1
|
Gao R, Xu Y, Zhang M, Zeng Q, Zhu G, Su W, Wang R. From Gene Discovery to Stroke Risk: C5orf24's Pivotal Role Uncovered. Mol Neurobiol 2025:10.1007/s12035-025-04802-y. [PMID: 40038197 DOI: 10.1007/s12035-025-04802-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
Stroke is a leading cause of death and disability worldwide. It is crucial to understand the influencing factors and potential mechanisms of stroke, as well as reducing its risk. This study identified the expression of the B230219D22Rik gene in mouse microglial cells, corresponding to the human gene C5orf24, using the NCBI database. We then validated the role of C5orf24 in stroke using quantitative real-time PCR, enzyme-linked immunosorbent assay, western blot and Mendelian randomization (MR) analysis. Additionally, we evaluated the causal association of C5orf24 with three other vascular diseases: coronary heart disease, myocardial infarction, and embolism. The gene B230219D22Rik and C5orf24 expressed in microglia was observed to have reduced expression in mouse and human cell stroke models, respectively. In MR analysis, we found a significant causal relationship between increased C5orf24 levels and reduced stroke risk (OR = 0.68, 95% CI 0.48-0.98, P = 4.07 × 10-2). However, this association was not observed in three other vascular diseases. To further explore the function of C5orf24 in stroke, we overexpressed C5orf24 in the oxygen-glucose deprivation/reperfusion (OGD/R) model of human microglial cell line clone 3 (HMC3) in vitro and found that C5orf24 inhibited the expression of inflammatory factors IL-1β and IL-6. In our study, we revealed a causal relationship between elevated levels of C5orf24 and a reduced risk of stroke through cell experiments and MR analysis, and found that inflammation might play a mediating role. This suggests that C5orf24 could be a promising drug target for stroke treatment.
Collapse
Affiliation(s)
- Ran Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Yaqi Xu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Min Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Qi Zeng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Gaizhi Zhu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Wenting Su
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China.
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Sakrajda K, Langwiński W, Stachowiak Z, Ziarniak K, Narożna B, Szczepankiewicz A. Immunomodulatory effect of lithium treatment on in vitro model of neuroinflammation. Neuropharmacology 2025; 265:110238. [PMID: 39586495 DOI: 10.1016/j.neuropharm.2024.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/20/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Bipolar disorder (BD) is psychiatric disorder of not fully acknowledged pathophysiology. Studies show the involvement of innate-immune system activation and inflammation in BD course and treatment efficiency. Microglia are crucial players in the inflammatory response possibly responsible for BD innate-immune activity. Lithium is a mood stabilizer used in treatment for 75 years. Immunomodulation was previously described as one of the potential modes of its action. We hypothesized that lithium might modulate the microglia response to innate-immune-associated cytokines (10 ng/mL TNF-α, 50 ng/mL IL-1β, 20 ng/mL IFN-γ). We aimed to investigate whether lithium treatment and pretreatment of microglia modify the expression of genes associated with NLRP3 inflammasome. We also aimed to verify lithium treatment effect on caspase activity and extracellular IL-1β concentration. For the first time, our study used human microglial cell line - HMC3, the cytokine stimuli and lithium in concentration corresponding to that in the brains of patients. To analyze lithium mode of action, we analyzed the short- and long-term treatment and pretreatment. To assess the influence on microglia responding to innate-immune cytokines, we analyzed the expression of genes involved in innate-immune and inflammasome (TSPO, TLR4, NFKB1, CASP1, CASP4, NLRP3, IL-1β, IL-6), caspase activity, extracellular IL-1β concentration, phospho-GSK-3β(Ser9) expression and lactate concentration. We found that lithium treatment significantly reduced NLRP3 inflammasome-related genes expression. We observed that lithium treatment reduces inflammasome activity, which may attenuate the inflammatory state. Interestingly, the lithium pretreatment resulted in significantly elevated inflammasome activity, suggesting that lithium does not impair the immune response to additional stimuli.
