1
|
Bhatia T, Sharma S. Drug Repurposing: Insights into Current Advances and Future Applications. Curr Med Chem 2025; 32:468-510. [PMID: 37946344 DOI: 10.2174/0109298673266470231023110841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 11/12/2023]
Abstract
Drug development is a complex and expensive process that involves extensive research and testing before a new drug can be approved for use. This has led to a limited availability of potential therapeutics for many diseases. Despite significant advances in biomedical science, the process of drug development remains a bottleneck, as all hypotheses must be tested through experiments and observations, which can be timeconsuming and costly. To address this challenge, drug repurposing has emerged as an innovative strategy for finding new uses for existing medications that go beyond their original intended use. This approach has the potential to speed up the drug development process and reduce costs, making it an attractive option for pharmaceutical companies and researchers alike. It involves the identification of existing drugs or compounds that have the potential to be used for the treatment of a different disease or condition. This can be done through a variety of approaches, including screening existing drugs against new disease targets, investigating the biological mechanisms of existing drugs, and analyzing data from clinical trials and electronic health records. Additionally, repurposing drugs can lead to the identification of new therapeutic targets and mechanisms of action, which can enhance our understanding of disease biology and lead to the development of more effective treatments. Overall, drug repurposing is an exciting and promising area of research that has the potential to revolutionize the drug development process and improve the lives of millions of people around the world. The present review provides insights on types of interaction, approaches, availability of databases, applications and limitations of drug repurposing.
Collapse
Affiliation(s)
- Trisha Bhatia
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, 382007, India
| | - Shweta Sharma
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, 382007, India
| |
Collapse
|
2
|
Yadav R, Choudhury C, Kumar Y, Bhatia A. Virtual repurposing of ursodeoxycholate and chenodeoxycholate as lead candidates against SARS-Cov2-Envelope protein: A molecular dynamics investigation. J Biomol Struct Dyn 2022; 40:5147-5158. [PMID: 33382021 PMCID: PMC7784831 DOI: 10.1080/07391102.2020.1868339] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/18/2020] [Indexed: 12/27/2022]
Abstract
Drug repurposing is an apt choice to combat the currently prevailing global threat of COVID-19, caused by SARS-Cov2in absence of any specific medication/vaccine. The present work employs state of art computational methods like homology modelling, molecular docking and molecular dynamics simulations to evaluate the potential of two widely used surfactant drugs namely chenodeoxycholate(CDC) and ursodeoxycholate (UDC), to bind to the envelope protein of SARS-Cov2(SARS-Cov2-E).The monomeric unit of SARS-Cov2-E was modelled from a close homologue (>90% sequence identity) and a pentameric assembly was modelled using symmetric docking, followed by energy minimization in a DPPC membrane environment. The minimized structure was used to generate best scoring SARS-Cov2-E-CDC/UDC complexes through blind docking. These complexes were subjected to 230 ns molecular dynamics simulations in triplicates in a DPPC membrane environment. Comparative analyses of structural properties and molecular interaction profiles from the MD trajectories revealed that, both CDC and UDC could stably bind to SARS-Cov2-E through H-bonds, water-bridges and hydrophobic contacts with the transmembrane-channelresidues.T30 was observed to be a key residue for CDC/UDC binding. CDC/UDC binding affected the H-bonding pattern between adjacent monomeric chains, slackening the compact transmembrane region of SARS-Cov2-E. Additionally, the polar functional groups of CDC/UDC facilitated entry of a large number of water molecules into the channel. These observations suggest CDC/UDC as potential candidates to hinder the survival of SARS-Cov2 by disrupting the structure of SARS-Cov2-E and facilitating the entry of solvents/polar inhibitors inside the viral cell.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Reena Yadav
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India;
| | - Chinmayee Choudhury
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India;
| | - Yashwant Kumar
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India;
| |
Collapse
|
3
|
Kiewhuo K, Gogoi D, Mahanta HJ, Rawal RK, Das D, Sastry GN. North East India Medicinal Plants Database (NEI-MPDB). Comput Biol Chem 2022; 100:107728. [DOI: 10.1016/j.compbiolchem.2022.107728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/03/2022]
