1
|
Zhang Q, Feng R, Miao R, Lin J, Cao L, Ni Y, Li W, Zhao X. Combined transcriptomics and metabolomics analysis reveals the molecular mechanism of heat tolerance of Le023M, a mutant in Lentinulaedodes. Heliyon 2023; 9:e18360. [PMID: 37519752 PMCID: PMC10372740 DOI: 10.1016/j.heliyon.2023.e18360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023] Open
Abstract
Lentinula edodes, one of the most highly regarded edible mushrooms in China, is susceptible to damage from high temperatures. However, a mutant strain derived from L. edodes, known as Le023M, has shown exceptional thermotolerance. Compared to the original strain Le023, Le023M exhibited accelerated mycelial recovery following heat stress. Through RNA-seq analysis, the majority of differentially expressed genes (DEGs) were found to be associated with functions such as "protein refolding", "protein unfolding", "protein folding", and "response to heat", all of which are closely linked to heat shock proteins. Furthermore, qRT-PCR results revealed significant accumulation of heat shock-related genes in Le023M under heat stress. GC-MS analysis indicated elevated levels of trehalose, aspartate, and glutamate in Le023M when subjected to heat stress. The highly expressed genes involved in these metabolic pathways were predominantly found in Le023M. Collectively, these findings highlight the following: (i) the crucial role of heat shock proteins (HSPs) in the thermo-resistant mechanisms of Le023M; (ii) the potential of trehalose accumulation in Le023M to enhance mycelium resistance to heat stress; and (iii) the induction of aspartate and glutamate accumulation in response to heat stress. These results shed light on the molecular mechanisms underlying the thermotolerance of Le023M, providing valuable insights for further understanding and improving heat stress response in L. edodes. The findings also highlight the potential applications of Le023M in the cultivation and production of L. edodes under high-temperature conditions.
Collapse
Affiliation(s)
- Qin Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
| | - Rencai Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
| | - Renyun Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
| | - Junbin Lin
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
| | - Luping Cao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Yanqing Ni
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Wensheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Xu Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
- Facility Agriculture and Equipment Research Institute, Gansu Academy of Agri-engineering Technology, Wuwei, 733006, Gansu, China
| |
Collapse
|
2
|
Drought Stress Pre-Treatment Triggers Thermotolerance Acquisition in Durum Wheat. Int J Mol Sci 2022; 23:ijms23147988. [PMID: 35887334 PMCID: PMC9323298 DOI: 10.3390/ijms23147988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
Durum wheat is strongly affected by climatic constraints such as high temperatures and drought, which frequently lead to yield reduction. Damages due to high temperatures are related to plant thermotolerance, a trait determined by two components: basal and acquired thermotolerance. In this study, the effect of drought and heat stress imposed singularly or sequentially was investigated in ten durum wheat cultivars (cvs) at the physiological and molecular level. The traits analyzed were cell membrane stability, relative water content, proline content, and expression level of several genes for heat shock proteins (HSPs). Our results indicate that drought priming can induce the acquisition of thermotolerance in most cultivars already classified as able to acquire thermotolerance by heat pre-treatment. Proline accumulation was correlated to cell membrane stability, meaning that the most thermotolerant cvs were able to accumulate higher levels of proline. Acquired thermotolerance is also due to the activation of HSP gene expression; similarly, pre-treatment with water stress was able to activate HSPs expression. The results reported indicate that water stress plays an important role in inducing thermotolerance, comparable to mild heat stress pre-treatment. This is the first report on the effect of drought stress on the acquisition of thermotolerance.
Collapse
|
3
|
Panzade KP, Vishwakarma H, Padaria JC. Heat stress inducible cytoplasmic isoform of ClpB1 from Z. nummularia exhibits enhanced thermotolerance in transgenic tobacco. Mol Biol Rep 2020; 47:3821-3831. [PMID: 32367315 DOI: 10.1007/s11033-020-05472-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
Previously, we isolated CDS of Ziziphus nummularia isoform ZnJClpB1-C from heat stress-tolerant genotype Jaisalmer. To further functionally validate ZnJClpB1-C assumed function in tobacco and to generate novel germplasm for heat stress tolerance, this gene was transformed in the Nicotiana tabacum. ClpB proteins are the major key player required for basal and induced heat stress tolerance in plant cells under heat stress. In Ziziphus nummularia ClpB1-C transcript from genotype Jaisalmer was highly upregulated under heat stress conditions, as reported earlier. Nine transgenic lines (T1) from three transgenic tobacco events with single-copy integration (T0 stage) were taken for heat stress analysis at seedling stage. Mature tobacco transgenic plants did not show any deformity as compared to wild plants when grown under normal conditions. Overexpression of ZnJClpB1-C in tobacco significantly increased the tolerance to heat stress. Under heat stress conditions (42 °C), T1 transgenic tobacco seedlings showed higher photosynthetic rate, relative water content, membrane stability index and lower levels of MDA, compared to the wild type untransformed plants. The qRT-PCR analysis revealed different level of transgene expression (1.08 to 3.89 folds) in 9 T1 transgenic lines. In vitro roles of ZnJClpB1-C regulating thermotolerance is not reported so far. These results demonstrated the positive roles of ZnJClpB1-C in enhancing thermotolerance and its use as a genomic resource in the near future for developing heat stress-tolerant germplasm.
