1
|
Zhang X, Li W, Sun S, Liu Y. Advances in the structure and function of the nucleolar protein fibrillarin. Front Cell Dev Biol 2024; 12:1494631. [PMID: 39605984 PMCID: PMC11599257 DOI: 10.3389/fcell.2024.1494631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Fibrillarin (FBL) is a highly conserved and well-researched nucleolar protein found in eukaryotes. Its presence was first identified in 1985 through protein immunoblotting analyses using antisera from patients with autoimmune scleroderma. Through immunoelectron microscopy, FBL was shown to be localized in the dense fibrillar component of the nucleolus, leading to the term "fibrillarin". The FBL protein is composed of 321 amino acids and contains two significant functional domains: the GAR domain and the methyltransferase domain. It is expressed in the nucleolus of eukaryotes. This makes FBL one of the most studied nucleolar proteins. While methylation is not essential for cell survival, the FBL gene is crucial for eukaryotic cells, underscoring the importance of investigating additional functions that do not rely on FBL methylation. This review will primarily examine the protein structural domains of FBL and its classic methyltransferase activity. Additionally, our review will examine the importance of the eukaryote-specific GAR structural domain of FBL in regulating intracellular phase separation. Furthermore, this paper analyzes recent developments in the utilization of FBL in the study of pathogen infections and cancer research over the past decade.
Collapse
Affiliation(s)
- Xue Zhang
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Wenxin Li
- Department of Hepatobiliary and pancreatic, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Shulan Sun
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yefu Liu
- Department of Hepatobiliary and pancreatic, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
2
|
Enders L, Siklos M, Borggräfe J, Gaussmann S, Koren A, Malik M, Tomek T, Schuster M, Reiniš J, Hahn E, Rukavina A, Reicher A, Casteels T, Bock C, Winter GE, Hannich JT, Sattler M, Kubicek S. Pharmacological perturbation of the phase-separating protein SMNDC1. Nat Commun 2023; 14:4504. [PMID: 37587144 PMCID: PMC10432564 DOI: 10.1038/s41467-023-40124-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/13/2023] [Indexed: 08/18/2023] Open
Abstract
SMNDC1 is a Tudor domain protein that recognizes di-methylated arginines and controls gene expression as an essential splicing factor. Here, we study the specific contributions of the SMNDC1 Tudor domain to protein-protein interactions, subcellular localization, and molecular function. To perturb the protein function in cells, we develop small molecule inhibitors targeting the dimethylarginine binding pocket of the SMNDC1 Tudor domain. We find that SMNDC1 localizes to phase-separated membraneless organelles that partially overlap with nuclear speckles. This condensation behavior is driven by the unstructured C-terminal region of SMNDC1, depends on RNA interaction and can be recapitulated in vitro. Inhibitors of the protein's Tudor domain drastically alter protein-protein interactions and subcellular localization, causing splicing changes for SMNDC1-dependent genes. These compounds will enable further pharmacological studies on the role of SMNDC1 in the regulation of nuclear condensates, gene regulation and cell identity.
Collapse
Affiliation(s)
- Lennart Enders
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Marton Siklos
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Jan Borggräfe
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg, 85764, München, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, 85748, München, Germany
| | - Stefan Gaussmann
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg, 85764, München, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, 85748, München, Germany
| | - Anna Koren
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Monika Malik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Tatjana Tomek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Jiří Reiniš
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Elisa Hahn
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Andrea Rukavina
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Andreas Reicher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Tamara Casteels
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
- Sloan Kettering Institute, 1275 York Avenue, New York, NY, 10065, USA
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
- Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Währinger Straße 25a, 1090, Vienna, Austria
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - J Thomas Hannich
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Michael Sattler
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg, 85764, München, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, 85748, München, Germany
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria.
| |
Collapse
|
3
|
Belmont AS. Nuclear Compartments: An Incomplete Primer to Nuclear Compartments, Bodies, and Genome Organization Relative to Nuclear Architecture. Cold Spring Harb Perspect Biol 2022; 14:a041268. [PMID: 34400557 PMCID: PMC9248822 DOI: 10.1101/cshperspect.a041268] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This work reviews nuclear compartments, defined broadly to include distinct nuclear structures, bodies, and chromosome domains. It first summarizes original cytological observations before comparing concepts of nuclear compartments emerging from microscopy versus genomic approaches and then introducing new multiplexed imaging approaches that promise in the future to meld both approaches. I discuss how previous models of radial distribution of chromosomes or the binary division of the genome into A and B compartments are now being refined by the recognition of more complex nuclear compartmentalization. The poorly understood question of how these nuclear compartments are established and maintained is then discussed, including through the modern perspective of phase separation, before moving on to address possible functions of nuclear compartments, using the possible role of nuclear speckles in modulating gene expression as an example. Finally, the review concludes with a discussion of future questions for this field.
