1
|
Kolesnikov ES, Gushchin IY, Zhilyaev PA, Onufriev AV. Why Na+ has higher propensity than K+ to condense DNA in a crowded environment. J Chem Phys 2023; 159:145103. [PMID: 37815107 DOI: 10.1063/5.0159341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/22/2023] [Indexed: 10/11/2023] Open
Abstract
Experimentally, in the presence of the crowding agent polyethylene glycol (PEG), sodium ions compact double-stranded DNA more readily than potassium ions. Here, we have used molecular dynamics simulations and the "ion binding shells model" of DNA condensation to provide an explanation for the observed variations in condensation of short DNA duplexes in solutions containing different monovalent cations and PEG; several predictions are made. According to the model we use, externally bound ions contribute the most to the ion-induced aggregation of DNA duplexes. The simulations reveal that for two adjacent DNA duplexes, the number of externally bound Na+ ions is larger than the number of K+ ions over a wide range of chloride concentrations in the presence of PEG, providing a qualitative explanation for the higher propensity of sodium ions to compact DNA under crowded conditions. The qualitative picture is confirmed by an estimate of the corresponding free energy of DNA aggregation that is at least 0.2kBT per base pair more favorable in solution with NaCl than with KCl at the same ion concentration. The estimated attraction free energy of DNA duplexes in the presence of Na+ depends noticeably on the DNA sequence; we predict that AT-rich DNA duplexes are more readily condensed than GC-rich ones in the presence of Na+. Counter-intuitively, the addition of a small amount of a crowding agent with high affinity for the specific condensing ion may lead to the weakening of the ion-mediated DNA-DNA attraction, shifting the equilibrium away from the DNA condensed phase.
Collapse
Affiliation(s)
- Egor S Kolesnikov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Ivan Yu Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Petr A Zhilyaev
- The Center for Materials Technologies, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russia
| | - Alexey V Onufriev
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
- Department of Computer Science, Virginia Tech, 2160C Torgersen Hall, Blacksburg, Virginia 24061, USA
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
2
|
Diaz A, Jothiraman HB, Ramakrishnan V. Effect of glycerol on free DNA: A molecular dynamics simulation study. J Mol Graph Model 2022; 114:108169. [DOI: 10.1016/j.jmgm.2022.108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
|
3
|
Sequence-dependent structural properties of B-DNA: what have we learned in 40 years? Biophys Rev 2021; 13:995-1005. [DOI: 10.1007/s12551-021-00893-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022] Open
|
4
|
Kolesnikov ES, Gushchin IY, Zhilyaev PA, Onufriev AV. Similarities and Differences between Na + and K + Distributions around DNA Obtained with Three Popular Water Models. J Chem Theory Comput 2021; 17:7246-7259. [PMID: 34633813 DOI: 10.1021/acs.jctc.1c00332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have compared distributions of sodium and potassium ions around double-stranded DNA, simulated using fixed charge SPC/E, TIP3P, and OPC water models and the Joung/Cheatham (J/C) ion parameter set, as well as the Li/Merz HFE 6-12 (L/M HFE) ion parameters for OPC water. In all the simulations, the ion distributions are in qualitative agreement with Manning's condensation theory and the Debye-Hückel theory, where expected. In agreement with experiment, binding affinity of monovalent ions to DNA does not depend on ion type in every solvent model. However, behavior of deeply bound ions, including ions bound to specific sites, depends strongly on the solvent model. In particular, the number of potassium ions in the minor groove of AT-tracts differs at least 3-fold between the solvent models tested. The number of sodium ions associated with the DNA agrees quantitatively with the experiment for the OPC water model, followed closely by TIP3P+J/C; the largest deviation from the experiment, ∼10%, is seen for SPC/E+J/C. On the other hand, SPC/E+J/C model is most consistent (67%) with the experimental potassium binding sites, followed by OPC+J/C (60%), TIP3P+J/C (53%), and OPC+L/M HFE (27%). The use of NBFIX correction with TIP3P+J/C improves its consistency with the experiment. In summary, the choice of the solvent model matters little for simulating the diffuse atmosphere of sodium and potassium ions around DNA, but ion distributions become increasingly sensitive to the solvent model near the helical axis. We offer an explanation for these trends. There is no single gold standard solvent model, although OPC water with J/C ions or TIP3P with J/C + NBFIX may offer an imperfect compromise for practical simulations of ionic atmospheres around DNA.
