1
|
Dhapola R, Medhi B, HariKrishnaReddy D. Insight into the pathophysiological advances and molecular mechanisms underlying cerebral stroke: current status. Mol Biol Rep 2024; 51:649. [PMID: 38733445 DOI: 10.1007/s11033-024-09597-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Molecular pathways involved in cerebral stroke are diverse. The major pathophysiological events that are observed in stroke comprises of excitotoxicity, oxidative stress, mitochondrial damage, endoplasmic reticulum stress, cellular acidosis, blood-brain barrier disruption, neuronal swelling and neuronal network mutilation. Various biomolecules are involved in these pathways and several major proteins are upregulated and/or suppressed following stroke. Different types of receptors, ion channels and transporters are activated. Fluctuations in levels of various ions and neurotransmitters have been observed. Cells involved in immune responses and various mediators involved in neuro-inflammation get upregulated progressing the pathogenesis of the disease. Despite of enormity of the problem, there is not a single therapy that can limit infarction and neurological disability due to stroke. This is because of poor understanding of the complex interplay between these pathophysiological processes. This review focuses upon the past to present research on pathophysiological events that are involved in stroke and various factors that are leading to neuronal death following cerebral stroke. This will pave a way to researchers for developing new potent therapeutics that can aid in the treatment of cerebral stroke.
Collapse
Affiliation(s)
- Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab, 160012, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
2
|
Li Y, Chen R, Shen G, Yin J, Li Y, Zhao J, Nan F, Zhang S, Zhang H, Yang C, Wu M, Fan Y. Delayed CO 2 postconditioning promotes neurological recovery after cryogenic traumatic brain injury by downregulating IRF7 expression. CNS Neurosci Ther 2023; 29:3378-3390. [PMID: 37208955 PMCID: PMC10580333 DOI: 10.1111/cns.14268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
AIMS Few treatments are available in the subacute phase of traumatic brain injury (TBI) except rehabilitation training. We previously reported that transient CO2 inhalation applied within minutes after reperfusion has neuroprotective effects against cerebral ischemia/reperfusion injury. In this study, it was hypothesized that delayed CO2 postconditioning (DCPC) starting at the subacute phase may promote neurological recovery of TBI. METHODS Using a cryogenic TBI (cTBI) model, mice received DCPC daily by inhaling 5%/10%/20% CO2 for various time-courses (one/two/three cycles of 10-min inhalation/10-min break) at Days 3-7, 3-14 or 7-18 after cTBI. Beam walking and gait tests were used to assess the effect of DCPC. Lesion size, expression of GAP-43 and synaptophysin, amoeboid microglia number and glia scar area were detected. Transcriptome and recombinant interferon regulatory factor 7 (Irf7) adeno-associated virus were applied to investigate the molecular mechanisms. RESULTS DCPC significantly promoted recovery of motor function in a concentration and time-course dependent manner with a wide therapeutic time window of at least 7 days after cTBI. The beneficial effects of DCPC were blocked by intracerebroventricular injection of NaHCO3 . DCPC also increased puncta density of GAP-43 and synaptophysin, and reduced amoeboid microglia number and glial scar formation in the cortex surrounding the lesion. Transcriptome analysis showed many inflammation-related genes and pathways were altered by DCPC, and Irf7 was a hub gene, while overexpression of IRF7 blocked the motor function improvement of DCPC. CONCLUSIONS We first showed that DCPC promoted functional recovery and brain tissue repair, which opens a new therapeutic time window of postconditioning for TBI. Inhibition of IRF7 is a key molecular mechanism for the beneficial effects of DCPC, and IRF7 may be a potential therapeutic target for rehabilitation after TBI.
Collapse
Affiliation(s)
- Yan Li
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Ru Chen
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Gui‐Ping Shen
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Jing Yin
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Yu Li
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Jing Zhao
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Fang Nan
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Shu‐Han Zhang
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Hui‐Feng Zhang
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Cai‐Hong Yang
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Mei‐Na Wu
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| | - Yan‐Ying Fan
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| |
Collapse
|
3
|
Gałgańska H, Jarmuszkiewicz W, Gałgański Ł. Carbon dioxide and MAPK signalling: towards therapy for inflammation. Cell Commun Signal 2023; 21:280. [PMID: 37817178 PMCID: PMC10566067 DOI: 10.1186/s12964-023-01306-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
Inflammation, although necessary to fight infections, becomes a threat when it exceeds the capability of the immune system to control it. In addition, inflammation is a cause and/or symptom of many different disorders, including metabolic, neurodegenerative, autoimmune and cardiovascular diseases. Comorbidities and advanced age are typical predictors of more severe cases of seasonal viral infection, with COVID-19 a clear example. The primary importance of mitogen-activated protein kinases (MAPKs) in the course of COVID-19 is evident in the mechanisms by which cells are infected with SARS-CoV-2; the cytokine storm that profoundly worsens a patient's condition; the pathogenesis of diseases, such as diabetes, obesity, and hypertension, that contribute to a worsened prognosis; and post-COVID-19 complications, such as brain fog and thrombosis. An increasing number of reports have revealed that MAPKs are regulated by carbon dioxide (CO2); hence, we reviewed the literature to identify associations between CO2 and MAPKs and possible therapeutic benefits resulting from the elevation of CO2 levels. CO2 regulates key processes leading to and resulting from inflammation, and the therapeutic effects of CO2 (or bicarbonate, HCO3-) have been documented in all of the abovementioned comorbidities and complications of COVID-19 in which MAPKs play roles. The overlapping MAPK and CO2 signalling pathways in the contexts of allergy, apoptosis and cell survival, pulmonary oedema (alveolar fluid resorption), and mechanical ventilation-induced responses in lungs and related to mitochondria are also discussed. Video Abstract.