Collapse
Affiliation(s)
- Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
4
|
Systematic mapping of nuclear domain-associated transcripts reveals speckles and lamina as hubs of functionally distinct retained introns. Mol Cell 2022; 82:1035-1052.e9. [PMID: 35182477 DOI: 10.1016/j.molcel.2021.12.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/22/2022]
Abstract
The nucleus is highly compartmentalized through the formation of distinct classes of membraneless domains. However, the composition and function of many of these structures are not well understood. Using APEX2-mediated proximity labeling and RNA sequencing, we surveyed human transcripts associated with nuclear speckles, several additional domains, and the lamina. Remarkably, speckles and lamina are associated with distinct classes of retained introns enriched in genes that function in RNA processing, translation, and the cell cycle, among other processes. In contrast to the lamina-proximal introns, retained introns associated with speckles are relatively short, GC-rich, and enriched for functional sites of RNA-binding proteins that are concentrated in these domains. They are also highly differentially regulated across diverse cellular contexts, including the cell cycle. Thus, our study provides a resource of nuclear domain-associated transcripts and further reveals speckles and lamina as hubs of distinct populations of retained introns linked to gene regulation and cell cycle progression.
Collapse
|
5
|
Williams LK, Mackay DR, Whitney MA, Couldwell GC, Sundquist WI, Ullman KS. Identification of abscission checkpoint bodies as structures that regulate ESCRT factors to control abscission timing. eLife 2021; 10:63743. [PMID: 34346309 PMCID: PMC8437436 DOI: 10.7554/elife.63743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
The abscission checkpoint regulates the ESCRT membrane fission machinery and thereby delays cytokinetic abscission to protect genomic integrity in response to residual mitotic errors. The checkpoint is maintained by Aurora B kinase, which phosphorylates multiple targets, including CHMP4C, a regulatory ESCRT-III subunit necessary for this checkpoint. We now report the discovery that cytoplasmic abscission checkpoint bodies (ACBs) containing phospho-Aurora B and tri-phospho-CHMP4C develop during an active checkpoint. ACBs are derived from mitotic interchromatin granules, transient mitotic structures whose components are housed in splicing-related nuclear speckles during interphase. ACB formation requires CHMP4C, and the ESCRT factor ALIX also contributes. ACB formation is conserved across cell types and under multiple circumstances that activate the checkpoint. Finally, ACBs retain a population of ALIX, and their presence correlates with delayed abscission and delayed recruitment of ALIX to the midbody where it would normally promote abscission. Thus, a cytoplasmic mechanism helps regulate midbody machinery to delay abscission. When a cell divides, it must first carefully duplicate its genetic information and package these copies into compartments housed in the two new cells. Errors in this process lead to genetic mistakes that trigger cancer or other harmful biological events. Quality control checks exist to catch errors before it is too late. This includes a final ‘abscission’ checkpoint right before the end of division, when the two new cells are still connected by a thin membrane bridge. If cells fail to pass this ‘no cut’ checkpoint, they delay severing their connection until the mistake is fixed. A group of proteins called ESCRTs is responsible for splitting the two cells apart if nothing is amiss. The abscission checkpoint blocks this process by altering certain proteins in the ESCRT complex, but exactly how this works is not yet clear. To find out more, Strohacker et al. imaged ESCRT factors in a new experimental system in which the abscission checkpoint is active in many cells. This showed that, in this context, certain ESCRT components were rerouted from the thread of membrane between the daughter cells to previously unknown structures, which Strohacker et al. named abscission checkpoint bodies. These entities also sequestered other factors that participate in the abscission checkpoint and factors that contribute to gene expression. These results are key to better understand how cells regulate their division; in particular, they provide a new framework to explore when this process goes wrong and contributes to cancer.