Collapse
Affiliation(s)
- Kishor Prabhakar Panzade
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | |
Collapse
|
4
|
Agarwal P, Parida SK, Raghuvanshi S, Kapoor S, Khurana P, Khurana JP, Tyagi AK. Rice Improvement Through Genome-Based Functional Analysis and Molecular Breeding in India. RICE (NEW YORK, N.Y.) 2016; 9:1. [PMID: 26743769 PMCID: PMC4705060 DOI: 10.1186/s12284-015-0073-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/22/2015] [Indexed: 05/05/2023]
Abstract
Rice is one of the main pillars of food security in India. Its improvement for higher yield in sustainable agriculture system is also vital to provide energy and nutritional needs of growing world population, expected to reach more than 9 billion by 2050. The high quality genome sequence of rice has provided a rich resource to mine information about diversity of genes and alleles which can contribute to improvement of useful agronomic traits. Defining the function of each gene and regulatory element of rice remains a challenge for the rice community in the coming years. Subsequent to participation in IRGSP, India has continued to contribute in the areas of diversity analysis, transcriptomics, functional genomics, marker development, QTL mapping and molecular breeding, through national and multi-national research programs. These efforts have helped generate resources for rice improvement, some of which have already been deployed to mitigate loss due to environmental stress and pathogens. With renewed efforts, Indian researchers are making new strides, along with the international scientific community, in both basic research and realization of its translational impact.
Collapse
Affiliation(s)
- Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Saurabh Raghuvanshi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India.
| |
Collapse
|
5
|
Zhang J, Liu B, Li J, Zhang L, Wang Y, Zheng H, Lu M, Chen J. Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses. BMC Genomics 2015; 16:181. [PMID: 25887520 PMCID: PMC4373061 DOI: 10.1186/s12864-015-1398-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 02/24/2015] [Indexed: 11/21/2022] Open
Abstract
Background Heat shock proteins (Hsps) are molecular chaperones that are involved in many normal cellular processes and stress responses, and heat shock factors (Hsfs) are the transcriptional activators of Hsps. Hsfs and Hsps are widely coordinated in various biological processes. Although the roles of Hsfs and Hsps in stress responses have been well characterized in Arabidopsis, their roles in perennial woody species undergoing various environmental stresses remain unclear. Results Here, a comprehensive identification and analysis of Hsf and Hsp families in poplars is presented. In Populus trichocarpa, we identified 42 paralogous pairs, 66.7% resulting from a whole genome duplication. The gene structure and motif composition are relatively conserved in each subfamily. Microarray and quantitative real-time RT-PCR analyses showed that most of the Populus Hsf and Hsp genes are differentially expressed upon exposure to various stresses. A coexpression network between Populus Hsf and Hsp genes was generated based on their expression. Coordinated relationships were validated by transient overexpression and subsequent qPCR analyses. Conclusions The comprehensive analysis indicates that different sets of PtHsps are downstream of particular PtHsfs and provides a basis for functional studies aimed at revealing the roles of these families in poplar development and stress responses. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1398-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Bobin Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China. .,College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Jianbo Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Li Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Yan Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Huanquan Zheng
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec, H3A 1B1, Canada.
