1
|
Uneri A, McArdle CJ, Deng Z, Barth SH, Keene D, Craft S, Raab-Graham KF. DJ-1-mediated repression of the RNA-binding protein FMRP is predicted to impact known Alzheimer's disease-related protein networks. J Alzheimers Dis 2024; 102:763-777. [PMID: 39610285 DOI: 10.1177/13872877241291175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
BACKGROUND RNA-binding proteins (RBPs) modulate the synaptic proteome and are instrumental in maintaining synaptic homeostasis. Moreover, aberrant expression of an RBP in a disease state would have deleterious downstream effects on synaptic function. While many underlying mechanisms of synaptic dysfunction in Alzheimer's disease (AD) have been proposed, the contribution of RBPs has been relatively unexplored. OBJECTIVE To investigate alterations in RBP-messenger RNA (mRNA) interactions in AD, and its overall impact on the disease-related proteome. METHODS We first utilized RNA-immunoprecipitation to investigate interactions between RBP, DJ-1 (Parkinson's Disease protein 7) and target mRNAs in controls and AD. Surface Sensing of Translation - Proximity Ligation Assay (SUnSET-PLA) and western blotting additionally quantified alterations in mRNA translation and protein expression of DJ-1 targets. Finally, we utilized an unbiased bioinformatic approach that connects AD-related pathways to two RBPs, DJ-1 and FMRP (Fragile X messenger ribonucleoprotein 1). RESULTS We find that oligomeric DJ-1 in AD donor synapses were less dynamic in their ability to bind and unbind mRNA compared to synapses from cognitively unimpaired, neuropathologically-verified controls. Furthermore, we find that DJ-1 associates with the mRNA coding for FMRP, Fmr1, leading to its reduced synaptic expression in AD. Through the construction of protein-protein interaction networks, aberrant expression of DJ-1 and FMRP are predicted to lead to the upregulation of key AD-related pathways, such as thyroid hormone stimulating pathway, autophagy, and ubiquitin mediated proteolysis. CONCLUSIONS DJ-1 and FMRP are novel targets that may restore established neurobiological mechanisms underlying AD.
Collapse
Affiliation(s)
- Ayse Uneri
- Department of Translational Neuroscience, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Colin J McArdle
- Department of Translational Neuroscience, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Zhiyong Deng
- Department of Translational Neuroscience, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Samuel H Barth
- Department of Translational Neuroscience, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Gerontology and Geriatric Medicine, Wake Forest Alzheimer's Disease Research Center, Winston-Salem, NC, USA
| | - Suzanne Craft
- Department of Gerontology and Geriatric Medicine, Wake Forest Alzheimer's Disease Research Center, Winston-Salem, NC, USA
| | - Kimberly F Raab-Graham
- Department of Translational Neuroscience, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
- Department of Gerontology and Geriatric Medicine, Wake Forest Alzheimer's Disease Research Center, Winston-Salem, NC, USA
| |
Collapse
|
2
|
Zhuang H, Cao X, Tang X, Zou Y, Yang H, Liang Z, Yan X, Chen X, Feng X, Shen L. Investigating metabolic dysregulation in serum of triple transgenic Alzheimer's disease male mice: implications for pathogenesis and potential biomarkers. Amino Acids 2024; 56:10. [PMID: 38315232 PMCID: PMC10844422 DOI: 10.1007/s00726-023-03375-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/11/2023] [Indexed: 02/07/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease that lacks convenient and accessible peripheral blood diagnostic markers and effective drugs. Metabolic dysfunction is one of AD risk factors, which leaded to alterations of various metabolites in the body. Pathological changes of the brain can be reflected in blood metabolites that are expected to explain the disease mechanisms or be candidate biomarkers. The aim of this study was to investigate the changes of targeted metabolites within peripheral blood of AD mouse model, with the purpose of exploring the disease mechanism and potential biomarkers. Targeted metabolomics was used to quantify 256 metabolites in serum of triple transgenic AD (3 × Tg-AD) male mice. Compared with controls, 49 differential metabolites represented dysregulation in purine, pyrimidine, tryptophan, cysteine and methionine and glycerophospholipid metabolism. Among them, adenosine, serotonin, N-acetyl-5-hydroxytryptamine, and acetylcholine play a key role in regulating neural transmitter network. The alteration of S-adenosine-L-homocysteine, S-adenosine-L-methionine, and trimethylamine-N-oxide in AD mice serum can served as indicator of AD risk. The results revealed the changes of metabolites in serum, suggesting that metabolic dysregulation in periphery in AD mice may be related to the disturbances in neuroinhibition, the serotonergic system, sleep function, the cholinergic system, and the gut microbiota. This study provides novel insights into the dysregulation of several key metabolites and metabolic pathways in AD, presenting potential avenues for future research and the development of peripheral biomarkers.
Collapse
Affiliation(s)
- Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Yongdong Zou
- Center for Instrumental Analysis, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Hongbo Yang
- Center for Instrumental Analysis, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Zhiyuan Liang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Xi Yan
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Xiaolu Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Xingui Feng
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|