Collapse
Affiliation(s)
- Lauren K Williams
- Biochemistry and Oncological Sciences, University of Utah, Salt Lake City, United States
| | - Douglas R Mackay
- Oncological Sciences, University of Utah, Salt Lake City, United States
| | | | | | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | | |
Collapse
|
6
|
Legartová S, Fagherazzi P, Stixová L, Kovařík A, Raška I, Bártová E. The SC-35 Splicing Factor Interacts with RNA Pol II and A-Type Lamin Depletion Weakens This Interaction. Cells 2021; 10:cells10020297. [PMID: 33535591 PMCID: PMC7912905 DOI: 10.3390/cells10020297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
The essential components of splicing are the splicing factors accumulated in nuclear speckles; thus, we studied how DNA damaging agents and A-type lamin depletion affect the properties of these regions, positive on the SC-35 protein. We observed that inhibitor of PARP (poly (ADP-ribose) polymerase), and more pronouncedly inhibitors of RNA polymerases, caused DNA damage and increased the SC-35 protein level. Interestingly, nuclear blebs, induced by PARP inhibitor and observed in A-type lamin-depleted or senescent cells, were positive on both the SC-35 protein and another component of the spliceosome, SRRM2. In the interphase cell nuclei, SC-35 interacted with the phosphorylated form of RNAP II, which was A-type lamin-dependent. In mitotic cells, especially in telophase, the SC-35 protein formed a well-visible ring in the cytoplasmic fraction and colocalized with β-catenin, associated with the plasma membrane. The antibody against the SRRM2 protein showed that nuclear speckles are already established in the cytoplasm of the late telophase and at the stage of early cytokinesis. In addition, we observed the occurrence of splicing factors in the nuclear blebs and micronuclei, which are also sites of both transcription and splicing. This conclusion supports the fact that splicing proceeds transcriptionally. According to our data, this process is A-type lamin-dependent. Lamin depletion also reduces the interaction between SC-35 and β-catenin in mitotic cells.
Collapse
Affiliation(s)
- Soňa Legartová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic; (S.L.); (P.F.); (L.S.); (A.K.)
| | - Paolo Fagherazzi
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic; (S.L.); (P.F.); (L.S.); (A.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Lenka Stixová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic; (S.L.); (P.F.); (L.S.); (A.K.)
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic; (S.L.); (P.F.); (L.S.); (A.K.)
| | - Ivan Raška
- 1st Faculty of Medicine, Charles University, Albertov 4, 128 00 Praha, Czech Republic;
| | - Eva Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic; (S.L.); (P.F.); (L.S.); (A.K.)
- Correspondence:
| |
Collapse
|
7
|
Ding T, Zhu L, Fang Y, Liu Y, Tang W, Zou P. Chromophore‐Assisted Proximity Labeling of DNA Reveals Chromosomal Organization in Living Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tao Ding
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Liyuan Zhu
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yuxin Fang
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yangluorong Liu
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Wei Tang
- Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
| | - Peng Zou
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
- PKU-IDG/McGovern Institute for Brain Research Beijing 100871 China
- Chinese Institute for Brain Research (CIBR) Beijing 102206 China
| |
Collapse
|
8
|
Ilik İA, Malszycki M, Lübke AK, Schade C, Meierhofer D, Aktaş T. SON and SRRM2 are essential for nuclear speckle formation. eLife 2020; 9:60579. [PMID: 33095160 PMCID: PMC7671692 DOI: 10.7554/elife.60579] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Nuclear speckles (NS) are among the most prominent biomolecular condensates. Despite their prevalence, research on the function of NS is virtually restricted to colocalization analyses, since an organizing core, without which NS cannot form, remains unidentified. The monoclonal antibody SC35, raised against a spliceosomal extract, is frequently used to mark NS. Unexpectedly, we found that this antibody was mischaracterized and the main target of SC35 mAb is SRRM2, a spliceosome-associated protein that sharply localizes to NS. Here we show that, the core of NS is likely formed by SON and SRRM2, since depletion of SON leads only to a partial disassembly of NS, while co-depletion of SON and SRRM2 or depletion of SON in a cell-line where intrinsically disordered regions (IDRs) of SRRM2 are genetically deleted, leads to a near-complete dissolution of NS. This work, therefore, paves the way to study the role of NS under diverse physiological and stress conditions. Most cells store their genetic material inside a compartment called the nucleus, which helps to separate DNA from other molecules in the cell. Inside the nucleus, DNA is tightly packed together with proteins that can read the cell’s genetic code and convert into the RNA molecules needed to build proteins. However, the contents of the nucleus are not randomly arranged, and these proteins are often clustered into specialized areas where they perform their designated roles. One of the first nuclear territories to be identified were granular looking structures named Nuclear Speckles (or NS for short), which are thought to help process RNA before it leaves the nucleus. Structures like NS often contain a number of different factors held together by a core group of proteins known as a scaffold. Although NS were discovered over a century ago, little is known about their scaffold proteins, making it difficult to understand the precise role of these speckles. Typically, researchers visualize NS using a substance called SC35 which targets specific sites in these structures. However, it was unclear which parts of the NS this marker binds to. To answer this question, Ilik et al. studied NS in human cells grown in the lab. The analysis revealed that SC35 attaches to certain parts of a large, flexible protein called SRRM2. Ilik et al. discovered that although the structure and sequence of SRMM2 varies between different animal species, a small region of this protein remained unchanged throughout evolution. Studying the evolutionary history of SRRM2 led to the identification of another protein with similar properties called SON. Ilik et al. found that depleting SON and SRRM2 from human cells caused other proteins associated with the NS to diffuse away from their territories and become dispersed within the nucleus. This suggests that SRMM2 and SON make up the scaffold that holds the proteins in NS together. Nuclear speckles have been associated with certain viral infections, and seem to help prevent the onset of diseases such as Huntington’s and spinocerebellar ataxia. These newly discovered core proteins could therefore further our understanding of the role NS play in disease.