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jun Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
6
|
Wang K, Zhang X, Goatley M, Ervin E. Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels. PLoS One 2014; 9:e102914. [PMID: 25050702 PMCID: PMC4106837 DOI: 10.1371/journal.pone.0102914] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/23/2014] [Indexed: 11/24/2022] Open
Abstract
Heat stress is a primary factor causing summer bentgrass decline. Changes in gene expression at the transcriptional and/or translational level are thought to be a fundamental mechanism in plant response to environmental stresses. Heat stress redirects protein synthesis in higher plants and results in stress protein synthesis, particularly heat shock proteins (HSPs). The goal of this work was to analyze the expression pattern of major HSPs in creeping bentgrass (Agrostis stolonifera L.) during different heat stress periods and to study the influence of nitrogen (N) on the HSP expression patterns. A growth chamber study on 'Penn-A4' creeping bentgrass subjected to 38/28°C day/night for 50 days, was conducted with four nitrate rates (no N-0, low N-2.5, medium N-7.5, and high N-12.5 kg N ha-1) applied biweekly. Visual turfgrass quality (TQ), normalized difference vegetation index (NDVI), photochemical efficiency of photosystem II (Fv/Fm), shoot electrolyte leakage (ShEL), and root viability (RV) were monitored, along with the expression pattern of HSPs. There was no difference in measured parameters between treatments until week seven, except TQ at week five. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower ShEL and higher RV, suggesting a major role in improved heat tolerance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and their roles in bentgrass thermotolerance. In addition, their production seems to be resource dependent. This study could further improve our understanding about how different N levels affect bentgrass thermotolerance.
Collapse
Affiliation(s)
- Kehua Wang
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Crop and Soil Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Xunzhong Zhang
- Department of Crop and Soil Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Mike Goatley
- Department of Crop and Soil Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Erik Ervin
- Department of Crop and Soil Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
7
|
Singh A, Grover A. Plant Hsp100/ClpB-like proteins: poorly-analyzed cousins of yeast ClpB machine. PLANT MOLECULAR BIOLOGY 2010; 74:395-404. [PMID: 20811767 DOI: 10.1007/s11103-010-9682-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/20/2010] [Indexed: 05/21/2023]
Abstract
ClpB/Hsp100 proteins act as chaperones, mediating disaggregation of denatured proteins. Recent work shows that apart from cytoplasm, these proteins are localized to nuclei, chloroplasts, mitochondria and plasma membrane. While ClpB/Hsp100 genes are essentially stress-induced (mainly heat stress) in vegetative organs of the plant body, expression of ClpB/Hsp100 proteins is noted to be constitutive in plant reproductive structures like pollen grains, developing embryos, seeds etc. With global warming looming large on the horizon, ways to genetically engineer plants against high temperature stress are urgently needed. Yeast mutants unable to synthesize active ClpB/Hsp100 protein show a clear thermosensitive phenotype. ClpB/Hsp100 proteins are implicated in high temperature stress tolerance in plants. We herein highlight the selected important facets of this protein family in plants.
Collapse
Affiliation(s)
- Amanjot Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | | |
Collapse
|
8
|
Singh A, Singh U, Mittal D, Grover A. Genome-wide analysis of rice ClpB/HSP100, ClpC and ClpD genes. BMC Genomics 2010; 11:95. [PMID: 20141629 DOI: 10.1186/1471-216411-95] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 02/08/2010] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND ClpB-cyt/HSP100 protein acts as chaperone, mediating disaggregation of denatured proteins. Previous studies have shown that ClpB-cyt/HSP100 gene belongs to the group class I Clp ATPase proteins and ClpB-cyt/HSP100 transcript is regulated by heat stress and developmental cues. RESULTS Nine ORFs were noted to constitute rice class I Clp ATPases in the following manner: 3 ClpB proteins (ClpB-cyt, Os05g44340; ClpB-m, Os02g08490; ClpB-c, Os03g31300), 4 ClpC proteins (ClpC1, Os04g32560; ClpC2, Os12g12580; ClpC3, Os11g16590; ClpC4, Os11g16770) and 2 ClpD proteins (ClpD1, Os02g32520; ClpD2, Os04g33210). Using the respective signal sequences cloned upstream to GFP/CFP reporter proteins and transient expression studies with onion epidermal cells, evidence is provided that rice ClpB-m and Clp-c proteins are indeed localized to their respective cell locations mitochondria and chloroplasts, respectively. Associated with their diverse cell locations, domain structures of OsClpB-c, OsClpB-m and OsClpB-cyt proteins are noted to possess a high-level conservation. OsClpB-cyt transcript is shown to be enriched at milk and dough stages of seed development. While expression of OsClpB-m was significantly less as compared to its cytoplasmic and chloroplastic counterparts in different tissues, this transcript showed highest heat-induced expression amongst the 3 ClpB proteins. OsClpC1 and OsClpC2 are predicted to be chloroplast-localized as is the case with all known plant ClpC proteins. However, the fact that OsClpC3 protein appears mitochondrial/chloroplastic with equal probability and OsClpC4 a plasma membrane protein reflects functional diversity of this class. Different class I Clp ATPase transcripts were noted to be cross-induced by a host of different abiotic stress conditions. Complementation assays of Deltahsp104 mutant yeast cells showed that OsClpB-cyt, OsClpB-m, OsClpC1 and OsClpD1 have significantly positive effects. Remarkably, OsClpD1 gene imparted appreciably high level tolerance to the mutant yeast cells. CONCLUSIONS Rice class I Clp ATPase gene family is constituted of 9 members. Of these 9, only 3 belonging to ClpB group are heat stress regulated. Distribution of ClpB proteins to different cell organelles indicates that their functioning might be critical in different cell locations. From the complementation assays, OsClpD1 appears to be more effective than OsClpB-cyt protein in rescuing the thermosensitive defect of the yeast ScDeltahsp104 mutant cells.
