1
|
Barsa C, Perrin J, David C, Mourier A, Rojo M. A cellular assay to determine the fusion capacity of MFN2 variants linked to Charcot-Marie-Tooth disease of type 2 A. Sci Rep 2025; 15:9971. [PMID: 40121276 PMCID: PMC11929822 DOI: 10.1038/s41598-025-93702-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
Charcot-Marie-Tooth Disease (CMT) is an inherited peripheral neuropathy with two main forms: demyelinating CMT1 and axonal CMT2. The most frequent subtype of CMT2 (CMT2A) is linked to mutations of MFN2, encoding a ubiquitously expressed GTP-binding protein anchored to the mitochondrial outer membrane and essential for mitochondrial fusion. The use of Next-Generation Sequencing has led to the identification of increasing numbers of MFN2 variants, yet many of them remain of unknown significance, depriving patients of a clear diagnosis. In this work, we establish a cellular assay allowing to assess the impact of 12 known MFN2 variants linked to CMT2A on mitochondrial fusion. The functional analysis revealed that out of the 12 selected MFN2 mutations, only six exhibited reduced fusion activity. The classification of MFN2 variants according to the results of the functional assay revealed a correlation between the fusion capacity, the age at onset of CMT2A and computational variant effect predictions relying on the analysis of the protein sequence. The functional assay and the results obtained will assist and improve the classification of novel MFN2 variants identified in patients.
Collapse
Affiliation(s)
- Chloe Barsa
- CNRS, IBGC, UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Université de Bordeaux, 33000, Bordeaux, France
| | - Julian Perrin
- CNRS, IBGC, UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Université de Bordeaux, 33000, Bordeaux, France
| | - Claudine David
- CNRS, IBGC, UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Université de Bordeaux, 33000, Bordeaux, France
| | - Arnaud Mourier
- CNRS, IBGC, UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Université de Bordeaux, 33000, Bordeaux, France
| | - Manuel Rojo
- CNRS, IBGC, UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Université de Bordeaux, 33000, Bordeaux, France.
| |
Collapse
|
2
|
Abati E, Rizzuti M, Anastasia A, Comi GP, Corti S, Rizzo F. Charcot-Marie-Tooth type 2A in vivo models: Current updates. J Cell Mol Med 2024; 28:e18293. [PMID: 38722298 PMCID: PMC11081012 DOI: 10.1111/jcmm.18293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Charcot-Marie-Tooth type 2A (CMT2A) is an inherited sensorimotor neuropathy associated with mutations within the Mitofusin 2 (MFN2) gene. These mutations impair normal mitochondrial functioning via different mechanisms, disturbing the equilibrium between mitochondrial fusion and fission, of mitophagy and mitochondrial axonal transport. Although CMT2A disease causes a significant disability, no resolutive treatment for CMT2A patients to date. In this context, reliable experimental models are essential to precisely dissect the molecular mechanisms of disease and to devise effective therapeutic strategies. The most commonly used models are either in vitro or in vivo, and among the latter murine models are by far the most versatile and popular. Here, we critically revised the most relevant literature focused on the experimental models, providing an update on the mammalian models of CMT2A developed to date. We highlighted the different phenotypic, histopathological and molecular characteristics, and their use in translational studies for bringing potential therapies from the bench to the bedside. In addition, we discussed limitations of these models and perspectives for future improvement.
Collapse
Affiliation(s)
- Elena Abati
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Pathophysiology and Transplantation, Dino Ferrari CenterUniversità degli Studi di MilanoMilanItaly
| | - Mafalda Rizzuti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Alessia Anastasia
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Giacomo Pietro Comi
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Pathophysiology and Transplantation, Dino Ferrari CenterUniversità degli Studi di MilanoMilanItaly
| | - Stefania Corti
- Department of Pathophysiology and Transplantation, Dino Ferrari CenterUniversità degli Studi di MilanoMilanItaly
- Neuromuscular and Rare Diseases Unit, Department of NeuroscienceFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Federica Rizzo
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| |
Collapse
|
3
|
Rizzo F, Bono S, Ruepp MD, Salani S, Ottoboni L, Abati E, Melzi V, Cordiglieri C, Pagliarani S, De Gioia R, Anastasia A, Taiana M, Garbellini M, Lodato S, Kunderfranco P, Cazzato D, Cartelli D, Lonati C, Bresolin N, Comi G, Nizzardo M, Corti S. Combined RNA interference and gene replacement therapy targeting MFN2 as proof of principle for the treatment of Charcot-Marie-Tooth type 2A. Cell Mol Life Sci 2023; 80:373. [PMID: 38007410 PMCID: PMC10676309 DOI: 10.1007/s00018-023-05018-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/27/2023]
Abstract
Mitofusin-2 (MFN2) is an outer mitochondrial membrane protein essential for mitochondrial networking in most cells. Autosomal dominant mutations in the MFN2 gene cause Charcot-Marie-Tooth type 2A disease (CMT2A), a severe and disabling sensory-motor neuropathy that impacts the entire nervous system. Here, we propose a novel therapeutic strategy tailored to correcting the root genetic defect of CMT2A. Though mutant and wild-type MFN2 mRNA are inhibited by RNA interference (RNAi), the wild-type protein is restored by overexpressing cDNA encoding functional MFN2 modified to be resistant to RNAi. We tested this strategy in CMT2A patient-specific human induced pluripotent stem cell (iPSC)-differentiated motor neurons (MNs), demonstrating the correct silencing of endogenous MFN2 and replacement with an exogenous copy of the functional wild-type gene. This approach significantly rescues the CMT2A MN phenotype in vitro, stabilizing the altered axonal mitochondrial distribution and correcting abnormal mitophagic processes. The MFN2 molecular correction was also properly confirmed in vivo in the MitoCharc1 CMT2A transgenic mouse model after cerebrospinal fluid (CSF) delivery of the constructs into newborn mice using adeno-associated virus 9 (AAV9). Altogether, our data support the feasibility of a combined RNAi and gene therapy strategy for treating the broad spectrum of human diseases associated with MFN2 mutations.