Collapse
Affiliation(s)
| | - Michal Malszycki
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Freie Universität Berlin, Berlin, Germany
| | - Anna Katharina Lübke
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Freie Universität Berlin, Berlin, Germany
| | - Claudia Schade
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Tuğçe Aktaş
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
9
|
Ding T, Zhu L, Fang Y, Liu Y, Tang W, Zou P. Chromophore‐Assisted Proximity Labeling of DNA Reveals Chromosomal Organization in Living Cells. Angew Chem Int Ed Engl 2020; 59:22933-22937. [DOI: 10.1002/anie.202005486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/11/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Tao Ding
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Liyuan Zhu
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yuxin Fang
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yangluorong Liu
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Wei Tang
- Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
| | - Peng Zou
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
- PKU-IDG/McGovern Institute for Brain Research Beijing 100871 China
- Chinese Institute for Brain Research (CIBR) Beijing 102206 China
| |
Collapse
|
10
|
Petasny M, Bentata M, Pawellek A, Baker M, Kay G, Salton M. Splicing to Keep Cycling: The Importance of Pre-mRNA Splicing during the Cell Cycle. Trends Genet 2020; 37:266-278. [PMID: 32950269 DOI: 10.1016/j.tig.2020.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Pre-mRNA splicing is a fundamental process in mammalian gene expression, and alternative splicing plays an extensive role in generating protein diversity. Because the majority of genes undergo pre-mRNA splicing, most cellular processes depend on proper spliceosome function. We focus on the cell cycle and describe its dependence on pre-mRNA splicing and accurate alternative splicing. We outline the key cell-cycle factors and their known alternative splicing isoforms. We discuss different levels of pre-mRNA splicing regulation such as post-translational modifications and changes in the expression of splicing factors. We describe the effect of chromatin dynamics on pre-mRNA splicing during the cell cycle. In addition, we focus on spliceosome component SF3B1, which is mutated in many types of cancer, and describe the link between SF3B1 and its inhibitors and the cell cycle.
Collapse
Affiliation(s)
- Mayra Petasny
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Mercedes Bentata
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Andrea Pawellek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Mai Baker
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
11
|
Shakyawar DK, Muralikrishna B, Radha V. C3G dynamically associates with nuclear speckles and regulates mRNA splicing. Mol Biol Cell 2019; 29:1111-1124. [PMID: 29496966 PMCID: PMC5921577 DOI: 10.1091/mbc.e17-07-0442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The first example of a Ras family GTPase and its exchange factor C3G localizing to nuclear speckles and regulating mRNA splicing is presented. C3G (Crk SH3 domain binding guanine nucleotide releasing factor) (Rap guanine nucleotide exchange factor 1), essential for mammalian embryonic development, is ubiquitously expressed and undergoes regulated nucleocytoplasmic exchange. Here we show that C3G localizes to SC35-positive nuclear speckles and regulates splicing activity. Reversible association of C3G with speckles was seen on inhibition of transcription and splicing. C3G shows partial colocalization with SC35 and is recruited to a chromatin and RNase-sensitive fraction of speckles. Its presence in speckles is dependent on intact cellular actin cytoskeleton and is lost on expression of the kinase Clk1. Rap1, a substrate of C3G, is also present in nuclear speckles, and inactivation of Rap signaling by expression of GFP-Rap1GAP alters speckle morphology and number. Enhanced association of C3G with speckles is seen on glycogen synthase kinase 3 beta inhibition or differentiation of C2C12 cells to myotubes. CRISPR/Cas9-mediated knockdown of C3G resulted in altered splicing activity of an artificial gene as well as endogenous CD44. C3G knockout clones of C2C12 as well as MDA-MB-231 cells showed reduced protein levels of several splicing factors compared with control cells. Our results identify C3G and Rap1 as novel components of nuclear speckles and a role for C3G in regulating cellular RNA splicing activity.