Collapse
Affiliation(s)
- Egor S Kolesnikov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Ivan Yu Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Petr A Zhilyaev
- Center for Design, Manufacturing and Materials, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russia
| | - Alexey V Onufriev
- Department of Computer Science, Virginia Tech, Blacksburg 24061-0131, United States.,Department of Physics, Virginia Tech, Blacksburg 24061-0131, United States.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg 24061-0131, United States
| |
Collapse
|
5
|
|
6
|
Fuentes L, Quiroga AG, Organero JA, Matesanz AI. Exploring DNA binding ability of two novel α-N-heterocyclic thiosemicarbazone palladium(II) complexes. J Inorg Biochem 2020; 203:110875. [DOI: 10.1016/j.jinorgbio.2019.110875] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/16/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022]
|
7
|
Paul S, Ahmed T, Samanta A. Influence of Divalent Counterions on the Dynamics in DNA as Probed by Using a Minor-Groove Binder. Chemphyschem 2017; 18:2058-2064. [DOI: 10.1002/cphc.201700251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Sneha Paul
- School of Chemistry; University of Hyderabad; Hyderabad 500046 India
| | - Tasnim Ahmed
- School of Chemistry; University of Hyderabad; Hyderabad 500046 India
| | - Anunay Samanta
- School of Chemistry; University of Hyderabad; Hyderabad 500046 India
| |
Collapse
|
8
|
Thayer KM, Han ISM. Chemical principles additive model aligns low consensus DNA targets of p53 tumor suppressor protein. Comput Biol Chem 2017; 68:186-193. [PMID: 28363149 DOI: 10.1016/j.compbiolchem.2017.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/05/2017] [Indexed: 11/25/2022]
Abstract
Computational prediction of the interaction between protein transcription factors and their cognate DNA binding sites in genomic promoters constitutes a formidable challenge in two situations: when the number of discriminatory interactions is small compared to the length of the binding site, and when DNA binding sites possess a poorly conserved consensus binding motif. The transcription factor p53 tumor suppressor protein and its target DNA exhibit both of these issues. From crystal structure analysis, only three discriminatory amino acid side chains contact the DNA for a binding site spanning ten base pairs. Furthermore, our analysis of a dataset of genome wide fragments binding to p53 revealed many sequences lacking the expected consensus. The low information content leads to an overestimation of binding sites, and the lack of conservation equates to a computational alignment problem. Within a fragment of DNA known to bind to p53, computationally locating the position of the site equates to aligning the DNA with the binding interface. From a molecular perspective, that alignment implies a specification of which DNA bases are interacting with which amino acid side chains, and aligning many sequences to the same protein interface concomitantly produces a multiple sequence alignment. From this vantage, we propose to cast prediction of p53 binding sites as an alignment to the protein binding surface with the novel approach of optimizing the alignment of DNA fragments to the p53 binding interface based on chemical principles. A scoring scheme based on this premise was successfully implemented to score a dataset of biological DNA fragments known to contain p53 binding sites. The results illuminate the mechanism of recognition for the protein-DNA system at the forefront of cancer research. These findings implicate that p53 may recognize its target binding sites via several different mechanisms which may include indirect readout.
Collapse
Affiliation(s)
- Kelly M Thayer
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, United States of America; Department of Chemistry, Wesleyan University, Hall-Atwater Laboratories, Middletown, CT 06459, United States of America.
| | - In Sub M Han
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, United States of America
| |
Collapse
|
9
|
Andrews CT, Campbell BA, Elcock AH. Direct Comparison of Amino Acid and Salt Interactions with Double-Stranded and Single-Stranded DNA from Explicit-Solvent Molecular Dynamics Simulations. J Chem Theory Comput 2017; 13:1794-1811. [PMID: 28288277 DOI: 10.1021/acs.jctc.6b00883] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Given the ubiquitous nature of protein-DNA interactions, it is important to understand the interaction thermodynamics of individual amino acid side chains for DNA. One way to assess these preferences is to perform molecular dynamics (MD) simulations. Here we report MD simulations of 20 amino acid side chain analogs interacting simultaneously with both a 70-base-pair double-stranded DNA and with a 70-nucleotide single-stranded DNA. The relative preferences of the amino acid side chains for dsDNA and ssDNA match well with values deduced from crystallographic analyses of protein-DNA complexes. The estimated apparent free energies of interaction for ssDNA, on the other hand, correlate well with previous simulation values reported for interactions with isolated nucleobases, and with experimental values reported for interactions with guanosine. Comparisons of the interactions with dsDNA and ssDNA indicate that, with the exception of the positively charged side chains, all types of amino acid side chain interact more favorably with ssDNA, with intercalation of aromatic and aliphatic side chains being especially notable. Analysis of the data on a base-by-base basis indicates that positively charged side chains, as well as sodium ions, preferentially bind to cytosine in ssDNA, and that negatively charged side chains, and chloride ions, preferentially bind to guanine in ssDNA. These latter observations provide a novel explanation for the lower salt dependence of DNA duplex stability in GC-rich sequences relative to AT-rich sequences.
