1
|
Fang XL, Li QJ, Wang L, Shi YX, Hu LY, Zhao XY, Lv W, Yu HM. Identification of a gene score related to antigen processing and presentation machinery for predicting prognosis in head and neck squamous cell carcinoma and its potential implications for immunotherapy. Clin Transl Oncol 2024:10.1007/s12094-024-03829-2. [PMID: 39738932 DOI: 10.1007/s12094-024-03829-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Despite its crucial role in immune surveillance and cell survival of tumors, the significance of MHC antigen processing and presentation machinery (APM) is still not fully understood in head and neck squamous cell carcinoma (HNSCC). We sought to develop an APM gene score (APMGS) to predict prognosis and reveal the molecular and immune traits of the APMGS-defined subgroups in HNSCC. METHODS Based on the APM-related genes acquired from 6 databases, 117 combined machine learning algorithms were applied to develop APMGS with The Cancer Genome Atlas (TCGA)-HNSCC database and validated with the Gene Expression Omnibus (GEO) dataset. Comprehensive analysis was performed to investigate the molecular and immune features of APMGS subgroups. RESULTS The APMGS constructed by StepCox [both] + Ridge method achieved the highest C-index and area under curve (AUC) at 3 years and were thus adopted as the final model. Low-APMGS patients exhibited superior overall survival compared with high-APMGS patients in both TCGA and GEO cohorts. Subsequent analysis confirmed that a low APMGS was associated with immune response-related pathways; low TP53 mutation rate and low tumor mutation burden (TMB); a less aggressive phenotype; high infiltration of activated CD4+ memory T cells, CD8+ T cells, follicular helper T cells, and Tregs; active immunity; and higher sensitivity to chemotherapeutic and targeted agents. In contrast, a high APMGS linked to proteasome and protein export pathways; high TP53 mutation rate and high TMB; a more aggressive phenotype; high infiltration of M0 macrophages and eosinophils; suppressed immunity; and lower sensitivity to chemotherapeutic and targeted agents. CONCLUSIONS Our findings suggest that APMGS has potential to predict the prognosis, and molecular and immune characteristics of HNSCC, and may also serve as an indicator for immunotherapy benefit.
Collapse
Affiliation(s)
- Xue-Liang Fang
- Department of Otolaryngology, Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor (2018RU003), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Qing-Jie Li
- Department of Radiation Oncology, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-Sen University, Sun Yat-Sen University Cancer Center, the State Key Laboratory of Oncology in South China, Guangzhou, 510060, China
| | - Li Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yu-Xuan Shi
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Li-Ya Hu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Xuan-Yu Zhao
- Department of Otolaryngology, Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor (2018RU003), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Wei Lv
- Department of Otolaryngology, Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor (2018RU003), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China.
| | - Hong-Meng Yu
- Department of Otolaryngology, Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor (2018RU003), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China.
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
2
|
Azahar II, Sharudin NA, Noor Din AHM, Che Has AT, Mohd Nafi SN, Jaafar H, Mokhtar NF. nNav1.5 expression is associated with glutamate level in breast cancer cells. Biol Res 2022; 55:18. [PMID: 35488278 PMCID: PMC9052458 DOI: 10.1186/s40659-022-00387-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/31/2022] [Indexed: 12/26/2022] Open
Abstract
Background Glutamate and voltage-gated sodium channels, both have been the target of intense investigation for its involvement in carcinogenesis and progression of malignant disease. Breast cancer with increased level of glutamate often metastasize to other organs (especially bone), whilst re-expression of ‘neonatal’ Nav1.5, nNav1.5 in breast cancer is known to promote cell invasion in vitro, metastasis in vivo and positive lymph node metastasis in patients. Methods In this study, the role of nNav1.5 in regulating glutamate level in human breast cancer cells was examined using pharmacological approach (VGSCs specific blocker, TTX, glutamate release inhibitor, riluzole and siRNA-nNav1.5). Effect of these agents were evaluated based on endogenous and exogenous glutamate concentration using glutamate fluorometric assay, mRNA expression of nNav1.5 using qPCR and finally, invasion using 3D culture assay. Results Endogenous and exogenous glutamate levels were significantly higher in aggressive human breast cancer cells, MDA-MB-231 cells compared to less aggressive human breast cancer cells, MCF-7 and non-cancerous human breast epithelial cells, MCF-10A. Treatment with TTX to MDA-MB-231 cells resulted in significant reduction of endogenous and exogenous glutamate levels corresponded with significant suppression of cell invasion. Subsequently, downregulation of nNav1.5 gene was observed in TTX-treated cells. Conclusions An interesting link between nNav1.5 expression and glutamate level in aggressive breast cancer cells was detected and requires further investigation.