Collapse
Affiliation(s)
| | | | - Vegesna Radha
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| |
Collapse
|
12
|
Anufrieva KS, Shender VO, Arapidi GP, Lagarkova MA, Govorun VM. The Diverse Roles of Spliceosomal Proteins in the Regulation of Cell Processes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Ye Z, Chen Z, Lan X, Hara S, Sunkel B, Huang THM, Elnitski L, Wang Q, Jin VX. Computational analysis reveals a correlation of exon-skipping events with splicing, transcription and epigenetic factors. Nucleic Acids Res 2013; 42:2856-69. [PMID: 24369421 PMCID: PMC3950716 DOI: 10.1093/nar/gkt1338] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing (AS), in higher eukaryotes, is one of the mechanisms of post-transcriptional regulation that generate multiple transcripts from the same gene. One particular mode of AS is the skipping event where an exon may be alternatively excluded or constitutively included in the resulting mature mRNA. Both transcript isoforms from this skipping event site, i.e. in which the exon is either included (inclusion isoform) or excluded (skipping isoform), are typically present in one cell, and maintain a subtle balance that is vital to cellular function and dynamics. However, how the prevailing conditions dictate which isoform is expressed and what biological factors might influence the regulation of this process remain areas requiring further exploration. In this study, we have developed a novel computational method, graph-based exon-skipping scanner (GESS), for de novo detection of skipping event sites from raw RNA-seq reads without prior knowledge of gene annotations, as well as for determining the dominant isoform generated from such sites. We have applied our method to publicly available RNA-seq data in GM12878 and K562 cells from the ENCODE consortium and experimentally validated several skipping site predictions by RT-PCR. Furthermore, we integrated other sequencing-based genomic data to investigate the impact of splicing activities, transcription factors (TFs) and epigenetic histone modifications on splicing outcomes. Our computational analysis found that splice sites within the skipping-isoform-dominated group (SIDG) tended to exhibit weaker MaxEntScan-calculated splice site strength around middle, 'skipping', exons compared to those in the inclusion-isoform-dominated group (IIDG). We further showed the positional preference pattern of splicing factors, characterized by enrichment in the intronic splice sites immediately bordering middle exons. Finally, our analysis suggested that different epigenetic factors may introduce a variable obstacle in the process of exon-intron boundary establishment leading to skipping events.
Collapse
Affiliation(s)
- Zhenqing Ye
- Departments of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, Department of Molecular and Cellular Biochemistry and the Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA, Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Rockville, MD 20852, USA and Deparment of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Burgute BD, Peche VS, Steckelberg AL, Glöckner G, Gaßen B, Gehring NH, Noegel AA. NKAP is a novel RS-related protein that interacts with RNA and RNA binding proteins. Nucleic Acids Res 2013; 42:3177-93. [PMID: 24353314 PMCID: PMC3950704 DOI: 10.1093/nar/gkt1311] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
NKAP is a highly conserved protein with roles in transcriptional repression, T-cell development, maturation and acquisition of functional competency and maintenance and survival of adult hematopoietic stem cells. Here we report the novel role of NKAP in splicing. With NKAP-specific antibodies we found that NKAP localizes to nuclear speckles. NKAP has an RS motif at the N-terminus followed by a highly basic domain and a DUF 926 domain at the C-terminal region. Deletion analysis showed that the basic domain is important for speckle localization. In pull-down experiments, we identified RNA-binding proteins, RNA helicases and splicing factors as interaction partners of NKAP, among them FUS/TLS. The FUS/TLS–NKAP interaction takes place through the RS domain of NKAP and the RGG1 and RGG3 domains of FUS/TLS. We analyzed the ability of NKAP to interact with RNA using in vitro splicing assays and found that NKAP bound both spliced messenger RNA (mRNA) and unspliced pre-mRNA. Genome-wide analysis using crosslinking and immunoprecipitation-seq revealed NKAP association with U1, U4 and U5 small nuclear RNA, and we also demonstrated that knockdown of NKAP led to an increase in pre-mRNA percentage. Our results reveal NKAP as nuclear speckle protein with roles in RNA splicing and processing.