Collapse
Affiliation(s)
- Casey T Andrews
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Brady A Campbell
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Adrian H Elcock
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
10
|
Nakano M, Tateishi-Karimata H, Tanaka S, Tama F, Miyashita O, Nakano SI, Sugimoto N. Local thermodynamics of the water molecules around single- and double-stranded DNA studied by grid inhomogeneous solvation theory. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Copp SM, Schultz D, Swasey SM, Faris A, Gwinn EG. Cluster Plasmonics: Dielectric and Shape Effects on DNA-Stabilized Silver Clusters. NANO LETTERS 2016; 16:3594-9. [PMID: 27187492 DOI: 10.1021/acs.nanolett.6b00723] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This work investigates the effects of dielectric environment and cluster shape on electronic excitations of fluorescent DNA-stabilized silver clusters, AgN-DNA. We first establish that the longitudinal plasmon wavelengths predicted by classical Mie-Gans (MG) theory agree with previous quantum calculations for excitation wavelengths of linear silver atom chains, even for clusters of just a few atoms. Application of MG theory to AgN-DNA with 400-850 nm cluster excitation wavelengths indicates that these clusters are characterized by a collective excitation process and suggests effective cluster thicknesses of ∼2 silver atoms and aspect ratios of 1.5 to 5. To investigate sensitivity to the surrounding medium, we measure the wavelength shifts produced by addition of glycerol. These are smaller than reported for much larger gold nanoparticles but easily detectable due to narrower line widths, suggesting that AgN-DNA may have potential for fluorescence-reported changes in dielectric environment at length scales of ∼1 nm.
Collapse
Affiliation(s)
- Stacy M Copp
- Department of Physics, University of California , Santa Barbara, California 93106-9530, United States
| | - Danielle Schultz
- Department of Chemistry, University of California , Santa Barbara, California 93106-9510, United States
| | - Steven M Swasey
- Department of Chemistry, University of California , Santa Barbara, California 93106-9510, United States
| | - Alexis Faris
- Department of Physics, University of California , Santa Barbara, California 93106-9530, United States
| | - Elisabeth G Gwinn
- Department of Physics, University of California , Santa Barbara, California 93106-9530, United States
| |
Collapse
|
12
|
Copp SM, Faris A, Swasey SM, Gwinn EG. Heterogeneous Solvatochromism of Fluorescent DNA-Stabilized Silver Clusters Precludes Use of Simple Onsager-Based Stokes Shift Models. J Phys Chem Lett 2016; 7:698-703. [PMID: 26831218 DOI: 10.1021/acs.jpclett.5b02777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The diverse optical and chemical properties of DNA-stabilized silver clusters (AgN-DNAs) have challenged the development of a common model for these sequence-tunable fluorophores. Although correlations between cluster geometry and fluorescence color have begun to shed light on how the optical properties of AgN-DNAs are selected, the exact mechanisms responsible for fluorescence remain unknown. To explore these mechanisms, we study four distinct purified AgN-DNAs in ethanol-water and methanol-water mixtures and find that the solvatochromic behavior of AgN-DNAs varies widely among different cluster species and differs markedly from prior results on impure material. Placing AgN-DNAs within the context of standard Lippert-Mataga solvatochromism models based on the Onsager reaction field, we show that such nonspecific solvent models are not universally applicable to AgN-DNAs. Instead, alcohol-induced solvatochromism of AgN-DNAs may be governed by changes in hydration of the DNA template, with spectral shifts resulting from cluster shape changes and/or dielectric changes in the local vicinity of the cluster.
