1
|
Herold NK, Gutsfeld S, Leuthold D, Wray C, Spath J, Tal T. Multi-behavioral fingerprints can identify potential modes of action for neuroactive environmental chemicals. Neurotoxicology 2025; 108:377-399. [PMID: 40354900 DOI: 10.1016/j.neuro.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
There is a lack of confidence in the relevance of zebrafish-based behavior data for chemical risk assessment. We extended an automated Visual and Acoustic Motor Response (VAMR) new approach method (NAM) in 5-day post-fertilization (dpf) zebrafish to include 26, behavior-based endpoints that measure visual-motor responses, visual and acoustic startle responses, habituation learning, and memory retention. A correlation analysis from 5159 control larvae revealed that more complex endpoints for learning- and memory-related behavior yielded unique behavior patterns. To build confidence in the VAMR NAM, we established neuroactivity fingerprints using concentration-response profiles derived from 63 reference chemicals targeting neurotransmission, neurodevelopmental signaling, or toxicologically-relevant pathways. Hierarchical clustering revealed diverse toxicity fingerprints. Compounds that targeted the N-Methyl-D-aspartic acid (NMDA) or gamma-aminobutyric acid type A (GABAA) receptors reduced habituation learning. Pathway modulators targeting peroxisome proliferator-activated receptor delta (PPARδ) or gamma (PPARγ), GABAA, dopamine, ryanodine, aryl hydrocarbon (AhR), or G-protein-coupled receptors or the tyrosine kinase SRC inappropriately accelerated habituation learning. Reference chemicals targeting GABAA, NMDA, dopamine, PPARα, PPARδ, epidermal growth factor, bone morphogenetic protein, AhR, retinoid X, or α2-adreno receptors triggered inappropriate hyperactivity. Exposure to GABAA receptor antagonists elicited paradoxical excitation characterized by dark-phase sedation and increased startle responses while exposure to GABAA/B receptor agonists altered the same endpoints with opposite directionality. Relative to reference chemicals, environmental chemicals known to be GABA receptor antagonists (Lindane, Dieldrine) or agonists (Tetrabromobisphenol A (TBBPA)) elicited predicted behavior fingerprints. When paired with the phenotypically rich VAMR NAM, behavior fingerprints are a powerful approach to identify neuroactive chemicals.
Collapse
Affiliation(s)
- Nadia K Herold
- Department of Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Sebastian Gutsfeld
- Department of Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - David Leuthold
- Department of Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Chloe Wray
- Department of Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Julia Spath
- Department of Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Tamara Tal
- Department of Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany; Medical Faculty, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
2
|
Huang J, Shen Q, Wang Z, Ni S, Sun F, Hua Y, Huang J. The influence of the NRG1/ERBB4 signaling pathway on pulmonary artery endothelial cells. Pulm Circ 2024; 14:e12439. [PMID: 39411231 PMCID: PMC11475022 DOI: 10.1002/pul2.12439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
This study aimed to examine the influence of the Neuregulin-1 (NRG1)/ERBB4 signaling pathway on the function of human pulmonary artery endothelial cells (HPAECs) and investigate the underlying mechanisms. Enzyme-linked immunosorbent assay indicated that ERBB4 levels in the serum of patients with pulmonary embolism (PE) were significantly higher than those of healthy controls (p < 0.05). In cellular studies, thrombin stimulation for 6 h led to a significant decrease in cell viability and overexpression of ERBB4 compared to control (p < 0.05). In the NRG1 group, apoptosis of HPAECs was reduced (p < 0.05), accompanied by a decrease in ERBB4 expression and an increase in p-ERBB4, phosphorylated serine/threonine kinase proteins (Akt) (p-Akt), and p-phosphoinositide 3-kinase (PI3K) expression (p < 0.05). In the AG1478 group, there was a significant increase in HPAEC apoptosis and a significant decrease in p-ERBB4 and ERBB4 expression compared to the Con group (p < 0.05). In the AG1478 + NRG1 group, there was an increase in the apoptosis rate and a significant decrease in the expression of p-ERBB4, ERBB4, p-Akt, and phosphorylated PI3K compared to the NRG1 group (p < 0.05). In animal studies, the PE group showed an increase in the expression of ERBB4 and p-ERBB4 compared to the Con group (p < 0.05). NRG1 treatment led to a significant reduction in embolism severity with decreased ERBB4 expression and increased p-ERBB4 expression (p < 0.05). Gene set enrichment analysis identified five pathways that were significantly associated with high ERBB4 expression, including CHOLESTEROL HOMEOSTASIS, OXIDATIVE PHOSPHORYLATION, and FATTY ACID METABOLISM (p < 0.05). Therefore, NRG1 inhibits apoptosis of HPAECs, accompanied by a decrease in ERBB4 and an increase in p-ERBB4. NRG1 inhibition in HPAECs apoptosis can be partially reversed by inhibiting ERBB4 expression with AG1478. ERBB4 has the potential to be a novel biological marker of PE.
