1
|
Myers SJ, Agapova V, Patel SV, Hayes SH, Sposato LA, Allman BL, Whitehead SN. Acute minocycline treatment inhibits microglia activation, reduces infarct volume, and has domain-specific effects on post-ischemic stroke cognition in rats. Behav Brain Res 2023; 455:114680. [PMID: 37742808 DOI: 10.1016/j.bbr.2023.114680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/23/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Ischemic stroke affects millions of individuals worldwide and a high prevalence of survivors experience cognitive deficits. At present, the underlying mechanisms that drive post-stroke cognitive decline are not well understood. Microglia play a critical role in the post-stroke inflammatory response, but experimental studies show that an accumulation of chronically activated microglia can be harmful and associates with cognitive impairment. This study assessed the effect of acute post-stroke minocycline treatment on chronic microglia and astrocyte expression within the infarct and remote white matter regions, as well as its effect on various domains of cognitive function post-stroke. Nine-month-old male rats received an injection of endothelin-1 into the right dorsal striatum to induce transient focal ischemia, and then were treated with minocycline or saline for 4 days post-stroke. Rats were tested using a series of lever-pressing tasks and the Morris water maze to assess striatal-based learning, cognitive flexibility, and spatial learning and reference memory. We found that minocycline-treated rats had smaller stroke-induced infarcts and less microglia activation in the infarct area and remote white matter regions compared to saline-treated rats at 28 days post-stroke. The behavioural testing results differed according to the cognitive domain; whereas minocycline-treated rats trended towards improved striatal-based learning in a lever-pressing task, but cognitive flexibility was unaffected during the subsequent set-shifting task. Furthermore, minocycline treatment unexpectedly impaired spatial learning, yet it did not alter reference memory. Collectively, we show that post-stroke minocycline treatment can reduce chronic microglia activation even in remote brain regions, with domain-specific effects on cognitive function.
Collapse
Affiliation(s)
- S J Myers
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - V Agapova
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - S V Patel
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - S H Hayes
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - L A Sposato
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - B L Allman
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - S N Whitehead
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
2
|
Roseborough AD, Zhu Y, Zhao L, Laviolette SR, Pasternak SH, Whitehead SN. Fibrinogen primes the microglial NLRP3 inflammasome and propagates pro-inflammatory signaling via extracellular vesicles: Implications for blood-brain barrier dysfunction. Neurobiol Dis 2023; 177:106001. [PMID: 36646389 DOI: 10.1016/j.nbd.2023.106001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/20/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
The brain's response to acute injury is characterized by increased permeability of the blood-brain barrier (BBB) and pro-inflammatory microglia signaling, both of which have been linked to poor cognitive outcomes and neurological disease. The damaged BBB has increased leakiness, allowing serum proteins like fibrinogen into the brain, which interacts with local cells in a deleterious manner. At the same time, in response to injury, microglia demonstrate increased NLRP3 inflammasome activity and heightened release of pro-inflammatory cytokines. The relationship between increased fibrinogen uptake and microglial inflammasome signaling in the injured brain has not been well described. In this work, we investigate fibrinogen mediated NLRP3 inflammasome priming of BV-2 cells and primary adult microglia and propose a role for extracellular vesicles (EVs) as propagators of this interaction. Following exposure to fibrinogen microglia significantly upregulate transcription of IL-1β, IL-6, NLRP3 and other pro-inflammatory cytokines which was sustained by repeated fibrinogen exposure. Inhibition of fibrinogen mediated NLRP3 signaling was achieved at the transcriptional and assembly level using cannabidiol (CBD) and the NLRP3 inhibitor MCC950, respectively. EVs released following NLRP3 priming carry IL-1β, IL-18 mRNA and fibrinogen, propagate inflammatory signaling and can be detected in the circulation following BBB disruption in a preclinical stroke model. In conclusion, the interplay between fibrinogen extravasation, microglial NLRP3 signaling, and EV release can perpetuate chronic pro-inflammatory signaling and represents a novel method of inflammatory propagation.
Collapse
Affiliation(s)
- A D Roseborough
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, The Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Y Zhu
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, The Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - L Zhao
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, The Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - S R Laviolette
- Addictions Research Group, Department of Anatomy and Cell Biology, The Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Department of Psychiatry, The Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - S H Pasternak
- Department of Clinical Neurological Sciences, The Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Robarts Research Institute, The Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - S N Whitehead
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, The Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
3
|
Liu Y, Chen Z, Lin W, Zhou Y, Liu Z, Zhao R, Chen Y, Wu B, Chen A, Lin C. Role of hippocampal circKcnk9 in visceral hypersensitivity and anxiety comorbidity of irritable bowel syndrome. Front Cell Neurosci 2022; 16:1010107. [PMID: 36467610 PMCID: PMC9714028 DOI: 10.3389/fncel.2022.1010107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/17/2022] [Indexed: 02/03/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder characterized by recurrent visceral pain and altered bowel habits (diarrhea or constipation). However, the molecular and pathological mechanisms are poorly understood. This study found neonatal colorectal distension to induce visceral hypersensitivity and anxiety. The expression of hippocampal circKcnk9, a novel circRNA, was significantly increased in IBS-like rats. Interestingly, CA1 shcircKcnk9 treatment inhibited long-term potentiation (LTP) and alleviated visceral hypersensitivity and anxiety in IBS-like rats, whereas overexpression of CA1 circKcnk9 induced LTP, visceral hypersensitivity, and anxiety in controls. Several experiments indicated that increased CA1 circKcnk9 acted as a miR-124-3p sponge, which resulted in the inhibitory effect of miR-124-3p on gene silencing. There was a negative correlation between circKcnk9 and miR-124-3p expression. As expected, CA1 administration of agomiR-124-3p decreased CA1 LTP, visceral hypersensitivity, and anxiety in the IBS-like rats. In contrast, CA1 treatment with antagomiR-124-3p induced LTP, visceral hypersensitivity, and anxiety in the controls. Furthermore, bioinformatic analysis and experimental data showed that EZH2 is a circKcnk9/miR-124-3p target gene, and increased EZH2 expression was involved in visceral hypersensitivity and anxiety in IBS-like rats by enhancing hippocampal synaptic plasticity. In conclusion, early life stress induces increased expression of circKcnk9 in the CA1 of IBS-like rats. Increased circKcnk9 expression regulates synaptic transmission and enhances LTP, leading to visceral hypersensitivity and anxiety in IBS-like rats. The underlying circKcnk9 signaling pathway is miR124-3p/EZH2. Increased circKcnk9 reinforces its sponging of miR124-3p and strongly suppresses miR124-3p activity, resulting in increased expression of the target gene EZH2. This study provides a new epigenetic mechanism for visceral hypersensitivity and anxiety in IBS-like rats.
Collapse
Affiliation(s)
- Yuan Liu
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, Pain Research Institute, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhong Chen
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, Pain Research Institute, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yifei Zhou
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, Pain Research Institute, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zihan Liu
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, Pain Research Institute, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ruixia Zhao
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, Pain Research Institute, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yu Chen
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, Pain Research Institute, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Bin Wu
- Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Aiqin Chen
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, Pain Research Institute, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chun Lin
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, Pain Research Institute, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|