Collapse
Affiliation(s)
- Bhagyashri D Burgute
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), 50931 Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany, Institute of Genetics, University of Cologne, 50931 Cologne, Germany and Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301, 12587 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Dai L, Lei N, Liu M, Zhang JY. Autoantibodies to tumor-associated antigens as biomarkers in human hepatocellular carcinoma (HCC). Exp Hematol Oncol 2013; 2:15. [PMID: 23687996 PMCID: PMC3665485 DOI: 10.1186/2162-3619-2-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/07/2013] [Indexed: 01/29/2023] Open
Abstract
Tumor-associated antigens (TAAs) recognized by cellular and/or humoral effectors of the immune system are attractive targets for diagnostic and therapeutic approaches to human cancer. Different approaches can be used to comprehensively characterize and validate the identified TAA/anti-TAA systems, which are potential biomarkers in cancer immunodiagnosis. Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. The high fatality rate of HCC within one year after its detection might be partly attributed to a lack of diagnostic methods that enable the early detection. Our previous studies have shown that novel autoantibodies can appear which are not detected prior to pre-malignant conditions during transition from chronic liver disease to HCC. The hypothesis we advance is the transition to malignancy can be associated with autoantibody response to certain cellular proteins that might have some role in tumorigenesis. We propose that the information that the cancer patient’s immune system is conveying in the form of autoantibodies to tumor-associated antigens (TAAs) should be utilized to a greater extent in identifying early signs of tumorigenesis. In this review, we will focus on the important features of TAA and the possibility that autoantibodies to TAAs can be used as biomarkers in immunodiagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Liping Dai
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Ningjing Lei
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Mei Liu
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jian-Ying Zhang
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
16
|
Chaturvedi P, Khanna R, Parnaik VK. Ubiquitin ligase RNF123 mediates degradation of heterochromatin protein 1α and β in lamin A/C knock-down cells. PLoS One 2012; 7:e47558. [PMID: 23077635 PMCID: PMC3471868 DOI: 10.1371/journal.pone.0047558] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 09/17/2012] [Indexed: 11/19/2022] Open
Abstract
Background The nuclear lamina is a key determinant of nuclear architecture, integrity and functionality in metazoan nuclei. Mutations in the human lamin A gene lead to highly debilitating genetic diseases termed as laminopathies. Expression of lamin A mutations or reduction in levels of endogenous A-type lamins leads to nuclear defects such as abnormal nuclear morphology and disorganization of heterochromatin. This is accompanied by increased proteasomal degradation of certain nuclear proteins such as emerin, nesprin-1α, retinoblastoma protein and heterochromatin protein 1 (HP1). However, the pathways of proteasomal degradation have not been well characterized. Methodology/Principal Findings To investigate the mechanisms underlying the degradation of HP1 proteins upon lamin misexpression, we analyzed the effects of shRNA-mediated knock-down of lamins A and C in HeLa cells. Cells with reduced levels of expression of lamins A and C exhibited proteasomal degradation of HP1α and HP1β but not HP1γ. Since specific ubiquitin ligases are upregulated in lamin A/C knock-down cells, further studies were carried out with one of these ligases, RNF123, which has a putative HP1-binding motif. Ectopic expression of GFP-tagged RNF123 directly resulted in degradation of HP1α and HP1β. Mutational analysis showed that the canonical HP1-binding pentapeptide motif PXVXL in the N-terminus of RNF123 was required for binding to HP1 proteins and targeting them for degradation. The role of endogenous RNF123 in the degradation of HP1 isoforms was confirmed by RNF123 RNAi experiments. Furthermore, FRAP analysis suggested that HP1β was displaced from chromatin in laminopathic cells. Conclusions/Significance Our data support a role for RNF123 ubiquitin ligase in the degradation of HP1α and HP1β upon lamin A/C knock-down. Hence lamin misexpression can cause degradation of mislocalized proteins involved in key nuclear processes by induction of specific components of the ubiquitin-proteasome system.
