1
|
Boulaki V, Efthimiopoulos S, Moschonas NK, Spyrou GΜ. Exploring potential key genes and disease mechanisms in early-onset genetic epilepsy via integrated bioinformatics analysis. Neurobiol Dis 2025; 210:106888. [PMID: 40180227 DOI: 10.1016/j.nbd.2025.106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/22/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025] Open
Abstract
Epilepsy is a severe common neurological disease affecting all ages. Epilepsy with onset before the age of 5 years, designated early-onset epilepsy (EOE), is of special importance. According to previous studies, genetic factors contribute significantly to the pathogenesis of EOE that remains unclear and must be explored. So, a list of 229 well-selected EOE-associated genes expressed in the brain was created for the investigation of genetic factors and molecular mechanisms involved in its pathogenesis. Enrichment analysis showed that among significant pathways were nicotine addiction, GABAergic synapse, synaptic vesicle cycle, regulation of membrane potential, cholinergic synapse, dopaminergic synapse, and morphine addiction. Performing an integrated analysis as well as protein-protein interaction network-based approaches with the use of GO, KEGG, ClueGO, cytoHubba and 3 network metrics, 12 hub genes were identified, seven of which, CDKL5, GABRA1, KCNQ2, KCNQ3, SCN1A, SCN8A and STXBP1, were identified as key genes (via Venn diagram analysis). These key genes are mostly enriched in SNARE interactions in vesicular transport, regulation of membrane potential and synaptic vesicle exocytosis. Clustering analysis of the PPI network via MCODE showed significant functional modules, indicating also other pathways such as N-Glycan biosynthesis and protein N-linked glycosylation, retrograde endocannabinoid signaling, mTOR signaling and aminoacyl-tRNA biosynthesis. Drug-gene interaction analysis identified a number of drugs as potential medications for EOE, among which the non-FDA approved drugs azetukalner (under clinical development), indiplon and ICA-105665 and the FDA approved drugs retigabine, ganaxolone and methohexital.
Collapse
Affiliation(s)
- Vasiliki Boulaki
- Division of Animal and Human Physiology, Department of Biology, National & Kapodistrian University of Athens, Panepistimiopolis, Ilisia 15784, Greece
| | - Spiros Efthimiopoulos
- Division of Animal and Human Physiology, Department of Biology, National & Kapodistrian University of Athens, Panepistimiopolis, Ilisia 15784, Greece
| | - Nicholas K Moschonas
- Department of General Biology, School of Medicine, University of Patras, Patras 26500, Greece; Metabolic Engineering &Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), Patras, Greece
| | - George Μ Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus.
| |
Collapse
|
2
|
Alonso‐Eiras J, Anton IM. Multifaceted role of the actin-binding protein WIP: Promotor and inhibitor of tumor progression and dissemination. Cytoskeleton (Hoboken) 2025; 82:186-196. [PMID: 39329352 PMCID: PMC11904860 DOI: 10.1002/cm.21935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Cancer cells depend on actin cytoskeleton reorganization to achieve hallmark malignant functions including abnormal activation, proliferation, migration and invasiveness. (Neural)-Wiskott-Aldrich Syndrome protein ((N-)WASP) binds actin and forms a complex with the WASP-interacting protein (WIP), which plays a critical role in regulating the actin cytoskeleton, through (N)-WASP-dependent and independent functions. Mutations in the WIP gene (WIPF1) lead to severe early onset immunodeficiency in humans and severe autoimmunity and shortened lifespan in mice. This review covers the available evidence about the physiological role of WIP in different tissues and its contribution to human disease, focusing on cancer. In solid tumors overexpression of WIP has mostly been associated with tumor initiation, progression and dissemination through matrix degradation by invadopodia, while a suppressive function has been shown for WIP in certain hematological cancers. Interestingly, a minority of studies suggest a protective role for WIP in specific tumor contexts. These data support the need for further research to fully understand the mechanisms underlying WIP's diverse functions in health and disease and raise important questions for future work.
