1
|
Zhu C, Li J, Sun W, Li D, Wang Y, Shen XC. Signaling Mechanism of Cuproptosis Activating cGAS-STING Immune Pathway. JACS AU 2024; 4:3988-3999. [PMID: 39483232 PMCID: PMC11522904 DOI: 10.1021/jacsau.4c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 11/03/2024]
Abstract
Copper-mediated programmed cell death, which influences the regulation of tumor progression, is an effective approach for antitumor molecular therapy. Unlike apoptosis, copper complex-induced cuproptosis by lipid-acylated protein aggregation triggers the mitochondrial proteotoxic stress response, which could be associated with immunomodulation. However, it remains a great challenge to understand the distinctive molecular mechanisms that presumably activate immunity by cuproptosis. Here, the new nonlabeling fluorescent molecular tools of Cu-DPPZ-Py+ and Cu-DPPZ-Ph are synthesized and used to investigate the differential immune signaling mechanisms induced by copper-mediated cuproptosis or apoptosis. With Cu-DPPZ-Py+ and Cu-Elesclomol, there is strong evidence that the triggering cuproptosis significantly drives mitochondrial DNA (mtDNA) release to activate innate immunity via cyclic GMP-AMP synthase-stimulation of interferon genes (cGAS-STING), which can improve T cell antitumor immunity in vivo. By contrast, it is observed that Cu-DPPZ-Ph treated tumor cells could release intracellular caspase-3, resulting in apoptosis-associated immunosuppression. This study supports insights into how cuproptosis bridges cGAS-STING immune pathways, contributing to the development of cuproptosis-based antitumor immunotherapy.
Collapse
Affiliation(s)
- Chengyuan Zhu
- State Key Laboratory for
Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory
for Chemistry and Molecular Engineering of Medicinal Resources (Ministry
of Education of China), Collaborative Innovation Center for Guangxi
Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jialiang Li
- State Key Laboratory for
Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory
for Chemistry and Molecular Engineering of Medicinal Resources (Ministry
of Education of China), Collaborative Innovation Center for Guangxi
Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Wanying Sun
- State Key Laboratory for
Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory
for Chemistry and Molecular Engineering of Medicinal Resources (Ministry
of Education of China), Collaborative Innovation Center for Guangxi
Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Desheng Li
- State Key Laboratory for
Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory
for Chemistry and Molecular Engineering of Medicinal Resources (Ministry
of Education of China), Collaborative Innovation Center for Guangxi
Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yiliang Wang
- State Key Laboratory for
Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory
for Chemistry and Molecular Engineering of Medicinal Resources (Ministry
of Education of China), Collaborative Innovation Center for Guangxi
Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xing-Can Shen
- State Key Laboratory for
Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory
for Chemistry and Molecular Engineering of Medicinal Resources (Ministry
of Education of China), Collaborative Innovation Center for Guangxi
Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
2
|
Mamindla A, Murugan D, Varadhan M, Ajaykamal T, Rangasamy L, Palaniandavar M, Rajendiran V. Mixed-ligand copper(ii)-diimine complexes of 3-formylchromone- N 4-phenyl thiosemicarbazone: 5,6-dmp co-ligand confers enhanced cytotoxicity. RSC Adv 2024; 14:31704-31722. [PMID: 39376525 PMCID: PMC11457010 DOI: 10.1039/d4ra04997g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024] Open
Abstract
The promising biological applications of thiosemicarbazone derivatives have inspired the design, synthesis, and study of their Cu(ii) complexes for anticancer therapeutic applications. Herein, we have evaluated the DNA/protein binding, DNA cleaving, and cytotoxic properties of four mixed-ligand Cu(ii) complexes of the type [Cu(L)(diimine)](NO3) 1-4, where HL is 4-oxo-4H-chromene-3-carbaldehyde-4(N)-phenylthiosemicarbazone and diimine is 2,2'-bipyridine (bpy, 1) 1,10-phenanthroline (phen, 2), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp, 3), or dipyrido-[3,2-f:2',3'-h]-quinoxaline (dpq, 4). Interestingly, complex 3 with higher lipophilicity shows stronger DNA binding and oxidative DNA cleavage, higher ROS production, and more reversible redox behaviour, resulting in its remarkable cytotoxicity (IC50, 1.26 μM) against HeLa cervical cancer cells, and rendering it 5 times more potent than the widely used drug cisplatin. The same complex induces enhanced apoptotic cell death on HeLa cells but lower toxicity towards the non-cancerous PBMC cells. Molecular docking studies suggest that all the complexes bind in the minor groove of DNA and subdomain II of HSA, which is in close agreement with the experimental results. Also, 3 shows cytotoxicity higher than the analogous mixed ligand Cu(ii) complexes, reported already, emphasizing the importance of co-ligand in tuning the anticancer activity.
