1
|
Garlapow ME, Everett LJ, Zhou S, Gearhart AW, Fay KA, Huang W, Morozova TV, Arya GH, Turlapati L, St Armour G, Hussain YN, McAdams SE, Fochler S, Mackay TFC. Genetic and Genomic Response to Selection for Food Consumption in Drosophila melanogaster. Behav Genet 2017; 47:227-243. [PMID: 27704301 PMCID: PMC5305434 DOI: 10.1007/s10519-016-9819-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 09/16/2016] [Indexed: 12/21/2022]
Abstract
Food consumption is an essential component of animal fitness; however, excessive food intake in humans increases risk for many diseases. The roles of neuroendocrine feedback loops, food sensing modalities, and physiological state in regulating food intake are well understood, but not the genetic basis underlying variation in food consumption. Here, we applied ten generations of artificial selection for high and low food consumption in replicate populations of Drosophila melanogaster. The phenotypic response to selection was highly asymmetric, with significant responses only for increased food consumption and minimal correlated responses in body mass and composition. We assessed the molecular correlates of selection responses by DNA and RNA sequencing of the selection lines. The high and low selection lines had variants with significantly divergent allele frequencies within or near 2081 genes and 3526 differentially expressed genes in one or both sexes. A total of 519 genes were both genetically divergent and differentially expressed between the divergent selection lines. We performed functional analyses of the effects of RNAi suppression of gene expression and induced mutations for 27 of these candidate genes that have human orthologs and the strongest statistical support, and confirmed that 25 (93 %) affected the mean and/or variance of food consumption.
Collapse
Affiliation(s)
- Megan E Garlapow
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Logan J Everett
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Initiative for Biological Complexity, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Shanshan Zhou
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Initiative for Biological Complexity, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Alexander W Gearhart
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Kairsten A Fay
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Wen Huang
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Initiative for Biological Complexity, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Tatiana V Morozova
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Gunjan H Arya
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Lavanya Turlapati
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Genevieve St Armour
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Yasmeen N Hussain
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Sarah E McAdams
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Sophia Fochler
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Trudy F C Mackay
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695-7614, USA.
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA.
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA.
- Initiative for Biological Complexity, North Carolina State University, Raleigh, NC, 27695-7614, USA.
| |
Collapse
|
2
|
Abstract
Drosophila, a dipteran insect, has been found to be the best biological model for different kinds of studies. D melanogaster was first described by Meigen in 1830 , is most extensively studied species of the genus Drosophila and a number of investigations employing this species have been documented in areas such as genetics, behaviour, evolution, development, molecular biology, ecology, population biology, etc. Besides D. melanogaster, a number of other species of the genus Drosophila have also been used for different kinds of investigations. Among these, D. ananassae, a cosmopolitan and domestic species endowed with several unusual genetic features, is noteworthy. Described for the first time from Indonesia (Doleschall 1858), this species is commonly distributed in India. Extensive research work on D. ananassae has been done by numerous researchers pertaining to cytology, genetics, mutagenesis, gene mapping, crossing-over in both sexes, population and evolutionary genetics,behaviour genetics, ecological genetics, sexual isolation, fluctuating asymmetry, trade-offs etc. Genome of D. ananassae has also been sequenced. The status of research on D. ananassae at global level is briefly described in this review. Bibliography on this species from different countries worldwide reveals that maximum contribution is from India.
Collapse
Affiliation(s)
- B N Singh
- Genetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India.
| | | |
Collapse
|