1
|
El-Seedi HR, El-Mallah MF, Yosri N, Alajlani M, Zhao C, Mehmood MA, Du M, Ullah H, Daglia M, Guo Z, Khalifa SAM, Shou Q. Review of Marine Cyanobacteria and the Aspects Related to Their Roles: Chemical, Biological Properties, Nitrogen Fixation and Climate Change. Mar Drugs 2023; 21:439. [PMID: 37623720 PMCID: PMC10456358 DOI: 10.3390/md21080439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Marine cyanobacteria are an ancient group of photosynthetic microbes dating back to 3.5 million years ago. They are prolific producers of bioactive secondary metabolites. Over millions of years, natural selection has optimized their metabolites to possess activities impacting various biological targets. This paper discusses the historical and existential records of cyanobacteria, and their role in understanding the evolution of marine cyanobacteria through the ages. Recent advancements have focused on isolating and screening bioactive compounds and their respective medicinal properties, and we also discuss chemical property space and clinical trials, where compounds with potential pharmacological effects, such as cytotoxicity, anticancer, and antiparasitic properties, are highlighted. The data have shown that about 43% of the compounds investigated have cytotoxic effects, and around 8% have anti-trypanosome activity. We discussed the role of different marine cyanobacteria groups in fixing nitrogen percentages on Earth and their outcomes in fish productivity by entering food webs and enhancing productivity in different agricultural and ecological fields. The role of marine cyanobacteria in the carbon cycle and their outcomes in improving the efficiency of photosynthetic CO2 fixation in the chloroplasts of crop plants, thus enhancing the crop plant's yield, was highlighted. Ultimately, climate changes have a significant impact on marine cyanobacteria where the temperature rises, and CO2 improves the cyanobacterial nitrogen fixation.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Jiangsu Education Department, Nanjing 210024, China
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt;
| | - Mohamed F. El-Mallah
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt;
| | - Nermeen Yosri
- Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt;
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Muaaz Alajlani
- Faculty of Pharmacy, Al-Sham Private University, Damascus 0100, Syria;
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Muhammad A. Mehmood
- Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China;
| | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Maria Daglia
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Shaden A. M. Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Psychiatry and Psychology Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden
| | - Qiyang Shou
- Second Clinical Medical College, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
2
|
Cuéllar-Cruz M, Moreno A. Synthesis of Crystalline Silica-Carbonate Biomorphs of Ba(II) under the Presence of RNA and Positively and Negatively Charged ITO Electrodes: Obtainment of Graphite via Bioreduction of CO 2 and Its Implications to the Chemical Origin of Life on Primitive Earth. ACS OMEGA 2020; 5:5460-5469. [PMID: 32201838 PMCID: PMC7081647 DOI: 10.1021/acsomega.0c00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Since Earth was formed, in the Precambrian era up until our present days, electric current has participated in the morphology and chemical composition of organic and inorganic structures. Attempting to elucidate the mechanism by which electric current participated in the creation of the first cell in the Precambrian era is an intriguing and of a permanent subject of interest to be studied. One way of emulating the formation of structures similar to those that might have existed in the Precambrian era in the presence of a biomolecule and an electric current source is to use as a model, the silica-carbonate of alkaline earth metal compounds known as biomorphs. The objective of this work was to assess the influence exerted by an electric current (negatively or positively charged indium tin oxide electrodes) on the formation of biomorphs in the presence of RNA. The compounds obtained under both electric charges were visualized through scanning electron microscopy (SEM), and their chemical composition was analyzed through Raman spectroscopy. The biomorphs obtained under a positive electric current correspond to aragonite-type BaCO3(I) and calcite-type BaCO3(II). Whereas, under a negative current, carbon graphite and aragonite-type BaCO3(I) were obtained. To the best of our knowledge, this is the first evidence showing that the presence of RNA and the electric current is fundamental in the rearrangement of atoms, suggesting that organic and inorganic compounds have coexisted since the primitive era.
Collapse
Affiliation(s)
- Mayra Cuéllar-Cruz
- Departamento
de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato, Guanajuato 36050, Mexico
| | - Abel Moreno
- Instituto
de Química, Universidad Nacional
Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Ciudad de México 04510, Mexico
| |
Collapse
|
3
|
Dorrell RG, Smith AG. Do red and green make brown?: perspectives on plastid acquisitions within chromalveolates. EUKARYOTIC CELL 2011; 10:856-68. [PMID: 21622904 PMCID: PMC3147421 DOI: 10.1128/ec.00326-10] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The chromalveolate "supergroup" is of key interest in contemporary phycology, as it contains the overwhelming majority of extant algal species, including several phyla of key importance to oceanic net primary productivity such as diatoms, kelps, and dinoflagellates. There is also intense current interest in the exploitation of these algae for industrial purposes, such as biodiesel production. However, the evolution of the constituent species, and in particular the origin and radiation of the chloroplast genomes, remains poorly understood. In this review, we discuss current theories of the origins of the extant red alga-derived chloroplast lineages in the chromalveolates and the potential ramifications of the recent discovery of large numbers of green algal genes in chromalveolate genomes. We consider that the best explanation for this is that chromalveolates historically possessed a cryptic green algal endosymbiont that was subsequently replaced by a red algal chloroplast. We consider how changing selective pressures acting on ancient chromalveolate lineages may have selectively favored the serial endosymbioses of green and red algae and whether a complex endosymbiotic history facilitated the rise of chromalveolates to their current position of ecological prominence.
Collapse
Affiliation(s)
- Richard G Dorrell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom.
| | | |
Collapse
|