Collapse
Affiliation(s)
- Anjaneyulu Mamindla
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu Thiruvarur 610005 India
| | - Dhanashree Murugan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT) Vellore 632014 Tamilnadu India
| | - Manikandan Varadhan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu Thiruvarur 610005 India
| | | | - Loganathan Rangasamy
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT) Vellore 632014 Tamilnadu India
| | | | - Venugopal Rajendiran
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu Thiruvarur 610005 India
| |
Collapse
|
3
|
Karpagam S, Mamindla A, Kumar Sali V, Niranjana RS, Periasamy VS, Alshatwi AA, Akbarsha MA, Rajendiran V. Folic acid-conjugated mixed-ligand copper(II) complexes as promising cytotoxic agents for triple-negative breast cancers: A case study using MDA-MB-231 cell. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Molano MF, Lorett Velasquez VP, Erben MF, Nossa González DL, Loaiza AE, Echeverría GA, Piro OE, Tobón YA, Ben Tayeb K, Gómez Castaño JA. Crystal structure, spectroscopic characterization and Hirshfeld surface analysis of aqua-dichlorido-{ N-[(pyridin-2-yl)methyl-idene]aniline}copper(II) monohydrate. Acta Crystallogr E Crystallogr Commun 2020; 76:148-154. [PMID: 32071738 PMCID: PMC7001833 DOI: 10.1107/s2056989019017213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/24/2019] [Indexed: 11/11/2022]
Abstract
The reaction of N-phenyl-1-(pyridin-2-yl)methanimine with copper chloride dihydrate produced the title neutral complex, [CuCl2(C12H10N2)(H2O)]·H2O. The CuII ion is five-coordinated in a distorted square-pyramidal geometry, in which the two N atoms of the bidentate Schiff base, as well as one chloro and a water mol-ecule, form the irregular base of the pyramidal structure. Meanwhile, the apical chloride ligand inter-acts through a strong hydrogen bond with a water mol-ecule of crystallization. In the crystal, mol-ecules are arranged in pairs, forming a stacking of symmetrical cyclic dimers that inter-act in turn through strong hydrogen bonds between the chloride ligands and both the coordinated and the crystallization water mol-ecules. The mol-ecular and electronic structures of the complex were also studied in detail using EPR (continuous and pulsed), FT-IR and Raman spectroscopy, as well as magnetization measurements. Likewise, Hirshfeld surface analysis was used to investigate the inter-molecular inter-actions in the crystal packing.
Collapse
Affiliation(s)
- Miguel F. Molano
- Laboratorio de Química Teórica y Computacional, Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Boyacá, 050030, Colombia
| | | | - Mauricio F. Erben
- Centro de Química Inorgánica (CEQUINOR), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 962, 1900 La Plata, Argentina
| | - Diana L. Nossa González
- Centro de Química Inorgánica (CEQUINOR), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 962, 1900 La Plata, Argentina
| | - Alix E. Loaiza
- Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231561 Bogotá, Colombia
| | - Gustavo A. Echeverría
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and IFLP(CONICET), C.C. 67, 1900 La Plata, Argentina
| | - Oscar E. Piro
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and IFLP(CONICET), C.C. 67, 1900 La Plata, Argentina
| | - Yeny A. Tobón
- University of Lille, CNRS, UMR 8516, LASIR - Laboratoire de Spectrochimie Infrarouge et Raman, F-59000 Lille, France
| | - Karima Ben Tayeb
- University of Lille, CNRS, UMR 8516, LASIR - Laboratoire de Spectrochimie Infrarouge et Raman, F-59000 Lille, France
| | - Jovanny A. Gómez Castaño
- Laboratorio de Química Teórica y Computacional, Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Boyacá, 050030, Colombia
| |
Collapse
|
5
|