Collapse
Affiliation(s)
- Kosma Sakrajda
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572, Poznan, Poland; Doctoral School, Poznan University of Medical Sciences, 60-812, Poznan, Poland.
| | - Wojciech Langwiński
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572, Poznan, Poland
| | - Zuzanna Stachowiak
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572, Poznan, Poland
| | - Kamil Ziarniak
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572, Poznan, Poland
| | - Beata Narożna
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572, Poznan, Poland
| | | |
Collapse
|
3
|
Wijenayake S, Eisha S, Purohit MK, McGowan PO. Milk derived extracellular vesicle uptake in human microglia regulates the DNA methylation machinery : Short title: milk-derived extracellular vesicles and the epigenetic machinery. Sci Rep 2024; 14:28630. [PMID: 39562680 PMCID: PMC11576889 DOI: 10.1038/s41598-024-79724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
Mammalian milk contains milk-derived extracellular vesicles (MEVs), a group of biological nanovesicles that transport macromolecules. Their ability to cross the blood brain barrier and the presence of cargo capable of modifying gene function have led to the hypothesis that MEVs may play a role in brain function and development. Here, we investigated the uptake of MEVs by human microglia cells in vitro and explored the functional outcomes of MEV uptake. We examined the expression of the miR-148/152 family, highly abundant MEV microRNAs, that directly suppress the translation of DNA methyltransferase (DNMT) enzymes crucial for catalyzing DNA methylation modifications. We also measured phenotypic and inflammatory gene expression in baseline homeostatic and IFN-γ primed microglia to determine if MEVs induce anti-inflammatory effects. We found that MEVs are taken up and localize in baseline and primed microglia. In baseline microglia, MEV supplementation reduced miR-148a-5P levels, increased DNMT1 transcript, protein abundance, and enzymatic activity, compared to cells that did not receive MEVs. In primed microglia, MEV supplementation decreased miR-148a-5P levels and increased DNMT1 protein abundance, but DNMT1 transcript and enzymatic levels remained unchanged. Contrary to predictions, MEV supplementation failed to attenuate pro-inflammatory IL1β expression in primed microglia. This study provides the first evidence of MEV uptake by a brain macrophage, suggesting a potential role in regulating epigenetic machinery and neuroimmune modulation.
Collapse
Affiliation(s)
- Sanoji Wijenayake
- Department of Biology, The University of Winnipeg, Winnipeg, Manitoba, Canada.
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Scarborough Campus, University of Toronto, Toronto, ON, Canada.
| | - Shafinaz Eisha
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Scarborough Campus, University of Toronto, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Mansi Kamlesh Purohit
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Scarborough Campus, University of Toronto, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Patrick Owen McGowan
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Scarborough Campus, University of Toronto, Toronto, ON, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Department of Psychology, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Amorfrutin B Protects Mouse Brain Neurons from Hypoxia/Ischemia by Inhibiting Apoptosis and Autophagy Processes Through Gene Methylation- and miRNA-Dependent Regulation. Mol Neurobiol 2023; 60:576-595. [PMID: 36324052 PMCID: PMC9849175 DOI: 10.1007/s12035-022-03087-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Amorfrutin B is a selective modulator of the PPARγ receptor, which has recently been identified as an effective neuroprotective compound that protects brain neurons from hypoxic and ischemic damage. Our study demonstrated for the first time that a 6-h delayed post-treatment with amorfrutin B prevented hypoxia/ischemia-induced neuronal apoptosis in terms of the loss of mitochondrial membrane potential, heterochromatin foci formation, and expression of specific genes and proteins. The expression of all studied apoptosis-related factors was decreased in response to amorfrutin B, both during hypoxia and ischemia, except for the expression of anti-apoptotic BCL2, which was increased. After post-treatment with amorfrutin B, the methylation rate of the pro-apoptotic Bax gene was inversely correlated with the protein level, which explained the decrease in the BAX/BCL2 ratio as a result of Bax hypermethylation. The mechanisms of the protective action of amorfrutin B also involved the inhibition of autophagy, as evidenced by diminished autophagolysosome formation and the loss of neuroprotective properties of amorfrutin B after the silencing of Becn1 and/or Atg7. Although post-treatment with amorfrutin B reduced the expression levels of Becn1, Nup62, and Ambra1 during hypoxia, it stimulated Atg5 and the protein levels of MAP1LC3B and AMBRA1 during ischemia, supporting the ambiguous role of autophagy in the development of brain pathologies. Furthermore, amorfrutin B affected the expression levels of apoptosis-focused and autophagy-related miRNAs, and many of these miRNAs were oppositely regulated by amorfrutin B and hypoxia/ischemia. The results strongly support the position of amorfrutin B among the most promising anti-stroke and wide-window therapeutics.