|
4
|
Choudhury C, Arul Murugan N, Deva Priyakumar U. Structure-based drug repurposing: traditional and advanced AI/ML-aided methods. Drug Discov Today 2022; 27:1847-1861. [PMID: 35301148 PMCID: PMC8920090 DOI: 10.1016/j.drudis.2022.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/16/2022] [Accepted: 03/10/2022] [Indexed: 02/08/2023]
Abstract
The current global health emergency in the form of the Coronavirus 2019 (COVID-19) pandemic has highlighted the need for fast, accurate, and efficient drug discovery pipelines. Traditional drug discovery projects relying on in vitro high-throughput screening (HTS) involve large investments and sophisticated experimental set-ups, affordable only to big biopharmaceutical companies. In this scenario, application of efficient state-of-the-art computational methods and modern artificial intelligence (AI)-based algorithms for rapid screening of repurposable chemical space [approved drugs and natural products (NPs) with proven pharmacokinetic profiles] to identify the initial leads is a powerful option to save resources and time. Structure-based drug repurposing is a popular in silico repurposing approach. In this review, we discuss traditional and modern AI-based computational methods and tools applied at various stages for structure-based drug discovery (SBDD) pipelines. Additionally, we highlight the role of generative models in generating molecules with scaffolds from repurposable chemical space. Teaser: This review highlights the importance of repurposable chemical space, and the contributions of conventional in silico approaches and modern machine-learning algorithms for rapid structure-based drug repurposing.
Collapse
Affiliation(s)
- Chinmayee Choudhury
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector-12, Chandigarh 160012, India
| | - N Arul Murugan
- Department of Computer Science, School of Electrical Engineering and Computer Sciences, KTH Royal Institute of Technology, S-100 44, Stockholm, Sweden; Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India.
| | - U Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| |
Collapse
|
5
|
Tyagi R, Singh A, Chaudhary KK, Yadav MK. Pharmacophore modeling and its applications. Bioinformatics 2022. [DOI: 10.1016/b978-0-323-89775-4.00009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
6
|
Ukey S, Choudhury C, Sharma P. Identification of unique subtype-specific interaction features in Class II zinc-dependent HDAC subtype binding pockets: A computational study. J Biosci 2021. [DOI: 10.1007/s12038-021-00197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Choudhury C. Fragment tailoring strategy to design novel chemical entities as potential binders of novel corona virus main protease. J Biomol Struct Dyn 2021; 39:3733-3746. [PMID: 32452282 PMCID: PMC7284137 DOI: 10.1080/07391102.2020.1771424] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
The recent pandemic of severe acute respiratory syndrome-coronavirus2 (SARS-CoV-2) infection (COVID-19) has put the world on serious alert. The main protease of SARS-CoV-2 (SARS-CoV-2-MPro) cleaves the long polyprotein chains to release functional proteins required for replication of the virus and thus is a potential drug target to design new chemical entities in order to inhibit the viral replication in human cells. The current study employs state of art computational methods to design novel molecules by linking molecular fragments which specifically bind to different constituent sub-pockets of the SARS-CoV-2-MPro binding site. A huge library of 191678 fragments was screened against the binding cavity of SARS-CoV-2-MPro and high affinity fragments binding to adjacent sub-pockets were tailored to generate new molecules. These newly formed molecules were further subjected to molecular docking, ADMET filters and MM-GBSA binding energy calculations to select 17 best molecules (named as MP-In1 to MP-In17), which showed comparable binding affinities and interactions with the key binding site residues as the reference ligand. The complexes of these 17 molecules and the reference molecule with SARS-CoV-2-MPro, were subjected to molecular dynamics simulations, which assessed the stabilities of their binding with SARS-CoV-2-MPro. Fifteen molecules were found to form stable complexes with SARS-CoV-2-MPro. These novel chemical entities designed specifically according to the pharmacophoric requirements of SARS-CoV-2-MPro binding pockets showed good synthetic feasibility and returned no exact match when searched against chemical databases. Considering their interactions, binding efficiencies and novel chemotypes, they can be further evaluated as potential starting points for SARS-CoV-2 drug discovery.