Collapse
Affiliation(s)
- Jin‐Bo Huang
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Qin Shen
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Zhi‐Qi Wang
- Jiangnan University Affiliated Wuxi Fifth People's HospitalWuxiJiangsuChina
| | - Song‐Shi Ni
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Fei Sun
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Yun Hua
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Jian‐An Huang
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
3
|
Liu X, Zhang Y, Zhao Y, Zhang Q, Han F. The Neurovascular Unit Dysfunction in the Molecular Mechanisms of Epileptogenesis and Targeted Therapy. Neurosci Bull 2024; 40:621-634. [PMID: 38564049 PMCID: PMC11127907 DOI: 10.1007/s12264-024-01193-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/09/2023] [Indexed: 04/04/2024] Open
Abstract
Epilepsy is a multifaceted neurological syndrome characterized by recurrent, spontaneous, and synchronous seizures. The pathogenesis of epilepsy, known as epileptogenesis, involves intricate changes in neurons, neuroglia, and endothelium, leading to structural and functional disorders within neurovascular units and culminating in the development of spontaneous epilepsy. Although current research on epilepsy treatments primarily centers around anti-seizure drugs, it is imperative to seek effective interventions capable of disrupting epileptogenesis. To this end, a comprehensive exploration of the changes and the molecular mechanisms underlying epileptogenesis holds the promise of identifying vital biomarkers for accurate diagnosis and potential therapeutic targets. Emphasizing early diagnosis and timely intervention is paramount, as it stands to significantly improve patient prognosis and alleviate the socioeconomic burden. In this review, we highlight the changes and molecular mechanisms of the neurovascular unit in epileptogenesis and provide a theoretical basis for identifying biomarkers and drug targets.
Collapse
Affiliation(s)
- Xiuxiu Liu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China.
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Ying Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yanming Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Qian Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China.
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 211166, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 210019, China.
| |
Collapse
|
4
|
Mao R, Hu M, Liu X, Ye L, Xu B, Sun M, Xu S, Shao W, Tan Y, Xu Y, Bai F, Shu S. Impairments of GABAergic transmission in hippocampus mediate increased susceptibility of epilepsy in the early stage of Alzheimer's disease. Cell Commun Signal 2024; 22:147. [PMID: 38388921 PMCID: PMC10885444 DOI: 10.1186/s12964-024-01528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Patients with Alzheimer's disease (AD) are often co-morbid with unprovoked seizures, making clinical diagnosis and management difficult. Although it has an important role in both AD and epilepsy, abnormal γ-aminobutyric acid (GABA)ergic transmission is recognized only as a compensative change for glutamatergic damage. Neuregulin 1 (NRG1)-ErbB4 signaling can promote GABA release and suppress epileptogenesis, but its effects on cognition in AD are still controversial. METHODS Four-month-old APPswe/PS1dE9 mice (APP mice) were used as animal models in the early stage of AD in this study. Acute/chronic chemical-kindling epilepsy models were established with pentylenetetrazol. Electroencephalogram and Racine scores were performed to assess seizures. Behavioral tests were used to assess cognition and emotion. Electrophysiology, western blot and immunofluorescence were performed to detect the alterations in synapses, GABAergic system components and NRG1-ErbB4 signaling. Furthermore, NRG1 was administrated intracerebroventricularly into APP mice and then its antiepileptic and cognitive effects were evaluated. RESULTS APP mice had increased susceptibility to epilepsy and resulting hippocampal synaptic damage and cognitive impairment. Electrophysiological analysis revealed decreased GABAergic transmission in the hippocampus. This abnormal GABAergic transmission involved a reduction in the number of parvalbumin interneurons (PV+ Ins) and decreased levels of GABA synthesis and transport. We also found impaired NRG1-ErbB4 signaling which mediated by PV+ Ins loss. And NRG1 administration could effectively reduce seizures and improve cognition in four-month-old APP mice. CONCLUSION Our results indicated that abnormal GABAergic transmission mediated hippocampal hyperexcitability, further excitation/inhibition imbalance, and promoted epileptogenesis in the early stage of AD. Appropriate NRG1 administration could down-regulate seizure susceptibility and rescue cognitive function. Our study provided a potential direction for intervening in the co-morbidity of AD and epilepsy.
Collapse
Affiliation(s)
- Rui Mao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Mengsha Hu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Lei Ye
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Bingsong Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Sun
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Siyi Xu
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Wenxuan Shao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yi Tan
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, China.
- Nanjing Neurology Medical Center, Nanjing, China.
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, China.
- Nanjing Neurology Medical Center, Nanjing, China.
| | - Shu Shu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, China.
- Nanjing Neurology Medical Center, Nanjing, China.
| |
Collapse
|