Collapse
Affiliation(s)
- Stacy M Copp
- Department of Physics and ‡Department of Chemistry, University of California-Santa Barbara , Santa Barbara, California 93106-9530, United States
| | - Alexis Faris
- Department of Physics and ‡Department of Chemistry, University of California-Santa Barbara , Santa Barbara, California 93106-9530, United States
| | - Steven M Swasey
- Department of Physics and ‡Department of Chemistry, University of California-Santa Barbara , Santa Barbara, California 93106-9530, United States
| | - Elisabeth G Gwinn
- Department of Physics and ‡Department of Chemistry, University of California-Santa Barbara , Santa Barbara, California 93106-9530, United States
| |
Collapse
|
13
|
Lomzov AA, Vorobjev YN, Pyshnyi DV. Evaluation of the Gibbs Free Energy Changes and Melting Temperatures of DNA/DNA Duplexes Using Hybridization Enthalpy Calculated by Molecular Dynamics Simulation. J Phys Chem B 2015; 119:15221-34. [PMID: 26569147 DOI: 10.1021/acs.jpcb.5b09645] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A molecular dynamics simulation approach was applied for the prediction of the thermal stability of oligonucleotide duplexes. It was shown that the enthalpy of the DNA/DNA complex formation could be calculated using this approach. We have studied the influence of various simulation parameters on the secondary structure and the hybridization enthalpy value of Dickerson-Drew dodecamer. The optimal simulation parameters for the most reliable prediction of the enthalpy values were determined. The thermodynamic parameters (enthalpy and entropy changes) of a duplex formation were obtained experimentally for 305 oligonucleotides of various lengths and GC-content. The resulting database was studied with molecular dynamics (MD) simulation using the optimized simulation parameters. Gibbs free energy changes and the melting temperatures were evaluated using the experimental correlation between enthalpy and entropy changes of the duplex formation and the enthalpy values calculated by the MD simulation. The average errors in the predictions of enthalpy, the Gibbs free energy change, and the melting temperature of oligonucleotide complexes were 11%, 10%, and 4.4 °C, respectively. We have shown that the molecular dynamics simulation gives a possibility to calculate the thermal stability of native DNA/DNA complexes a priori with an unexpectedly high accuracy.
Collapse
Affiliation(s)
- Alexander A Lomzov
- Institute of Chemical Biology and Fundamental Medicine , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Yury N Vorobjev
- Institute of Chemical Biology and Fundamental Medicine , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| |
Collapse
|
14
|
Silver (I) as DNA glue: Ag(+)-mediated guanine pairing revealed by removing Watson-Crick constraints. Sci Rep 2015; 5:10163. [PMID: 25973536 PMCID: PMC4431418 DOI: 10.1038/srep10163] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/01/2015] [Indexed: 12/23/2022] Open
Abstract
Metal ion interactions with DNA have far-reaching implications in biochemistry and DNA nanotechnology. Ag+ is uniquely interesting because it binds exclusively to the bases rather than the backbone of DNA, without the toxicity of Hg2+. In contrast to prior studies of Ag+ incorporation into double-stranded DNA, we remove the constraints of Watson-Crick pairing by focusing on homo-base DNA oligomers of the canonical bases. High resolution electro-spray ionization mass spectrometry reveals an unanticipated Ag+-mediated pairing of guanine homo-base strands, with higher stability than canonical guanine-cytosine pairing. By exploring unrestricted binding geometries, quantum chemical calculations find that Ag+ bridges between non-canonical sites on guanine bases. Circular dichroism spectroscopy shows that the Ag+-mediated structuring of guanine homobase strands persists to at least 90 °C under conditions for which canonical guanine-cytosine duplexes melt below 20 °C. These findings are promising for DNA nanotechnology and metal-ion based biomedical science.