Collapse
Affiliation(s)
- Chinmayee Choudhury
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| |
Collapse
|
8
|
Choudhury C, Bhardwaj A. Hybrid Dynamic Pharmacophore Models as Effective Tools to Identify Novel Chemotypes for Anti-TB Inhibitor Design: A Case Study With Mtb-DapB. Front Chem 2020; 8:596412. [PMID: 33425853 PMCID: PMC7793862 DOI: 10.3389/fchem.2020.596412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/28/2020] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance (AMR) is one of the most serious global public health threats as it compromises the successful treatment of deadly infectious diseases like tuberculosis. New therapeutics are constantly needed but it takes a long time and is expensive to explore new biochemical space. One way to address this issue is to repurpose the validated targets and identify novel chemotypes that can simultaneously bind to multiple binding pockets of these targets as a new lead generation strategy. This study reports such a strategy, dynamic hybrid pharmacophore model (DHPM), which represents the combined interaction features of different binding pockets contrary to the conventional approaches, where pharmacophore models are generated from single binding sites. We have considered Mtb-DapB, a validated mycobacterial drug target, as our model system to explore the effectiveness of DHPMs to screen novel unexplored compounds. Mtb-DapB has a cofactor binding site (CBS) and an adjacent substrate binding site (SBS). Four different model systems of Mtb-DapB were designed where, either NADPH/NADH occupies CBS in presence/absence of an inhibitor 2, 6-PDC in the adjacent SBS. Two more model systems were designed, where 2, 6-PDC was linked to NADPH and NADH to form hybrid molecules. The six model systems were subjected to 200 ns molecular dynamics simulations and trajectories were analyzed to identify stable ligand-receptor interaction features. Based on these interactions, conventional pharmacophore models (CPM) were generated from the individual binding sites while DHPMs were created from hybrid-molecules occupying both binding sites. A huge library of 1,563,764 publicly available molecules were screened by CPMs and DHPMs. The screened hits obtained from both types of models were compared based on their Hashed binary molecular fingerprints and 4-point pharmacophore fingerprints using Tanimoto, Cosine, Dice and Tversky similarity matrices. Molecules screened by DHPM exhibited significant structural diversity, better binding strength and drug like properties as compared to the compounds screened by CPMs indicating the efficiency of DHPM to explore new chemical space for anti-TB drug discovery. The idea of DHPM can be applied for a wide range of mycobacterial or other pathogen targets to venture into unexplored chemical space.
Collapse
Affiliation(s)
- Chinmayee Choudhury
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anshu Bhardwaj
- Bioinformatics Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
9
|
Choudhury C, Narahari Sastry G. Pharmacophore Modelling and Screening: Concepts, Recent Developments and Applications in Rational Drug Design. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2019. [DOI: 10.1007/978-3-030-05282-9_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Gaur AS, Bhardwaj A, Sharma A, John L, Vivek MR, Tripathi N, Bharatam PV, Kumar R, Janardhan S, Mori A, Banerji A, Lynn AM, Hemrom AJ, Passi A, Singh A, Kumar A, Muvva C, Madhuri C, Choudhury C, Kumar DA, Pandit D, Bharti DR, Kumar D, Singam ERA, Raghava GPS, Sailaja H, Jangra H, Raithatha K, Tanneeru K, Chaudhary K, Karthikeyan M, Prasanthi M, Kumar N, Yedukondalu N, Rajput NK, Saranya PS, Narang P, Dutta P, Krishnan RV, Sharma R, Srinithi R, Mishra R, Hemasri S, Singh S, Venkatesan S, Kumar S, Jaleel U, Khedkar V, Joshi Y, Sastry GN. Assessing therapeutic potential of molecules: molecular property diagnostic suite for tuberculosis $$(\mathbf{MPDS}^{\mathbf{TB}})$$ ( MPDS TB ). J CHEM SCI 2017. [DOI: 10.1007/s12039-017-1268-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|