Collapse
Affiliation(s)
- Amanjot Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi-110021, India
| | | | | | | |
Collapse
|
9
|
Singh A, Singh U, Mittal D, Grover A. Genome-wide analysis of rice ClpB/HSP100, ClpC and ClpD genes. BMC Genomics 2010; 11:95. [PMID: 20141629 PMCID: PMC2829514 DOI: 10.1186/1471-2164-11-95] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 02/08/2010] [Indexed: 01/07/2023] Open
Abstract
Background ClpB-cyt/HSP100 protein acts as chaperone, mediating disaggregation of denatured proteins. Previous studies have shown that ClpB-cyt/HSP100 gene belongs to the group class I Clp ATPase proteins and ClpB-cyt/HSP100 transcript is regulated by heat stress and developmental cues. Results Nine ORFs were noted to constitute rice class I Clp ATPases in the following manner: 3 ClpB proteins (ClpB-cyt, Os05g44340; ClpB-m, Os02g08490; ClpB-c, Os03g31300), 4 ClpC proteins (ClpC1, Os04g32560; ClpC2, Os12g12580; ClpC3, Os11g16590; ClpC4, Os11g16770) and 2 ClpD proteins (ClpD1, Os02g32520; ClpD2, Os04g33210). Using the respective signal sequences cloned upstream to GFP/CFP reporter proteins and transient expression studies with onion epidermal cells, evidence is provided that rice ClpB-m and Clp-c proteins are indeed localized to their respective cell locations mitochondria and chloroplasts, respectively. Associated with their diverse cell locations, domain structures of OsClpB-c, OsClpB-m and OsClpB-cyt proteins are noted to possess a high-level conservation. OsClpB-cyt transcript is shown to be enriched at milk and dough stages of seed development. While expression of OsClpB-m was significantly less as compared to its cytoplasmic and chloroplastic counterparts in different tissues, this transcript showed highest heat-induced expression amongst the 3 ClpB proteins. OsClpC1 and OsClpC2 are predicted to be chloroplast-localized as is the case with all known plant ClpC proteins. However, the fact that OsClpC3 protein appears mitochondrial/chloroplastic with equal probability and OsClpC4 a plasma membrane protein reflects functional diversity of this class. Different class I Clp ATPase transcripts were noted to be cross-induced by a host of different abiotic stress conditions. Complementation assays of Δhsp104 mutant yeast cells showed that OsClpB-cyt, OsClpB-m, OsClpC1 and OsClpD1 have significantly positive effects. Remarkably, OsClpD1 gene imparted appreciably high level tolerance to the mutant yeast cells. Conclusions Rice class I Clp ATPase gene family is constituted of 9 members. Of these 9, only 3 belonging to ClpB group are heat stress regulated. Distribution of ClpB proteins to different cell organelles indicates that their functioning might be critical in different cell locations. From the complementation assays, OsClpD1 appears to be more effective than OsClpB-cyt protein in rescuing the thermosensitive defect of the yeast ScΔhsp104 mutant cells.