Collapse
|
15
|
Bruce CD, Ferrara MM, Manka JL, Davis ZS, Register J. Dynamic hydrogen bonding and DNA flexibility in minor groove binders: molecular dynamics simulation of the polyamide f-ImPyIm bound to the Mlu1 (MCB) sequence 5'-ACGCGT-3' in 2:1 motif. J Mol Recognit 2015; 28:325-37. [PMID: 25711379 DOI: 10.1002/jmr.2448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 10/10/2014] [Accepted: 11/09/2014] [Indexed: 12/28/2022]
Abstract
Molecular dynamics simulations of the DNA 10-mer 5'-CCACGCGTGG-3' alone and complexed with the formamido-imidazole-pyrrole-imidazole (f-ImPyIm) polyamide minor groove binder in a 2:1 fashion were conducted for 50 ns using the pbsc0 parameters within the AMBER 12 software package. The change in DNA structure upon binding of f-ImPyIm was evaluated via minor groove width and depth, base pair parameters of Slide, Twist, Roll, Stretch, Stagger, Opening, Propeller, and x-displacement, dihedral angle distributions of ζ, ε, α, and γ determined using the Curves+ software program, and hydrogen bond formation. The dynamic hydrogen bonding between the f-ImPyIm and its cognate DNA sequence was compared to the static image used to predict sequence recognition by polyamide minor groove binders. Many of the predicted hydrogen bonds were present in less than 50% of the simulation; however, persistent hydrogen bonds between G5/15 and the formamido group of f-ImPyIm were observed. It was determined that the DNA is wider in the Complex than without the polyamide binder; however, there is flexibility in this particular sequence, even in the presence of the f-ImPyIm as evidenced by the range of minor groove widths the DNA exhibits and the dynamics of the hydrogen bonding that binds the two f-ImPyIm ions to the minor groove. The Complex consisting of the DNA and the 2 f-ImPyIm binders shows slight fraying of the 5' end of the 10-mer at the end of the simulation, but the portion of the oligomer responsible for recognition and binding is stable throughout the simulation. Several structural changes in the Complex indicate that minor groove binders may have a more active role in inhibiting transcription than just preventing binding of important transcription factors.
Collapse
Affiliation(s)
- Chrystal D Bruce
- Department of Chemistry, John Carroll University, 1 John Carroll Boulevard, University Heights, OH, 44118, USA
| | | | | | | | | |
Collapse
|
16
|
Pasi M, Maddocks JH, Lavery R. Analyzing ion distributions around DNA: sequence-dependence of potassium ion distributions from microsecond molecular dynamics. Nucleic Acids Res 2015; 43:2412-23. [PMID: 25662221 PMCID: PMC4344516 DOI: 10.1093/nar/gkv080] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Microsecond molecular dynamics simulations of B-DNA oligomers carried out in an aqueous environment with a physiological salt concentration enable us to perform a detailed analysis of how potassium ions interact with the double helix. The oligomers studied contain all 136 distinct tetranucleotides and we are thus able to make a comprehensive analysis of base sequence effects. Using a recently developed curvilinear helicoidal coordinate method we are able to analyze the details of ion populations and densities within the major and minor grooves and in the space surrounding DNA. The results show higher ion populations than have typically been observed in earlier studies and sequence effects that go beyond the nature of individual base pairs or base pair steps. We also show that, in some special cases, ion distributions converge very slowly and, on a microsecond timescale, do not reflect the symmetry of the corresponding base sequence.
Collapse
Affiliation(s)
- Marco Pasi
- Bases Moléculaires et Structurales des Systèmes Infectieux, CNRS UM 5086/Université Lyon I, IBCP, 7 passage du Vercors, 69367 Lyon, France
| | - John H Maddocks
- Section de Mathématiques, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Richard Lavery
- Bases Moléculaires et Structurales des Systèmes Infectieux, CNRS UM 5086/Université Lyon I, IBCP, 7 passage du Vercors, 69367 Lyon, France
| |
Collapse
|
17
|
Nkoua Ngavouka MD, Bosco A, Casalis L, Parisse P. Determination of Average Internucleotide Distance in Variable Density ssDNA Nanobrushes in the Presence of Different Cations Species. Macromolecules 2014; 47:8748-8753. [DOI: 10.1021/ma501712a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Maryse D. Nkoua Ngavouka
- PhD
School in Nanotechnology and Nanoscience, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
- Elettra-Sincrotrone