Collapse
Affiliation(s)
| | - Richa Khanna
- Centre for Cellular and Molecular Biology (CSIR), Hyderabad, India
| | - Veena K. Parnaik
- Centre for Cellular and Molecular Biology (CSIR), Hyderabad, India
- * E-mail:
| |
Collapse
|
17
|
Ishikawa-Ankerhold HC, Ankerhold R, Drummen GPC. Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM. Molecules 2012; 17:4047-132. [PMID: 22469598 PMCID: PMC6268795 DOI: 10.3390/molecules17044047] [Citation(s) in RCA: 304] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 03/21/2012] [Accepted: 03/21/2012] [Indexed: 12/19/2022] Open
Abstract
Fluorescence microscopy provides an efficient and unique approach to study fixed and living cells because of its versatility, specificity, and high sensitivity. Fluorescence microscopes can both detect the fluorescence emitted from labeled molecules in biological samples as images or photometric data from which intensities and emission spectra can be deduced. By exploiting the characteristics of fluorescence, various techniques have been developed that enable the visualization and analysis of complex dynamic events in cells, organelles, and sub-organelle components within the biological specimen. The techniques described here are fluorescence recovery after photobleaching (FRAP), the related fluorescence loss in photobleaching (FLIP), fluorescence localization after photobleaching (FLAP), Förster or fluorescence resonance energy transfer (FRET) and the different ways how to measure FRET, such as acceptor bleaching, sensitized emission, polarization anisotropy, and fluorescence lifetime imaging microscopy (FLIM). First, a brief introduction into the mechanisms underlying fluorescence as a physical phenomenon and fluorescence, confocal, and multiphoton microscopy is given. Subsequently, these advanced microscopy techniques are introduced in more detail, with a description of how these techniques are performed, what needs to be considered, and what practical advantages they can bring to cell biological research.
Collapse
Affiliation(s)
- Hellen C. Ishikawa-Ankerhold
- Ludwig Maximilian University of Munich, Institute of Anatomy and Cell Biology, Schillerstr. 42, 80336 München, Germany
| | - Richard Ankerhold
- Carl Zeiss Microimaging GmbH, Kistlerhofstr. 75, 81379 München, Germany
| | - Gregor P. C. Drummen
- Bionanoscience and Bio-Imaging Program, Cellular Stress and Ageing Program, Bio&Nano-Solutions, Helmutstr. 3A, 40472 Düsseldorf, Germany
| |
Collapse
|
18
|
Mears M, Tarmey DS, Geoghegan M. Single macromolecule diffusion in confined environments. Macromol Rapid Commun 2011; 32:1411-8. [PMID: 21751276 DOI: 10.1002/marc.201100076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Indexed: 11/08/2022]
Abstract
We consider the behaviour of single molecules on surfaces and, more generally, in confined environments. These are loosely split into three sections: single molecules in biology, the physics of single molecules on surfaces and controlled (directed) diffusion. With recent advances in single molecule detection techniques, the importance and mechanisms of single molecule processes such as localised enzyme production and intracellular diffusion across membranes has been highlighted, emphasising the extra information that cannot be obtained with techniques that present average behaviour. Progress has also been made in producing artificial systems that can control the rate and direction of diffusion, and because these are still in their infancy (especially in comparison to complex biological systems), we discuss the new physics revealed by these phenomena.
Collapse
|
19
|
Nalaskowski MM, Fliegert R, Ernst O, Brehm MA, Fanick W, Windhorst S, Lin H, Giehler S, Hein J, Lin YN, Mayr GW. Human inositol 1,4,5-trisphosphate 3-kinase isoform B (IP3KB) is a nucleocytoplasmic shuttling protein specifically enriched at cortical actin filaments and at invaginations of the nuclear envelope. J Biol Chem 2011; 286:4500-10. [PMID: 21148483 PMCID: PMC3039344 DOI: 10.1074/jbc.m110.173062] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 12/02/2010] [Indexed: 11/06/2022] Open
Abstract
Recent studies have shown that inositol 1,4,5-trisphosphate 3-kinase isoform B (IP3KB) possesses important roles in the development of immune cells. IP3KB can be targeted to multiple cellular compartments, among them nuclear localization and binding in close proximity to the plasma membrane. The B isoform is the only IP3K that is almost ubiquitously expressed in mammalian cells. Detailed mechanisms of its targeting regulation will be important in understanding the role of Ins(1,4,5)P(3) phosphorylation on subcellular calcium signaling and compartment-specific initiation of pathways leading to regulatory active higher phosphorylated inositol phosphates. Here, we identified an exportin 1-dependent nuclear export signal ((134)LQRELQNVQV) and characterized the amino acids responsible for nuclear localization of IP3KB ((129)RKLR). These two targeting domains regulate the amount of nuclear IP3KB in cells. We also demonstrated that the localization of IP3KB at the plasma membrane is due to its binding to cortical actin structures. Intriguingly, all three of these targeting activities reside in one small polypeptide segment (amino acids 104-165), which acts as a multitargeting domain (MTD). Finally, a hitherto unknown subnuclear localization of IP3KB could be demonstrated in rapidly growing H1299 cells. IP3KB is specifically enriched at nuclear invaginations extending perpendicular between the apical and basal surface of the nucleus of these flat cells. Such nuclear invaginations are known to be involved in Ins(1,4,5)P(3)-mediated Ca(2+) signaling of the nucleus. Our findings indicate that IP3KB not only regulates cytoplasmic Ca(2+) signals by phosphorylation of subplasmalemmal and cytoplasmic Ins(1,4,5)P(3) but may also be involved in modulating nuclear Ca(2+) signals generated from these nuclear envelope invaginations.