Collapse
Affiliation(s)
- Hanna Gałgańska
- Faculty of Biology, Molecular Biology Techniques Laboratory, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Wieslawa Jarmuszkiewicz
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Łukasz Gałgański
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
4
|
Ding Y, Jin Y, Peng T, Gao Y, Zang Y, He H, Li F, Zhang Y, Zhang H, Chen L. Fabrication of multifunctional metal-organic frameworks nanoparticles via layer-by-layer self-assembly to efficiently discover PSD95-nNOS uncouplers for stroke treatment. J Nanobiotechnology 2022; 20:379. [PMID: 35964123 PMCID: PMC9375364 DOI: 10.1186/s12951-022-01583-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/31/2022] [Indexed: 11/24/2022] Open
Abstract
Background Disruption of the postsynaptic density protein-95 (PSD95)—neuronal nitric oxide synthase (nNOS) coupling is an effective way to treat ischemic stroke, however, it still faces some challenges, especially lack of satisfactory PSD95-nNOS uncouplers and the efficient high throughput screening model to discover them. Results Herein, the multifunctional metal–organic framework (MMOF) nanoparticles as a new screening system were innovatively fabricated via layer-by-layer self-assembly in which His-tagged nNOS was selectively immobilized on the surface of magnetic MOF, and then PSD95 with green fluorescent protein (GFP-PSD95) was specifically bound on it. It was found that MMOF nanoparticles not only exhibited the superior performances including the high loading efficiency, reusability, and anti-interference ability, but also possessed the good fluorescent sensitivity to detect the coupled GFP-PSD95. After MMOF nanoparticles interacted with the uncouplers, they would be rapidly separated from uncoupled GFP-PSD95 by magnet, and the fluorescent intensities could be determined to assay the uncoupling efficiency at high throughput level. Conclusions In conclusion, MMOF nanoparticles were successfully fabricated and applied to screen the natural actives as potential PSD95-nNOS uncouplers. Taken together, our newly developed method provided a new material as a platform for efficiently discovering PSD95-nNOS uncouplers for stoke treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01583-7.
Collapse
Affiliation(s)
- Yingying Ding
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yang Jin
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Tao Peng
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yankun Gao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yang Zang
- College of Economics and Management, Anhui Agricultural University, Hefei, Anhui, 230036, People's Republic of China
| | - Hongliang He
- Department of Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Fei Li
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yu Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
| | - Hongjuan Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
| | - Lina Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
| |
Collapse
|
5
|
Xue D, Wei C, Zhou Y, Wang K, Zhou Y, Chen C, Li Y, Sheng L, Lu B, Zhu Z, Cai W, Ning X, Li S, Qi T, Pi J, Lin S, Yan G, Huang Y, Yin W. TRIOL Inhibits Rapid Intracellular Acidification and Cerebral Ischemic Injury: The Role of Glutamate in Neuronal Metabolic Reprogramming. ACS Chem Neurosci 2022; 13:2110-2121. [PMID: 35770894 DOI: 10.1021/acschemneuro.2c00119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
As one of the key injury incidents, tissue acidosis in the brain occurs very quickly within several minutes upon the onset of ischemic stroke. Glutamate, an excitatory amino acid inducing neuronal excitotoxicity, has been reported to trigger the decrease in neuronal intracellular pH (pHi) via modulating proton-related membrane transporters. However, there remains a lack of clarity on the possible role of glutamate in neuronal acidosis via regulating metabolism. Here, we show that 200 μM glutamate treatment quickly promotes glycolysis and inhibits mitochondrial oxidative phosphorylation of primary cultured neurons within 15 min, leading to significant cytosolic lactate accumulation, which contributes to the rapid intracellular acidification and neuronal injury. The reprogramming of neuronal metabolism by glutamate is dependent on adenosine monophosphate-activated protein kinase (AMPK) signaling since the inhibition of AMPK activation by its selective inhibitor compound C significantly reverses these deleterious events in vitro. Moreover, 5α-androst-3β,5α,6β-TRIOL (TRIOL), a neuroprotectant we previously reported, can also remarkably reverse intracellular acidification and alleviate neuronal injury through the inhibition of AMPK signaling. Furthermore, TRIOL remarkably reduced the infarct volume and attenuated neurologic impairment in acute ischemic stroke models of middle cerebral artery occlusion in vivo. In summary, we reveal a novel role of glutamate in rapid intracellular acidification injury resulting from glutamate-induced lactate accumulation through AMPK-mediated neuronal reprogramming. Moreover, inhibition of the quick drop in neuronal pHi by TRIOL significantly reduces the cerebral damages, suggesting that it is a promising drug candidate for ischemic stroke.
Collapse
Affiliation(s)
- DongDong Xue
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - CaiLv Wei
- Department of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - YueHan Zhou
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Kai Wang
- University College London, London WC1E 6BT, U.K
| | - YuWei Zhou
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Chen Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuan Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - LongXiang Sheng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - BingZheng Lu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhu Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wei Cai
- Department of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - XinPeng Ning
- Department of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - ShengLong Li
- Department of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - TianYu Qi
- Department of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - JiaKai Pi
- Guangzhou Foreign Language School, Guangzhou 511400, China
| | - SuiZhen Lin
- Guangzhou Cellprotek Pharmaceutical Co., Ltd., Guangzhou 510663, China
| | - GuangMei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - YiJun Huang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wei Yin
- Department of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|