Collapse
Affiliation(s)
- Jorge Alonso‐Eiras
- Ciencias de la Salud, Escuela de Másteres OficialesUniversidad Rey Juan CarlosMadridSpain
| | - Ines M. Anton
- Departamento de Biología Molecular y CelularCentro Nacional de Biotecnología (CNB‐CSIC)MadridSpain
| |
Collapse
|
3
|
Chen R, Yang C, Xiao H, Yang A, Chen C, Yang F, Peng B, Geng B, Xia Y. PRKD2 as a novel target for targeting the diabetes-osteoporosis nexus. Sci Rep 2025; 15:4703. [PMID: 39922871 PMCID: PMC11807170 DOI: 10.1038/s41598-025-89235-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/04/2025] [Indexed: 02/10/2025] Open
Abstract
Diabetes mellitus (DM) and osteoporosis (OP) co-morbidity (DMOP) pose major health challenges owing to their complex pathophysiological interactions. The aim of this study was to identify and validate key genes implicated in the pathogenesis of both conditions. By employing the Mfuzz time-series gene clustering method combined with transcriptome sequencing of patient serum, we systematically delineated gene expression patterns during the transition from a healthy state through DM to DMOP. These findings were further validated using external datasets, and a series of functional enrichment analyses, gene set enrichment analyses, and immune cell infiltration studies were conducted. Our analyses revealed a distinct progression pattern from a normal state through DM to DMOP, characterized by dynamic gene expression changes. Notably, PRKD2 emerged as a significantly downregulated gene in DMOP, highlighting its crucial role in disease pathogenesis. Further analyses revealed the involvement of PRKD2 in key signaling pathways, especially the Wnt and IL-18 pathways, which are critical for bone and glucose metabolism. Validation in cellular and animal models confirmed the role of PRKD2 in apoptosis and bone metabolism, emphasizing its therapeutic potential. In conclusion, our findings establish PRKD2 as a pivotal molecule in DMOP, offering fresh insights into its mechanisms and affirming its value as a therapeutic target.
Collapse
Affiliation(s)
- Rongjin Chen
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou, 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Department of Orthopedics, Tianshui Hand and Foot Surgery Hospital, Tianshui, 741000, China
| | - Chenhui Yang
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou, 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Department of Orthopedics, Tianshui Hand and Foot Surgery Hospital, Tianshui, 741000, China
| | - Hefang Xiao
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou, 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Ao Yang
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou, 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Changshun Chen
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou, 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Fei Yang
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou, 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Bo Peng
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou, 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Bin Geng
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou, 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Yayi Xia
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, 730030, China.
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou, 730030, China.
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, China.
| |
Collapse
|
4
|
Shen X, Luo D, Yang X, Li Y, Lian F, Liu H, Zhang X, Shen W. Intercellular Adhesion Molecule 3: Structure, Cellular Functions, and Emerging Role in Human Diseases. J Cancer 2025; 16:1563-1574. [PMID: 39991572 PMCID: PMC11843237 DOI: 10.7150/jca.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/08/2025] [Indexed: 02/25/2025] Open
Abstract
The intercellular adhesion molecule 3 (ICAM3), also known as CD50, is a member of the intercellular adhesion molecule (ICAM) family. All ICAM proteins are type I transmembrane glycoproteins containing 2-9 immunoglobulin-like C2-type structural domains and bind to the lymphocyte function-associated antigen-1 (LFA-1) protein. ICAM3 is abundantly and constitutively expressed in all leukocytes and is probably the most important ligand for LFA-1 in initiating immune responses. In recent years, more and more studies have focused on ICAM3 and found that it is closely related to the pathogenesis of various diseases. Here, we summarize the genomic localization, protein structure, and basic functions of ICAM3, and discuss the research progress of ICAM3 in mediating immune cell function and other diseases. Further, we describe the regulatory role of ICAM3 on the progression of different types of malignant cancers and the associated signaling pathways. Our work assesses the feasibility of ICAM3 as a molecular marker for the diagnosis of human diseases and cancers, which may provide new targets for treating related diseases and cancers. As a typical transmembrane protein, we expect to find or synthesize specific small molecule inhibitors for the treatment of clinically relevant diseases.