Collapse
Affiliation(s)
- Marcus M Nalaskowski
- Institute of Biochemistry and Molecular Biology I-Cellular Signal Transduction, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Identification of ZASP, a novel protein associated to Zona occludens-2. Exp Cell Res 2010; 316:3124-39. [PMID: 20868680 DOI: 10.1016/j.yexcr.2010.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 09/02/2010] [Accepted: 09/08/2010] [Indexed: 11/20/2022]
Abstract
With the aim of discovering new molecular interactions of the tight junction protein ZO-2, a two-hybrid screen was performed on a human kidney cDNA library using as bait the middle segment of ZO-2. Through this assay we identified a 24-kDa novel protein herein named ZASP for ZO-2 associated speckle protein. ZO-2/ZASP interaction further confirmed by pull down and immunoprecipitation experiments, requires the presence of the intact PDZ binding motif SQV of ZASP and the third PDZ domain of ZO-2. ZASP mRNA and protein are present in the kidney and in several epithelial cell lines. Endogenous ZASP is expressed primarily in nuclear speckles in co-localization with splicing factor SC-35. Nocodazole treatment and wash out reveals that ZASP disappears from the nucleus during mitosis in accordance with speckle disassembly during metaphase. ZASP amino acid sequence exhibits a canonical nuclear exportation signal and in agreement the protein exits the nucleus through a process mediated by exportin/CRM1. ZASP over-expression blocks the inhibitory activity of ZO-2 on cyclin D1 gene transcription and protein expression. The identification of ZASP helps to unfold the complex nuclear molecular arrays that form on ZO-2 scaffolds.
Collapse
|
21
|
Brand P, Lenser T, Hemmerich P. Assembly dynamics of PML nuclear bodies in living cells. PMC BIOPHYSICS 2010; 3:3. [PMID: 20205709 PMCID: PMC2854101 DOI: 10.1186/1757-5036-3-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 03/05/2010] [Indexed: 01/17/2023]
Abstract
The mammalian cell nucleus contains a variety of organelles or nuclear bodies which contribute to key nuclear functions. Promyelocytic leukemia nuclear bodies (PML NBs) are involved in the regulation of apoptosis, antiviral responses, the DNA damage response and chromatin structure, but their precise biochemical function in these nuclear pathways is unknown. One strategy to tackle this problem is to assess the biophysical properties of the component parts of these macromolecular assemblies in living cells. In this study we determined PML NB assembly dynamics by live cell imaging, combined with mathematical modeling. For the first time, dynamics of PML body formation were measured in cells lacking endogenous PML. We show that all six human nuclear PML isoforms are able to form nuclear bodies in PML negative cells. All isoforms exhibit individual exchange rates at NBs in PML positive cells but PML I, II, III and IV are static at nuclear bodies in PML negative cells, suggesting that these isoforms require additional protein partners for efficient exchange. PML V turns over at PML Nbs very slowly supporting the idea of a structural function for this isoform. We also demonstrate that SUMOylation of PML at Lysine positions K160 and/or K490 are required for nuclear body formation in vivo.We propose a model in which the isoform specific residence times of PML provide both, structural stability to function as a scaffold and flexibility to attract specific nuclear proteins for efficient biochemical reactions at the surface of nuclear bodies. MCS code: 92C37
Collapse
Affiliation(s)
- Peter Brand
- Leibniz-Institute of Age Research, Fritz-Lipman-Institute, Beutenbergstr, 11, 07745 Jena, Germany.
| | | | | |
Collapse
|