Trieste, S.C.p.A., Strada Statale 14-km
163,5 in AREA Science Park, I-34149, Basovizza Trieste, Italy
| | - Alessandro Bosco
- Elettra-Sincrotrone
Trieste, S.C.p.A., Strada Statale 14-km
163,5 in AREA Science Park, I-34149, Basovizza Trieste, Italy
| | - Loredana Casalis
- Elettra-Sincrotrone
Trieste, S.C.p.A., Strada Statale 14-km
163,5 in AREA Science Park, I-34149, Basovizza Trieste, Italy
- INSTM-ST Unit, Strada Statale 14-km 163,5 in AREA Science Park, I-34149, Basovizza Trieste, Italy
| | - Pietro Parisse
- INSTM-ST Unit, Strada Statale 14-km 163,5 in AREA Science Park, I-34149, Basovizza Trieste, Italy
| |
Collapse
|
18
|
Dans PD, Faustino I, Battistini F, Zakrzewska K, Lavery R, Orozco M. Unraveling the sequence-dependent polymorphic behavior of d(CpG) steps in B-DNA. Nucleic Acids Res 2014; 42:11304-20. [PMID: 25223784 PMCID: PMC4191396 DOI: 10.1093/nar/gku809] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 11/12/2022] Open
Abstract
We have made a detailed study of one of the most surprising sources of polymorphism in B-DNA: the high twist/low twist (HT/LT) conformational change in the d(CpG) base pair step. Using extensive computations, complemented with database analysis, we were able to characterize the twist polymorphism in the d(CpG) step in all the possible tetranucleotide environment. We found that twist polymorphism is coupled with BI/BII transitions, and, quite surprisingly, with slide polymorphism in the neighboring step. Unexpectedly, the penetration of cations into the minor groove of the d(CpG) step seems to be the key element in promoting twist transitions. The tetranucleotide environment also plays an important role in the sequence-dependent d(CpG) polymorphism. In this connection, we have detected a previously unexplored intramolecular C-H···O hydrogen bond interaction that stabilizes the low twist state when 3'-purines flank the d(CpG) step. This work explains a coupled mechanism involving several apparently uncorrelated conformational transitions that has only been partially inferred by earlier experimental or theoretical studies. Our results provide a complete description of twist polymorphism in d(CpG) steps and a detailed picture of the molecular choreography associated with this conformational change.
Collapse
Affiliation(s)
- Pablo Daniel Dans
- Joint BSC-CRG-IRB Research Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona 08028, Spain
| | - Ignacio Faustino
- Joint BSC-CRG-IRB Research Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona 08028, Spain
| | - Federica Battistini
- Joint BSC-CRG-IRB Research Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona 08028, Spain
| | - Krystyna Zakrzewska
- Bases Moléculaires et Structurales des Systèmes Infectieux, Univ. Lyon I/CNRS UMR 5086, IBCP, 7 Passage du Vercors, Lyon 69367, France
| | - Richard Lavery
- Bases Moléculaires et Structurales des Systèmes Infectieux, Univ. Lyon I/CNRS UMR 5086, IBCP, 7 Passage du Vercors, Lyon 69367, France
| | - Modesto Orozco
- Joint BSC-CRG-IRB Research Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona 08028, Spain Departament de Bioquimica, Facultat de Biologia, Avgda Diagonal 647, Barcelona 08028, Spain
| |
Collapse
|
19
|
Abstract
We present a new method for analyzing ion, or molecule, distributions around helical nucleic acids and illustrate the approach by analyzing data derived from molecular dynamics simulations. The analysis is based on the use of curvilinear helicoidal coordinates and leads to highly localized ion densities compared to those obtained by simply superposing molecular dynamics snapshots in Cartesian space. The results identify highly populated and sequence-dependent regions where ions strongly interact with the nucleic and are coupled to its conformational fluctuations. The data from this approach is presented as ion populations or ion densities (in units of molarity) and can be analyzed in radial, angular and longitudinal coordinates using 1D or 2D graphics. It is also possible to regenerate 3D densities in Cartesian space. This approach makes it easy to understand and compare ion distributions and also allows the calculation of average ion populations in any desired zone surrounding a nucleic acid without requiring references to its constituent atoms. The method is illustrated using microsecond molecular dynamics simulations for two different DNA oligomers in the presence of 0.15 M potassium chloride. We discuss the results in terms of convergence, sequence-specific ion binding and coupling with DNA conformation.
