F. Heme oxygenase 1: a novel oncogene in multiple gynecological cancers. Int J Biol Sci 2021; 17:2252-2261. [PMID: 34239353 PMCID: PMC8241721 DOI: 10.7150/ijbs.61073] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Heme oxygenase 1 (HO-1), also known as heat shock protein 32 (HSP32), is a stress-inducible enzyme. In the past, it was believed to participate in maintaining cell homeostasis, reducing oxidative stress damage and exerting anti-apoptotic effects. When exposed to noxious stimulation, the expression of HO-1 in the body will increase, antagonizing these oxidative stresses and protecting our bodies. Recently, many studies showed that HO-1 was also highly-expressed in multiple gynecological cancers (such as ovarian cancer, cervical cancer and endometrial cancer), suggesting that it should be closely related to cell proliferation, metastasis, immune regulation and angiogenesis as an oncogene. This review summarizes the different effects of HO-1 under normal and diseased conditions with a brief discussion of its implications on the diagnosis and treatment of gynecological cancers, aiming to provide a new clue for prevention and treatment of diseases.
Collapse
Affiliation(s)
- Jia-Jing Lu
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Ayitila Abudukeyoumu
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
| | - Xing Zhang
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
| | - Li-Bing Liu
- Department of Gynecology, Changzhou No.2 People's Hospital, affiliated with Nanjing Medical University, Changzhou, Jiangsu Province, 213003, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Feng Xie
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| |
Collapse
|
26
|
Luu Hoang KN, Anstee JE, Arnold JN. The Diverse Roles of Heme Oxygenase-1 in Tumor Progression. Front Immunol 2021; 12:658315. [PMID: 33868304 PMCID: PMC8044534 DOI: 10.3389/fimmu.2021.658315] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is an inducible intracellular enzyme that is expressed in response to a variety of stimuli to degrade heme, which generates the biologically active catabolites carbon monoxide (CO), biliverdin and ferrous iron (Fe2+). HO-1 is expressed across a range of cancers and has been demonstrated to promote tumor progression through a variety of mechanisms. HO-1 can be expressed in a variety of cells within the tumor microenvironment (TME), including both the malignant tumor cells as well as stromal cell populations such as macrophages, dendritic cells and regulatory T-cells. Intrinsically to the cell, HO-1 activity provides antioxidant, anti-apoptotic and cytoprotective effects via its catabolites as well as clearing toxic intracellular heme. However, the catabolites of heme degradation can also diffuse outside of the cell to extrinsically modulate the wider TME, influencing cellular functionality and biological processes which promote tumor progression, such as facilitating angiogenesis and metastasis, as well as promoting anti-inflammation and immune suppression. Pharmacological inhibition of HO-1 has been demonstrated to be a promising therapeutic approach to promote anti-tumor immune responses and inhibit metastasis. However, these biological functions might be context, TME and cell type-dependent as there is also conflicting reports for HO-1 activity facilitating anti-tumoral processes. This review will consider our current understanding of the role of HO-1 in cancer progression and as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Kim Ngan Luu Hoang
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Joanne E Anstee
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - James N Arnold
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
27
|
Kucinska M, Plewinski A, Szczolko W, Kaczmarek M, Goslinski T, Murias M. Modeling the photodynamic effect in 2D versus 3D cell culture under normoxic and hypoxic conditions. Free Radic Biol Med 2021; 162:309-326. [PMID: 33141030 DOI: 10.1016/j.freeradbiomed.2020.10.304] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT), mainly as a combined therapy, can still be considered a promising technology for targeted cancer treatment. Besides the several and essential benefits of PDT, there are some concerns and limitations, such as complex dosimetry, tumor hypoxia, and other mechanisms of resistance. In this study, we present how the cell culture model and cell culture conditions may affect the response to PDT treatment. It was studied by applying two different 3D cell culture, non-scaffold, and hydrogel-based models under normoxic and hypoxic conditions. In parallel, a detailed mechanism of the action of zinc phthalocyanine M2TG3 was presented. METHODS Hydrogel-based and tumor spheroids consisting of LNCaP cells, were used as 3D cell culture models in experiments performed under normoxic and hypoxic (1% of oxygen) conditions. Several analyses were performed to compare the activity of M2TG3 under different conditions, such as cytotoxicity, the level of proapoptotic and stress-related proteins, caspase activity, and antioxidant gene expression status. Additionally, we tested bioluminescence and fluorescence assays as a useful approach for a hydrogel-based 3D cell culture. RESULTS We found that M2TG3 might lead to apoptotic cancer cell death and is strongly dependent on the model and oxygen availability. Moreover, the expression of the genes modulated in the antioxidative system in 2D and 3D cell culture models were presented. The tested bioluminescence assay revealed several advantages, such as repetitive measurements on the same sample and simultaneous analysis of different parameters due to the non-lysing nature of this assay. CONCLUSIONS It was shown that M2TG3 can effectively cause cancer cell death via a different mechanism, depending on cell culture conditions such as the model and oxygen availability.
Collapse
Affiliation(s)
- Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 Street, 60-631, Poznan, Poland.
| | - Adam Plewinski
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytet Poznanski 10 Street, 61-614, Poznan, Poland
| | - Wojciech Szczolko
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780, Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Garbary 15 Street, 61-866, Poznan, Poland; Department of Cancer Diagnostics and Immunology, Gene Therapy Unit, Greater Poland Cancer Centre, Garbary 15 Street, 61-866, Poznan, Poland
| | - Tomasz Goslinski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780, Poznan, Poland
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 Street, 60-631, Poznan, Poland; Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytet Poznanski 10 Street, 61-614, Poznan, Poland.
| |
Collapse
|
28
|
Identification of a potent heme oxygenase-2 (HO-2) inhibitor by targeting the secondary hydrophobic pocket of the HO-2 western region. Bioorg Chem 2020; 104:104310. [DOI: 10.1016/j.bioorg.2020.104310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022]
|