Collapse
Affiliation(s)
- Federica Rizzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Bono
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marc David Ruepp
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Sabrina Salani
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Linda Ottoboni
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Abati
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Melzi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Cordiglieri
- Istituto Di Genetica Molecolare "Romeo Ed Enrica Invernizzi", Milan, Italy
| | - Serena Pagliarani
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberta De Gioia
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessia Anastasia
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Michela Taiana
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, 20089, Milan, Italy
| | - Paolo Kunderfranco
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, 20089, Milan, Italy
| | - Daniele Cazzato
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
| | - Nereo Bresolin
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Giacomo Comi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Monica Nizzardo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Milan, Italy.
| |
Collapse
|
4
|
Hines TJ, Bailey J, Liu H, Guntur AR, Seburn KL, Pratt SL, Funke JR, Tarantino LM, Burgess RW. A Novel ENU-Induced Mfn2 Mutation Causes Motor Deficits in Mice without Causing Peripheral Neuropathy. BIOLOGY 2023; 12:953. [PMID: 37508383 PMCID: PMC10376023 DOI: 10.3390/biology12070953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Mitochondrial fission and fusion are required for maintaining functional mitochondria. The mitofusins (MFN1 and MFN2) are known for their roles in mediating mitochondrial fusion. Recently, MFN2 has been implicated in other important cellular functions, such as mitophagy, mitochondrial motility, and coordinating endoplasmic reticulum-mitochondria communication. In humans, over 100 MFN2 mutations are associated with a form of inherited peripheral neuropathy, Charcot-Marie-Tooth disease type 2A (CMT2A). Here we describe an ENU-induced mutant mouse line with a recessive neuromuscular phenotype. Behavioral screening showed progressive weight loss and rapid deterioration of motor function beginning at 8 weeks. Mapping and sequencing revealed a missense mutation in exon 18 of Mfn2 (T1928C; Leu643Pro), within the transmembrane domain. Compared to wild-type and heterozygous littermates, Mfn2L643P/L643P mice exhibited diminished rotarod performance and decreases in activity in the open field test, muscular endurance, mean mitochondrial diameter, sensory tests, mitochondrial DNA content, and MFN2 protein levels. However, tests of peripheral nerve physiology and histology were largely normal. Mutant leg bones had reduced cortical bone thickness and bone area fraction. Together, our data indicate that Mfn2L643P causes a recessive motor phenotype with mild bone and mitochondrial defects in mice. Lack of apparent nerve pathology notwithstanding, this is the first reported mouse model with a mutation in the transmembrane domain of the protein, which may be valuable for researchers studying MFN2 biology.
Collapse
Affiliation(s)
| | - Janice Bailey
- Department of Genetics, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hedi Liu
- Department of Genetics, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Anyonya R Guntur
- Center for Molecular Medicine, Maine Health Institute for Research, Scarborough, ME 04074, USA
| | | | - Samia L Pratt
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Jonathan R Funke
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Lisa M Tarantino
- Department of Genetics, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
5
|
Yang J, Chen P, Cao Y, Liu S, Wang W, Li L, Li J, Jiang Z, Ma Y, Chen S, Zheng S, Qi X, Jiang H. Chemical inhibition of mitochondrial fission via targeting the DRP1-receptor interaction. Cell Chem Biol 2023; 30:278-294.e11. [PMID: 36827981 DOI: 10.1016/j.chembiol.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/14/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023]
Abstract
Mitochondrial fission is critical for mitochondrial dynamics and homeostasis. The dynamin superfamily GTPase DRP1 is recruited by three functionally redundant receptors, MFF, MiD49, and MiD51, to mitochondria to drive fission. Here, we exploit high-content live-cell imaging to screen for mitochondrial fission inhibitors and have developed a covalent compound, mitochondrial division inhibitor (MIDI). MIDI treatment potently blocks mitochondrial fragmentation induced by mitochondrial toxins and restores mitochondrial morphology in fusion-defective cells carrying pathogenic mitofusin and OPA1 mutations. Mechanistically, MIDI does not affect DRP1 tetramerization nor DRP1 GTPase activity but does block DRP1 recruitment to mitochondria. Subsequent biochemical and cellular characterizations reveal an unexpected mechanism that MIDI targets DRP1 interaction with multiple receptors via covalent interaction with DRP1-C367. Taken together, beyond developing a potent mitochondrial fission inhibitor that profoundly impacts mitochondrial morphogenesis, our study establishes proof of concept for developing protein-protein interaction inhibitors targeting DRP1.