Binita Chanu S, Raza MDK, Banerjee S, Mina PR, Musib D, Roy M. ROS dependent antitumour activity of photo-activated iron(III) complexes of amino acids. J CHEM SCI 2019. [DOI: 10.1007/s12039-018-1584-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Santhi S, Amala S, Basheer SM. Experimental and computational investigation of highly selective dual-channel chemosensor for Al(III) and Zn(II) ions: construction of logic gates. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1541-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Musib D, Raza MK, Kundu S, Roy M. Modulating In Vitro Photodynamic Activities of Copper(II) Complexes. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dulal Musib
- Department of Chemistry; National Institute of Technology Manipur; 795004 Langol, Imphal West India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry; Indian Institute of Science, Bangalore; CV Raman Avenue 560012 Bangalore India
| | - Somashree Kundu
- UGC-DAE Consortium for Scientific Research; Kolkata Centre; III/LB-8 900098 Bidhan Nagar, Kolkata India
| | - Mithun Roy
- Department of Chemistry; National Institute of Technology Manipur; 795004 Langol, Imphal West India
| |
Collapse
|
8
|
Malik MA, Dar OA, Gull P, Wani MY, Hashmi AA. Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy. MEDCHEMCOMM 2018; 9:409-436. [PMID: 30108933 PMCID: PMC6071736 DOI: 10.1039/c7md00526a] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/05/2017] [Indexed: 12/18/2022]
Abstract
In recent years, the number of people suffering from cancer and multidrug-resistant infections has sharply increased, leaving humanity without any choice but to search for new treatment options and strategies. Although cancer is considered the leading cause of death worldwide, it also paves the way many microbial infections and thus increases this burden manifold. Development of small molecules as anticancer and anti-microbial agents has great potential and a plethora of drugs are already available to combat these diseases. However, the wide occurrence of multidrug resistance in both cancer and microbial infections necessitates the development of new and potential molecules with desired properties that could circumvent the multidrug resistance problem. A successful strategy in anticancer chemotherapy has been the use of metallo-drugs and this strategy has the potential to be used for treating multidrug-resistant infections more efficiently. As a class of molecules, Schiff bases have been the topic of considerable interest, owing to their versatile metal chelating properties, inherent biological activities and flexibility to modify the structure to fine-tune it for a particular biological application. Schiff base-based metallo-drugs are being researched to develop new anticancer and anti-microbial chemotherapies and because both anticancer and anti-microbial targets are different, heterocyclic Schiff bases can be structurally modified to achieve the desired molecule, targeting a particular disease. In this review, we collect the most recent and relevant literature concerning the synthesis of heterocyclic Schiff base metal complexes as anticancer and anti-microbial agents and discuss the potential and future of this class of metallo-drugs as either anticancer or anti-microbial agents.
Collapse
Affiliation(s)
- Manzoor Ahmad Malik
- Department of Chemistry , Jamia Millia Islamia (Central University) , New Delhi-110025 , India . ; Tel: +91 9868523358
| | - Ovas Ahmad Dar
- Department of Chemistry , Jamia Millia Islamia (Central University) , New Delhi-110025 , India . ; Tel: +91 9868523358
| | - Parveez Gull
- Department of Chemistry , Jamia Millia Islamia (Central University) , New Delhi-110025 , India . ; Tel: +91 9868523358
| | - Mohmmad Younus Wani
- Texas Therapeutics Institute , Brown Foundation Institute of Molecular Medicine , The University of Texas Health Science Center at Houston , 1881 East Road , Houston 77054 , TX , USA
- Chemistry Department , Faculty of Science , University of Jeddah , Jeddah , Kingdom of Saudi Arabia
| | - Athar Adil Hashmi
- Department of Chemistry , Jamia Millia Islamia (Central University) , New Delhi-110025 , India . ; Tel: +91 9868523358
- Chemistry Department , Faculty of Science , King Abdulaziz University , P.O. Box 80203 , Jeddah , 21589 , Saudi Arabia
| |
Collapse
|
9
|