Collapse
Affiliation(s)
- Xinzhuang Shen
- College of Clinical Medicine, Jining Medical University, Jining 272067, China
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Dehong Luo
- The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi 563000, China
| | - Xiaowen Yang
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Yifei Li
- College of Clinical Medicine, Jining Medical University, Jining 272067, China
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Fuming Lian
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Huan Liu
- College of Clinical Medicine, Jining Medical University, Jining 272067, China
| | - Xiaoyuan Zhang
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Wenzhi Shen
- College of Clinical Medicine, Jining Medical University, Jining 272067, China
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| |
Collapse
|
5
|
Lin CH, Ho CJ, Chen SY, Lu YT, Tsai MH. Review of pharmacogenetics of antiseizure medications: focusing on genetic variants of mechanistic targets. Front Pharmacol 2024; 15:1411487. [PMID: 39228521 PMCID: PMC11368862 DOI: 10.3389/fphar.2024.1411487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024] Open
Abstract
Antiseizure medications (ASMs) play a central role in seizure management, however, unpredictability in the response to treatment persists, even among patients with similar seizure manifestations and clinical backgrounds. An objective biomarker capable of reliably predicting the response to ASMs would profoundly impact epilepsy treatment. Presently, clinicians rely on a trial-and-error approach when selecting ASMs, a time-consuming process that can result in delays in receiving alternative non-pharmacological therapies such as a ketogenetic diet, epilepsy surgery, and neuromodulation therapies. Pharmacogenetic studies investigating the correlation between ASMs and genetic variants regarding their mechanistic targets offer promise in predicting the response to treatment. Sodium channel subunit genes have been extensively studied along with other ion channels and receptors as targets, however, the results have been conflicting, possibly due to methodological disparities including inconsistent definitions of drug response, variations in ASM combinations, and diversity of genetic variants/genes studied. Nonetheless, these studies underscore the potential effect of genetic variants on the mechanism of ASMs and consequently the prediction of treatment response. Recent advances in sequencing technology have led to the generation of large genetic datasets, which may be able to enhance the predictive accuracy of the response to ASMs.
Collapse
Affiliation(s)
- Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Ying Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yan-Ting Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Reimers A. Pharmacotherapy for focal epilepsy: how close are we to a cure? Expert Opin Pharmacother 2024; 25:1575-1577. [PMID: 39136419 DOI: 10.1080/14656566.2024.2392879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Affiliation(s)
- Arne Reimers
- Department of Clinical Chemistry and Pharmacology, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
7
|
Wang S, Xie Z, Jun T, Ma X, Zhang M, Rao F, Xu H, Lu J, Ding X, Li Z. Identification of potential crucial genes and therapeutic targets for epilepsy. Eur J Med Res 2024; 29:43. [PMID: 38212777 PMCID: PMC10782668 DOI: 10.1186/s40001-024-01643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Epilepsy, a central neurological disorder, has a complex genetic architecture. There is some evidence suggesting that genetic factors play a role in both the occurrence of epilepsy and its treatment. However, the genetic determinants of epilepsy are largely unknown. This study aimed to identify potential therapeutic targets for epilepsy. METHODS Differentially expressed genes (DEGs) were extracted from the expression profiles of GSE44031 and GSE1834. Gene co-expression analysis was used to confirm the regulatory relationship between newly discovered epilepsy candidate genes and known epilepsy genes. Expression quantitative trait loci analysis was conducted to determine if epilepsy risk single-nucleotide polymorphisms regulate DEGs' expression in human brain tissue. Finally, protein-protein interaction analysis and drug-gene interaction analysis were performed to assess the role of DEGs in epilepsy treatment. RESULTS The study found that the protein tyrosine phosphatase receptor-type O gene (PTPRO) and the growth arrest and DNA damage inducible alpha gene (GADD45A) were significantly upregulated in epileptic rats compared to controls in both datasets. Gene co-expression analysis revealed that PTPRO was co-expressed with RBP4, NDN, PAK3, FOXG1, IDS, and IDS, and GADD45A was co-expressed with LRRK2 in human brain tissue. Expression quantitative trait loci analysis suggested that epilepsy risk single-nucleotide polymorphisms could be responsible for the altered PTPRO and GADD45A expression in human brain tissue. Moreover, the protein encoded by GADD45A had a direct interaction with approved antiepileptic drug targets, and GADD45A interacts with genistein and cisplatin. CONCLUSIONS The results of this study highlight PTPRO and GADD45A as potential genes for the diagnosis and treatment of epilepsy.
Collapse
Affiliation(s)
- Shitao Wang
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China.
| | - Zhenrong Xie
- The Medical Biobank, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Tian Jun
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Xuelu Ma
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Mengen Zhang
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Feng Rao
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Hui Xu
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Jinghong Lu
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Xiangqian Ding
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Zongyou Li
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| |
Collapse
|