Collapse
Affiliation(s)
- Irfan Irsyad Azahar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Nur Aishah Sharudin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Hafiz Murtadha Noor Din
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Siti Norasikin Mohd Nafi
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health, Kelantan, Malaysia
| | - Hasnan Jaafar
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health, Kelantan, Malaysia
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
3
|
Discovering the Triad between Nav1.5, Breast Cancer, and the Immune System: A Fundamental Review and Future Perspectives. Biomolecules 2022; 12:biom12020310. [PMID: 35204811 PMCID: PMC8869595 DOI: 10.3390/biom12020310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 02/05/2023] Open
Abstract
Nav1.5 is one of the nine voltage-gated sodium channel-alpha subunit (VGSC-α) family members. The Nav1.5 channel typically carries an inward sodium ion current that depolarises the membrane potential during the upstroke of the cardiac action potential. The neonatal isoform of Nav1.5, nNav1.5, is produced via VGSC-α alternative splicing. nNav1.5 is known to potentiate breast cancer metastasis. Despite their well-known biological functions, the immunological perspectives of these channels are poorly explored. The current review has attempted to summarise the triad between Nav1.5 (nNav1.5), breast cancer, and the immune system. To date, there is no such review available that encompasses these three components as most reviews focus on the molecular and pharmacological prospects of Nav1.5. This review is divided into three major subsections: (1) the review highlights the roles of Nav1.5 and nNav1.5 in potentiating the progression of breast cancer, (2) focuses on the general connection between breast cancer and the immune system, and finally (3) the review emphasises the involvements of Nav1.5 and nNav1.5 in the functionality of the immune system and the immunogenicity. Compared to the other subsections, section three is pretty unexploited; it would be interesting to study this subsection as it completes the triad.
Collapse
|
4
|
D'Imperio S, Monasky MM, Micaglio E, Ciconte G, Anastasia L, Pappone C. Brugada Syndrome: Warning of a Systemic Condition? Front Cardiovasc Med 2021; 8:771349. [PMID: 34722688 PMCID: PMC8553994 DOI: 10.3389/fcvm.2021.771349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) is a hereditary disorder, characterized by a specific electrocardiogram pattern and highly related to an increased risk of sudden cardiac death. BrS has been associated with other cardiac and non-cardiac pathologies, probably because of protein expression shared by the heart and other tissue types. In fact, the most commonly found mutated gene in BrS, SCN5A, is expressed throughout nearly the entire body. Consistent with this, large meals and alcohol consumption can trigger arrhythmic events in patients with BrS, suggesting a role for organs involved in the digestive and metabolic pathways. Ajmaline, a drug used to diagnose BrS, can have side effects on non-cardiac tissues, such as the liver, further supporting the idea of a role for organs involved in the digestive and metabolic pathways in BrS. The BrS electrocardiogram (ECG) sign has been associated with neural, digestive, and metabolic pathways, and potential biomarkers for BrS have been found in the serum or plasma. Here, we review the known associations between BrS and various organ systems, and demonstrate support for the hypothesis that BrS is not only a cardiac disorder, but rather a systemic one that affects virtually the whole body. Any time that the BrS ECG sign is found, it should be considered not a single disease, but rather the final step in any number of pathways that ultimately threaten the patient's life. A multi-omics approach would be appropriate to study this syndrome, including genetics, epigenomics, transcriptomics, proteomics, metabolomics, lipidomics, and glycomics, resulting eventually in a biomarker for BrS and the ability to diagnose this syndrome using a minimally invasive blood test, avoiding the risk associated with ajmaline testing.
Collapse
Affiliation(s)
- Sara D'Imperio
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Michelle M Monasky
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Emanuele Micaglio
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Giuseppe Ciconte
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Luigi Anastasia
- Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy.,Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|