1
|
Chen Y, Ren P, He X, Yan F, Gu R, Bai J, Zhang X. Olfactory bulb neurogenesis depending on signaling in the subventricular zone. Cereb Cortex 2023; 33:11102-11111. [PMID: 37746807 DOI: 10.1093/cercor/bhad349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023] Open
Abstract
Olfaction is a crucial sense that is essential for the well-being and survival of individuals. Olfactory bulb (OB) is the first olfactory relay station, and its function depends on newly generated neurons from the subventricular zone (SVZ). These newly born neurons constantly migrate through the rostral migratory stream to integrate into existing neural networks within the OB, thereby contributing to olfactory information processing. However, the mechanisms underlying the contribution of SVZ adult neurogenesis to OB neurogenesis remain largely elusive. Adult neurogenesis is a finely regulated multistep process involving the proliferation of adult neural stem cells (aNSCs) and neural precursor cells, as well as the migration and differentiation of neuroblasts, and integration of newly generated neurons into preexisting neuronal circuitries. Recently, extensive studies have explored the mechanism of SVZ and OB neurogenesis. This review focused on elucidating various molecules and signaling pathways associated with OB neurogenesis dependent on the SVZ function. A better understanding of the mechanisms underlying the OB neurogenesis on the adult brain is an attractive prospect to induce aNSCs in SVZ to generate new neurons to ameliorate olfactory dysfunction that is involved in various diseases. It will also contribute to developing new strategies for the human aNSCs-based therapies.
Collapse
Affiliation(s)
- Yali Chen
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Peng Ren
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiongjie He
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Fang Yan
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Rou Gu
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Bai
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Xianwen Zhang
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
2
|
Sex and Age-Dependent Olfactory Memory Dysfunction in ADHD Model Mice. Life (Basel) 2023; 13:life13030686. [PMID: 36983841 PMCID: PMC10056048 DOI: 10.3390/life13030686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
ADHD is a typical neurodevelopmental disorder with a high prevalence rate. NSCs in the subventricular zone (SVZ) are closely related to neurodevelopmental disorder and can affect olfactory function by neurogenesis and migratory route. Although olfactory dysfunction is one of the symptoms of ADHD, the relevance of cells in the olfactory bulb derived from NSCs has not been studied. Therefore, we investigated olfactory memory and NSCs in Git1-deficient mice, under the ADHD model. Interestingly, only adult male G protein-coupled receptor kinase-interacting protein-1 (GIT1)-deficient (+/−, HE) mice showed impaired olfactory memory, suggesting sex and age dependence. We performed adult NSCs culture from the SVZ and observed distinct cell population in both sex and genotype. Taken together, our study suggests that the altered differentiation of NSCs in GIT1+/− mice can contribute to olfactory dysfunction in ADHD.
Collapse
|
3
|
Kurowska-Rucińska E, Ruciński J, Myślińska D, Grembecka B, Wrona D, Majkutewicz I. Dimethyl Fumarate Alleviates Adult Neurogenesis Disruption in Hippocampus and Olfactory Bulb and Spatial Cognitive Deficits Induced by Intracerebroventricular Streptozotocin Injection in Young and Aged Rats. Int J Mol Sci 2022; 23:ijms232415449. [PMID: 36555093 PMCID: PMC9779626 DOI: 10.3390/ijms232415449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The disorder of adult neurogenesis is considered an important mechanism underlying the learning and memory impairment observed in Alzheimer's disease (AD). The sporadic nonhereditary form of AD (sAD) affects over 95% of AD patients and is related to interactions between genetic and environmental factors. An intracerebroventricular injection of streptozotocin (STZ-ICV) is a representative and well-established method to induce sAD-like pathology. Dimethyl fumarate (DMF) has antioxidant and anti-inflammatory properties and is used for multiple sclerosis treatment. The present study determines whether a 26-day DMF therapy ameliorates the disruption of adult neurogenesis and BDNF-related neuroprotection in the hippocampus and olfactory bulb (OB) in an STZ-ICV rat model of sAD. Considering age as an important risk factor for developing AD, this study was performed using 3-month-old (the young group) and 22-month-old (the aged group) male Wistar rats. Spatial cognitive functions were evaluated with the Morris water maze task. Immunofluorescent labelling was used to assess the parameters of adult neurogenesis and BDNF-related neuroprotection in the hippocampus and OB. Our results showed that the STZ-ICV evoked spatial learning and memory impairment and disturbances in adult neurogenesis and BDNF expression in both examined brain structures. In the aged animals, the deficits were more severe. We found that the DMF treatment significantly alleviated STZ-ICV-induced behavioural and neuronal disorders in both age groups of the rats. Our findings suggest that DMF, due to its beneficial effect on the formation of new neurons and BDNF-related neuroprotection, may be considered as a promising new therapeutic agent in human sAD.
Collapse
|
4
|
Pandey R, Garg A, Gupta K, Shukla P, Mandrah K, Roy S, Chattopadhyay N, Bandyopadhyay S. Arsenic Induces Differential Neurotoxicity in Male, Female, and E2-Deficient Females: Comparative Effects on Hippocampal Neurons and Cognition in Adult Rats. Mol Neurobiol 2022; 59:2729-2744. [PMID: 35175559 DOI: 10.1007/s12035-022-02770-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/03/2022] [Indexed: 02/06/2023]
Abstract
We earlier reported that arsenic induced hippocampal neuronal loss, causing cognitive dysfunctions in male rats. This neuronal damage mechanism involved an altered bone morphogenetic protein (BMP2)/Smad and brain-derived neurotrophic factor (BDNF)/TrkB signaling. Susceptibility to toxicants is often sex-dependent, and hence we studied the comparative effects of arsenic in adult male and female rats. We observed that a lower dose of arsenic reduced learning-memory ability, examined through passive avoidance and Y-maze tests, in male but not female rats. Again, male rats exhibited greater learning-memory loss at a higher dose of arsenic. Supporting this, arsenic-treated male rats demonstrated larger reduction in the hippocampal NeuN and %-surviving neurons, together with increased apoptosis and altered BMP2/Smad and BDNF/TrkB pathways compared to their female counterparts. Since the primary female hormone, estrogen (E2), regulates normal brain functions, we next probed whether endogenous E2 levels in females offered resistance against arsenic-induced neurotoxicity. We used ovariectomized (OVX) rat as the model for E2 deficiency. We primarily identified that OVX itself induced hippocampal neuronal damage and cognitive decline, involving an increased BMP2/Smad and reduced BDNF/TrkB. Further, these effects appeared greater in arsenic + OVX compared to arsenic + sham (ovary intact) or OVX rats alone. The OVX-induced adverse effects were significantly reduced by E2 treatment. Overall, our study suggests that adult males could be more susceptible than females to arsenic-induced neurotoxicity. It also indicates that endogenous E2 regulates hippocampal BMP and BDNF signaling and restrains arsenic-induced neuronal dysfunctions in females, which may be inhibited in E2-deficient conditions, such as menopause or ovarian failure.
Collapse
Affiliation(s)
- Rukmani Pandey
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Asmita Garg
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Keerti Gupta
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pallavi Shukla
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Kapil Mandrah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Somendu Roy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Naibedya Chattopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Division of Endocrinology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, Uttar Pradesh, India
| | - Sanghamitra Bandyopadhyay
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|