Collapse
Affiliation(s)
- Jun Yang
- School of Life Sciences, Tsinghua University, Beijing 100084, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Peihao Chen
- National Institute of Biological Sciences, Beijing 102206, China; School of Life Sciences, Peking University, Beijing, China
| | - Yu Cao
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Beijing Normal University, Beijing, China
| | - Shanshan Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wei Wang
- National Institute of Biological Sciences, Beijing 102206, China; School of Life Sciences, Peking University, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jiaojiao Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhaodi Jiang
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Sanduo Zheng
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| | - Hui Jiang
- School of Life Sciences, Tsinghua University, Beijing 100084, China; National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| |
Collapse
|
6
|
Das R, Kamal IM, Das S, Chakrabarti S, Chakrabarti O. MITOL-mediated DRP1 ubiquitylation and degradation promotes mitochondrial hyperfusion in CMT2A-linked MFN2 mutant. J Cell Sci 2021; 135:273638. [PMID: 34870686 DOI: 10.1242/jcs.257808] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 11/29/2021] [Indexed: 11/20/2022] Open
Abstract
Mutations in Mitofusin2 (MFN2), associated with the pathology of the debilitating neuropathy, Charcot-Marie-Tooth type 2A (CMT2A) are known to alter mitochondrial morphology. One such abundant MFN2 mutant, R364W results in the generation of elongated, interconnected mitochondria. However, the mechanism leading to this mitochondrial aberration remains poorly understood. Here we show that mitochondrial hyperfusion in the presence of R364W-MFN2 is due to increased degradation of DRP1. The Ubiquitin E3 ligase MITOL is known to ubiquitylate both MFN2 and DRP1. Interaction with and its subsequent ubiquitylation by MITOL is stronger in presence of WT-MFN2 than R364W-MFN2. This differential interaction of MITOL with MFN2 in the presence of R364W-MFN2 renders the ligase more available for DRP1 ubiquitylation. Multimonoubiquitylation and proteasomal degradation of DRP1 in R364W-MFN2 cells in the presence of MITOL eventually leads to mitochondrial hyperfusion. Here we provide a mechanistic insight into mitochondrial hyperfusion, while also reporting that MFN2 can indirectly modulate DRP1 - an effect not shown before.
Collapse
Affiliation(s)
- Rajdeep Das
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata - 700064, India.,Homi Bhabha National Institute, India
| | - Izaz Monir Kamal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, CN 6, Sector V, Salt Lake, Kolkata - 700091, India.,Academy of Scientific and Innovative Research (AcSIR), Gaziabad, India
| | - Subhrangshu Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, CN 6, Sector V, Salt Lake, Kolkata - 700091, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, CN 6, Sector V, Salt Lake, Kolkata - 700091, India.,Academy of Scientific and Innovative Research (AcSIR), Gaziabad, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata - 700064, India.,Homi Bhabha National Institute, India
| |
Collapse
|
7
|
McCray BA, Scherer SS. Axonal Charcot-Marie-Tooth Disease: from Common Pathogenic Mechanisms to Emerging Treatment Opportunities. Neurotherapeutics 2021; 18:2269-2285. [PMID: 34606075 PMCID: PMC8804038 DOI: 10.1007/s13311-021-01099-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 01/12/2023] Open
Abstract
Inherited peripheral neuropathies are a genetically and phenotypically diverse group of disorders that lead to degeneration of peripheral neurons with resulting sensory and motor dysfunction. Genetic neuropathies that primarily cause axonal degeneration, as opposed to demyelination, are most often classified as Charcot-Marie-Tooth disease type 2 (CMT2) and are the focus of this review. Gene identification efforts over the past three decades have dramatically expanded the genetic landscape of CMT and revealed several common pathological mechanisms among various forms of the disease. In some cases, identification of the precise genetic defect and/or the downstream pathological consequences of disease mutations have yielded promising therapeutic opportunities. In this review, we discuss evidence for pathogenic overlap among multiple forms of inherited neuropathy, highlighting genetic defects in axonal transport, mitochondrial dynamics, organelle-organelle contacts, and local axonal protein translation as recurrent pathological processes in inherited axonal neuropathies. We also discuss how these insights have informed emerging treatment strategies, including specific approaches for single forms of neuropathy, as well as more general approaches that have the potential to treat multiple types of neuropathy. Such therapeutic opportunities, made possible by improved understanding of molecular and cellular pathogenesis and advances in gene therapy technologies, herald a new and exciting phase in inherited peripheral neuropathy.
Collapse
Affiliation(s)
- Brett A. McCray
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Steven S. Scherer
- Department of Neurology, The University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|