Collapse
|
5
|
Wang G, Lei J, Wang Y, Yu J, He Y, Zhao W, Hu Z, Xu Z, Jin Y, Gu Y, Guo X, Yang B, Gao Z, Wang Z. The ZSWIM8 ubiquitin ligase regulates neurodevelopment by guarding the protein quality of intrinsically disordered Dab1. Cereb Cortex 2022; 33:3866-3881. [PMID: 35989311 DOI: 10.1093/cercor/bhac313] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Protein quality control (PQC) is essential for maintaining protein homeostasis and guarding the accuracy of neurodevelopment. Previously, we found that a conserved EBAX-type CRL regulates the protein quality of SAX-3/ROBO guidance receptors in Caenorhabditis elegans. Here, we report that ZSWIM8, the mammalian homolog of EBAX-1, is essential for developmental stability of mammalian brains. Conditional deletion of Zswim8 in the embryonic nervous system causes global cellular stress, partial perinatal lethality and defective migration of neural progenitor cells. CRISPR-mediated knockout of ZSWIM8 impairs spine formation and synaptogenesis in hippocampal neurons. Mechanistic studies reveal that ZSWIM8 controls protein quality of Disabled 1 (Dab1), a key signal molecule for brain development, thus protecting the signaling strength of Dab1. As a ubiquitin ligase enriched with intrinsically disordered regions (IDRs), ZSWIM8 specifically recognizes IDRs of Dab1 through a "disorder targets misorder" mechanism and eliminates misfolded Dab1 that cannot be properly phosphorylated. Adult survivors of ZSWIM8 CKO show permanent hippocampal abnormality and display severely impaired learning and memory behaviors. Altogether, our results demonstrate that ZSWIM8-mediated PQC is critical for the stability of mammalian brain development.
Collapse
Affiliation(s)
- Guan Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Jing Lei
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Yifeng Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Jiahui Yu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
- Chu Kochen Honors College of Zhejiang University, Hangzhou 310058, China
| | - Yinghui He
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Weiqi Zhao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Zhechun Hu
- Center of Stem Cell and Regenerative Medicine, and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhenzhong Xu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yan Gu
- Center of Stem Cell and Regenerative Medicine, and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xing Guo
- The Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Bing Yang
- The Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Zhihua Gao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Zhiping Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| |
Collapse
|
6
|
Arik E, Heinisch O, Bienert M, Gubeljak L, Slowik A, Reich A, Schulz JB, Wilhelm T, Huber M, Habib P. Erythropoietin Enhances Post-ischemic Migration and Phagocytosis and Alleviates the Activation of Inflammasomes in Human Microglial Cells. Front Cell Neurosci 2022; 16:915348. [PMID: 35813499 PMCID: PMC9263298 DOI: 10.3389/fncel.2022.915348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022] Open
Abstract
Recombinant human erythropoietin (rhEPO) has been shown to exert anti-apoptotic and anti-inflammatory effects after cerebral ischemia. Inflammatory cytokines interleukin-1β and -18 (IL-1β and IL-18) are crucial mediators of apoptosis and are maturated by multiprotein complexes termed inflammasomes. Microglia are the first responders to post-ischemic brain damage and are a main source of inflammasomes. However, the impact of rhEPO on microglial activation and the subsequent induction of inflammasomes after ischemia remains elusive. To address this, we subjected human microglial clone 3 (HMC-3) cells to various durations of oxygen-glucose-deprivation/reperfusion (OGD/R) to assess the impact of rhEPO on cell viability, metabolic activity, oxidative stress, phagocytosis, migration, as well as on the regulation and activation of the NLRP1, NLRP3, NLRC4, and AIM2 inflammasomes. Administration of rhEPO mitigated OGD/R-induced oxidative stress and cell death. Additionally, it enhanced metabolic activity, migration and phagocytosis of HMC-3. Moreover, rhEPO attenuated post-ischemic activation and regulation of the NLRP1, NLRP3, NLRC4, and AIM2 inflammasomes as well as their downstream effectors CASPASE1 and IL-1β. Pharmacological inhibition of NLRP3 via MCC950 had no effect on the activation of CASPASE1 and maturation of IL-1β after OGD/R, but increased protein levels of NLRP1, NLRC4, and AIM2, suggesting compensatory activities among inflammasomes. We provide evidence that EPO-conveyed anti-inflammatory actions might be mediated via the regulation of the inflammasomes.