Roy S, Mohanty M, Pasayat S, Majumder S, Senthilguru K, Banerjee I, Reichelt M, Reuter H, Sinn E, Dinda R. Synthesis, structure and cytotoxicity of a series of Dioxidomolybdenum(VI) complexes featuring Salan ligands. J Inorg Biochem 2017; 172:110-121. [PMID: 28448877 DOI: 10.1016/j.jinorgbio.2017.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 01/02/2023]
Abstract
Seven hexacoordinated cis-dioxidomolybdenum(VI) complexes [MoO2L1-7] (1-7) derived from various tetradentate diamino bis(phenolato) "salan" ligands, N,N'-dimethyl-N,N'-bis-(2-hydroxy-3-X-5-Y-6-Z-benzyl)-1,2-diaminoethane {(X=Br, Y=Me, Z=H (H2L1); X=Me, YCl, Z=H (H2L2); X=iPr, Y=Cl, Z=Me (H2L3)} and N,N'-bis-(2-hydroxy-3-X-5-Y-6-Z-benzyl)-1,2-diaminopropane {(X=Y=tBu, Z=H (H2L4); X=Y=Me, Z=H (H2L5); X=iPr, YCl, Z=Me (H2L6); X=Y=Br, Z=H (H2L7)} containing O-N donor atoms, have been isolated and structurally characterized. The formation of cis-dioxidomolybdenum(VI) complexes was confirmed by elemental analysis, IR, UV-vis and NMR spectroscopy, ESI-MS and cyclic voltammetry. X-ray crystallography showed the O2N2 donor set to define an octahedral geometry in each case. The complexes (1-7) were tested for their in vitro antiproliferative activity against HT-29 and HeLa cancer cell line. IC50 values of the complexes in HT-29 follow the order 6<7<<1<2<5<<3<4 while the order was 6<7<5<1<<3<4<2 in HeLa cells. Some of the complexes proved to be as active as the clinical referred drugs, and the greater potency of 6 and 7 (IC50 values of 6 are 2.62 and 10.74μM and that of 7 is 11.79 and 30.48μM in HT-29 and HeLa cells, respectively) may be dependent on the substituents in the salan ligand environment coordinated to the metal.
Collapse
Affiliation(s)
- Satabdi Roy
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sagarika Pasayat
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sudarshana Majumder
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Kulanthaivel Senthilguru
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Indranil Banerjee
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Martin Reichelt
- Institute of Chemistry of New Materials, University of Osnabrück, Barbarastraße 6, 49069 Osnabrück, Germany
| | - Hans Reuter
- Institute of Chemistry of New Materials, University of Osnabrück, Barbarastraße 6, 49069 Osnabrück, Germany
| | - Ekkehard Sinn
- Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
10
|
Tridentate Schiff base (ONO) transition metal complexes: Synthesis, crystal structure, spectroscopic and larvicidal studies. J CHEM SCI 2016. [DOI: 10.1007/s12039-016-1107-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Synthesis, crystal structures, spectroscopic characterization and in vitro antidiabetic studies of new Schiff base Copper(II) complexes. J CHEM SCI 2016. [DOI: 10.1007/s12039-016-1099-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Adamski A, Fik MA, Kubicki M, Hnatejko Z, Gurda D, Fedoruk-Wyszomirska A, Wyszko E, Kruszka D, Dutkiewicz Z, Patroniak V. Full characterization and cytotoxic activity of new silver(i) and copper(i) helicates with quaterpyridine. NEW J CHEM 2016. [DOI: 10.1039/c5nj03601a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA binding and cells' cycle disorders caused by four new dinuclear Ag(i) and Cu(i) double helicates with quaterpyridine ligands.
Collapse
Affiliation(s)
- Ariel Adamski
- Faculty of Chemistry
- Adam Mickiewicz University
- Poznań
- Poland
| | - Marta A. Fik
- Faculty of Chemistry
- Adam Mickiewicz University
- Poznań
- Poland
| | - Maciej Kubicki
- Faculty of Chemistry
- Adam Mickiewicz University
- Poznań
- Poland
| | | | - Dorota Gurda
- Institute of Bioorganic Chemistry
- Polish Academy of Science
- Poznań
- Poland
| | | | - Eliza Wyszko
- Institute of Bioorganic Chemistry
- Polish Academy of Science
- Poznań
- Poland
| | - Dariusz Kruszka
- Department of Chemical Technology of Drugs
- Poznań University of Medical Sciences
- Poznań
- Poland
| | - Zbigniew Dutkiewicz
- Department of Chemical Technology of Drugs
- Poznań University of Medical Sciences
- Poznań
- Poland
| | | |
Collapse
|