Collapse
Affiliation(s)
- Richard Lavery
- Bases Moléculaires et Structurales des Systèmes Infectieux, CNRS UMR 5086/Univ. Lyon I, IBCP, 7 Passage du Vercors, 69367 Lyon, France
| | - John H Maddocks
- Section de Mathématiques, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Marco Pasi
- Section de Mathématiques, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Krystyna Zakrzewska
- Bases Moléculaires et Structurales des Systèmes Infectieux, CNRS UMR 5086/Univ. Lyon I, IBCP, 7 Passage du Vercors, 69367 Lyon, France
| |
Collapse
|
20
|
Salila Vijayalal Mohan HK, An J, Zheng L. Sequence-dependent electrical response of ssDNA-decorated carbon nanotube, field-effect transistors to dopamine. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:2113-21. [PMID: 25551039 PMCID: PMC4273222 DOI: 10.3762/bjnano.5.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 10/24/2014] [Indexed: 05/08/2023]
Abstract
Single-walled carbon nanotube (SWCNT)-based field-effect transistors (FETs) have been explored for use as biological/chemical sensors. Dopamine (DA) is a biomolecule with great clinical significance for disease diagnosis, however, SWCNT FETs lack responsivity and selectivity for its detection due to the presence of interfering compounds such as uric acid (UA). Surface modification of CNTs using single-stranded deoxyribonucleic acid (ssDNA) renders the surface responsive to DA and screens the interferent. Due to the presence of different bases in ssDNA, it is necessary to investigate the effect of sequence on the FET-based molecular recognition of DA. SWCNT FETs were decorated with homo- and repeated-base ssDNA sequences, and the electrical response induced by DA in the presence and absence of UA was gauged in terms of the variation in transistor electrical parameters including conductance, transconductance, threshold voltage and hysteresis gap. Our results showed that the response of ssDNA-decorated devices to DA, irrespective of the presence or absence of UA, was DNA sequence dependent and exhibited the trend: G > A > C and GA > GT > AC > CT, for homo- and repeated-base sequences, respectively. The different response of various SWCNT-ssDNA systems to DA underlines the sequence selectivity, whereas the detection of DA in the presence of UA highlights the molecular selectivity of the ssDNA-decorated devices.
Collapse
Affiliation(s)
| | - Jianing An
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Lianxi Zheng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- Department of Mechanical Engineering, Khalifa University of Science, Technology & Research (KUSTAR), P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
21
|
Wei D, Wilson WD, Neidle S. Small-molecule binding to the DNA minor groove is mediated by a conserved water cluster. J Am Chem Soc 2013; 135:1369-77. [PMID: 23276263 DOI: 10.1021/ja308952y] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High-resolution crystal structures of the DNA duplex sequence d(CGCGAATTCGCG)(2) complexed with three minor-groove ligands are reported. A highly conserved cluster of 11 linked water molecules has been found in the native and all 3 ligand-bound structures, positioned at the boundary of the A/T and G/C regions where the minor groove widens. This cluster appears to play a key structural role in stabilizing noncovalently binding small molecules in the AT region of the B-DNA minor groove. The cluster extends from the backbone phosphate groups along the mouth of the groove and links to DNA and ligands by a network of hydrogen bonds that help to maintain the ligands in position. This arrangement of water molecules is distinct from, but linked by, hydrogen bonding to the well-established spine of hydration, which is displaced by bound ligands. Features of the water cluster and observed differences in binding modes help to explain the measured binding affinities and thermodynamic characteristics of these ligands on binding to AT sites in DNA.
Collapse
Affiliation(s)
- DengGuo Wei
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | | | | |
Collapse
|
22
|
Bansal M, Jayaram B, Mittal A. Nucleic acids in disease and disorder: Understanding the language of life emerging from the ‘ABC’ of DNA. J Biosci 2012; 37:375-8. [DOI: 10.1007/s12038-012-9226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Abstract
This article provides a retrospective on the ABC initiative in the area of all-atom molecular dynamics (MD) simulations including explicit solvent on all tetranucleotide steps of duplex B-form DNA duplex, ca. 2012. The ABC consortium has completed two phases of simulations, the most current being a set of 50-100 trajectories based on the AMBER ff99 force field together with the parmbsc0 modification. Some general perspectives on the field of MD on DNA and sequence effects on DNA structure are provided, followed by an overview our MD results, including a detailed comparison of the ff99/parmbsc0 results with crystal and NMR structures available for d(CGCGAATTCGCG). Some projects inspired by or related to the ABC initiative and database are also reviewed, including methods for the trajectory analyses, informatics of dealing with the large database of results, compressions of trajectories for efficacy of distribution, DNA solvation by water and ions, parameterization of coarse-grained models with applications and gene finding and genome annotation.
Collapse
Affiliation(s)
- David L Beveridge
- Department of Chemistry and Molecular Biophysics Program, Wesleyan University Middletown, CT 06459, USA.
| | | | | |
Collapse
|