Collapse
Affiliation(s)
- Eren Arik
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ole Heinisch
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michaela Bienert
- Institute of Molecular and Cellular Anatomy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Lara Gubeljak
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Alexander Slowik
- Department of Anatomy and Cell Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Arno Reich
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jörg B. Schulz
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute of Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Thomas Wilhelm
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Pardes Habib
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute of Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
- *Correspondence: Pardes Habib, ; orcid.org/0000-0002-5771-216X
| |
Collapse
|
7
|
Stress Granules and Acute Ischemic Stroke: Beyond mRNA Translation. Int J Mol Sci 2022; 23:ijms23073747. [PMID: 35409112 PMCID: PMC8998762 DOI: 10.3390/ijms23073747] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. Following an ischemic insult, cells undergo endoplasmic reticulum (ER) stress, which increases the ER’s protein-folding and degradative capacities and blocks the global synthesis of proteins by phosphorylating the eukaryotic translation initiation factor 2-alpha (eIF2α). Phosphorylation of eIF2α is directly related to the dynamics of stress granules (SGs), which are membraneless organelles composed of RNA-binding proteins and mRNA. SGs play a critical role in mRNA metabolism and translational control. Other translation factors are also linked to cellular pathways, including SG dynamics following a stroke. Because the formation of SGs is closely connected to mRNA translation, it is interesting to study the relationship between SG dynamics and cellular outcome in cases of ischemic damage. Therefore, in this review, we focus on the role of SG dynamics during cerebral ischemia.
Collapse
|
8
|
Voelz C, Ebrahimy N, Zhao W, Habib P, Zendedel A, Pufe T, Beyer C, Slowik A. Transient Focal Cerebral Ischemia Leads to miRNA Alterations in Different Brain Regions, Blood Serum, Liver, and Spleen. Int J Mol Sci 2021; 23:ijms23010161. [PMID: 35008586 PMCID: PMC8745086 DOI: 10.3390/ijms23010161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke is characterized by an occlusion of a cerebral blood vessel resulting in neuronal cell death due to nutritional and oxygen deficiency. Additionally, post-ischemic cell death is augmented after reperfusion. These events are paralleled by dysregulated miRNA expression profiles in the peri-infarct area. Understanding the underlying molecular mechanism in the peri-infarct region is crucial for developing promising therapeutics. Utilizing a tMCAo (transient Middle Cerebral Artery occlusion) model in rats, we studied the expression levels of the miRNAs (miR) 223-3p, 155-5p, 3473, and 448-5p in the cortex, amygdala, thalamus, and hippocampus of both the ipsi- and contralateral hemispheres. Additionally, the levels in the blood serum, spleen, and liver and the expression of their target genes, namely, Nlrp3, Socs1, Socs3, and Vegfa, were assessed. We observed an increase in all miRNAs on the ipsilateral side of the cerebral cortex in a time-dependent manner and increased miRNAs levels (miR-223-3p, miR-3473, and miR-448-5p) in the contralateral hemisphere after 72 h. Besides the cerebral cortex, the amygdala presented increased expression levels, whereas the thalamus and hippocampus showed no alterations. Different levels of the investigated miRNAs were detected in blood serum, liver, and spleen. The gene targets were altered not only in the peri-infarct area of the cortex but selectively increased in the investigated non-affected brain regions along with the spleen and liver during the reperfusion time up to 72 h. Our results suggest a supra-regional influence of miRNAs following ischemic stroke, which should be studied to further identify whether miRNAs are transported or locally upregulated.
Collapse
Affiliation(s)
- Clara Voelz
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (C.V.); (N.E.); (W.Z.); (A.Z.); (C.B.)
| | - Nahal Ebrahimy
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (C.V.); (N.E.); (W.Z.); (A.Z.); (C.B.)
| | - Weiyi Zhao
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (C.V.); (N.E.); (W.Z.); (A.Z.); (C.B.)
| | - Pardes Habib
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany;
- JARA-BRAIN Institute of Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH, RWTH Aachen University, 52074 Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (C.V.); (N.E.); (W.Z.); (A.Z.); (C.B.)
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany;
| | - Cordian Beyer
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (C.V.); (N.E.); (W.Z.); (A.Z.); (C.B.)
| | - Alexander Slowik
- Department of Anatomy and Cell Biology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany;
- Correspondence: ; Tel.: +49-(0)241-80-89112
| |
Collapse
|