Collapse
Affiliation(s)
- Amanjot Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi-110021, India
| | | | | | | |
Collapse
|
10
|
Sarkar NK, Kim YK, Grover A. Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics 2009; 10:393. [PMID: 19703271 PMCID: PMC2746236 DOI: 10.1186/1471-2164-10-393] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 08/24/2009] [Indexed: 12/29/2022] Open
Abstract
Background Heat shock proteins (Hsps) constitute an important component in the heat shock response of all living systems. Among the various plant Hsps (i.e. Hsp100, Hsp90, Hsp70 and Hsp20), Hsp20 or small Hsps (sHsps) are expressed in maximal amounts under high temperature stress. The characteristic feature of the sHsps is the presence of α-crystallin domain (ACD) at the C-terminus. sHsps cooperate with Hsp100/Hsp70 and co-chaperones in ATP-dependent manner in preventing aggregation of cellular proteins and in their subsequent refolding. Database search was performed to investigate the sHsp gene family across rice genome sequence followed by comprehensive expression analysis of these genes. Results We identified 40 α-crystallin domain containing genes in rice. Phylogenetic analysis showed that 23 out of these 40 genes constitute sHsps. The additional 17 genes containing ACD clustered with Acd proteins of Arabidopsis. Detailed scrutiny of 23 sHsp sequences enabled us to categorize these proteins in a revised scheme of classification constituting of 16 cytoplasmic/nuclear, 2 ER, 3 mitochondrial, 1 plastid and 1 peroxisomal genes. In the new classification proposed herein nucleo-cytoplasmic class of sHsps with 9 subfamilies is more complex in rice than in Arabidopsis. Strikingly, 17 of 23 rice sHsp genes were noted to be intronless. Expression analysis based on microarray and RT-PCR showed that 19 sHsp genes were upregulated by high temperature stress. Besides heat stress, expression of sHsp genes was up or downregulated by other abiotic and biotic stresses. In addition to stress regulation, various sHsp genes were differentially upregulated at different developmental stages of the rice plant. Majority of sHsp genes were expressed in seed. Conclusion We identified twenty three sHsp genes and seventeen Acd genes in rice. Three nucleocytoplasmic sHsp genes were found only in monocots. Analysis of expression profiling of sHsp genes revealed that these genes are differentially expressed under stress and at different stages in the life cycle of rice plant.
Collapse
Affiliation(s)
- Neelam K Sarkar
- Department of Plant Molecular Biology, University of Delhi South Campus, N Delhi 110021, India.
| | | | | |
Collapse
|
11
|
Singh A, Grover A. Genetic engineering for heat tolerance in plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2008; 14:155-66. [PMID: 23572882 PMCID: PMC3550655 DOI: 10.1007/s12298-008-0014-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
High temperature tolerance has been genetically engineered in plants mainly by over-expressing the heat shock protein genes or indirectly by altering levels of heat shock transcription factor proteins. Apart from heat shock proteins, thermotolerance has also been altered by elevating levels of osmolytes, increasing levels of cell detoxification enzymes and through altering membrane fluidity. It is suggested that Hsps may be directly implicated in thermotolerance as agents that minimize damage to cell proteins. The other three above approaches leading to thermotolerance in transgenic experiments though operate in their own specific ways but indirectly might be aiding in creation of more reductive and energy-rich cellular environment, thereby minimizing the accumulation of damaged proteins. Intervention in protein metabolism such that accumulation of damaged proteins is minimized thus appears to be the main target for genetically-engineering crops against high temperature stress.
Collapse
Affiliation(s)
- Amanjot Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110 021 India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110 021 India
| |
Collapse
|
12
|
Gullì M, Corradi M, Rampino P, Marmiroli N, Perrotta C. Four members of the HSP101 gene family are differently regulated in Triticum durum Desf. FEBS Lett 2007; 581:4841-9. [PMID: 17888913 DOI: 10.1016/j.febslet.2007.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 09/03/2007] [Accepted: 09/07/2007] [Indexed: 11/21/2022]
Abstract
Heat shock proteins play an essential role in preventing deleterious effects of high temperatures. In many plants, HSP101 has a central role in heat stress survival. We report the isolation and characterization of four cDNAs corresponding to different members of the durum wheat HSP101 gene family. Expression analysis revealed differences in their induction. Accordingly, durum wheat HSP101 genes are differently regulated, therefore having distinct roles in stress response and thermotolerance acquisition. These findings are important for further dissection of the molecular mechanisms underlying the stress response and for understanding the functions of the HSP101 family members. This information could be important for the exploitation of specific alleles in marker assisted selection for abiotic stress resistance.
Collapse
Affiliation(s)
- Mariolina Gullì
- Dipartimento di Scienze Ambientali, Sez. Genetica e Biotecnologie Ambientali, Università di Parma, Italy
| | | | | | | | | |
Collapse
|