1
|
Sepulveda-Montaño LX, Galindo JF, Kuroda DG. A new computational methodology for the characterization of complex molecular environments using IR spectroscopy: bridging the gap between experiments and computations. Chem Sci 2024; 15:d4sc03219e. [PMID: 39156932 PMCID: PMC11328912 DOI: 10.1039/d4sc03219e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
The molecular interactions and dynamics of complex liquid solutions are now routinely measured using IR and 2DIR spectroscopy. In particular, the use of the latter allows the determination of the frequency fluctuation correlation function (FFCF), while the former provides us with the average frequency. In turn, the FFCF can be used to quantify the vibrational dynamics of a molecule in a solution, and the center frequency provides details about the chemical environment, solvatochromism, of the vibrational mode. In simple solutions, the IR methodology can be used to unambiguously assign the interactions and dynamics observed by a molecule in solution. However, in complex environments with molecular heterogeneities, this assignment is not simple. Therefore, a method that allows for such an assignment is essential. Here, a parametrization free method, called Instantaneous Frequencies of Molecules or IFM, is presented. The IFM method, when coupled to classical molecular simulations, can predict the FFCF of a molecule in solutions. Here, N-methylacetamide (NMA) in seven different chemical environments, both simple and complex, is used to test this new method. The results show good agreement with experiments for the NMA solvatochromism and FFCF dynamics, including characteristic times and amplitudes of fluctuations. In addition, the new method shows equivalent or improved results when compared to conventional frequency maps. Overall, the use of the new method in conjunction with molecular dynamics simulations allows unlocking the full potential of IR spectroscopy to generate molecular maps from vibrational observables, capable of describing the interaction landscape of complex molecular systems.
Collapse
Affiliation(s)
| | - Johan F Galindo
- Department of Chemistry, Universidad Nacional de Colombia Sede Bogotá Bogotá 111321 Colombia
| | - Daniel G Kuroda
- Department of Chemistry, Louisiana State University Baton Rouge Louisiana 70803 USA
| |
Collapse
|
2
|
Molinaro J, Carroll MR, Young AS, Wettstein SG. Solubility of 2,5-Furandicarboxylic Acid in Pure and Mixed Organic Solvent Systems at 293 K Predicted Using Hansen Solubility Parameters. ACS OMEGA 2024; 9:30708-30716. [PMID: 39035981 PMCID: PMC11256336 DOI: 10.1021/acsomega.4c03170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024]
Abstract
Central to the production of polyethylene furanoate (PEF), a bioplastic that could potentially replace petroleum-derived plastics, is 2,5-furandicarboxylic acid (FDCA). FDCA is a chemical derived from biomass that has low solubility in traditionally used solvents such as water. Thus, identifying solvents that can solubilize significant amounts of FDCA could allow for lower PEF production costs. In this study, FDCA solubility was investigated in nine pure solvents including H2O, acetonitrile (ACN), γ-valerolactone (GVL), γ-butyrolactone (GBL), ethanol (EtOH), methanol (MeOH), dimethyl sulfoxide (DMSO), sulfolane (SULF), and tetrahydrofuran (THF), eight binary, and three ternary solvent blends at 293 K. For all binary systems excluding DMSO and MeOH, the solubility of FDCA increased 1.5-65 times compared to the pure organic solvent, and the FDCA solubility was at least 10 times higher when compared to pure water. Specifically, the 20/80 w/w H2O/DMSO system solubilized 23.1 wt % FDCA, the highest of any binary blend studied, and 190 times more solubility than in pure water. In 20/80 w/w H2O/THF, the FDCA solubility was 60 times higher than pure water. In ternary blends that included DMSO, H2O, and either GVL, THF, or SULF, solubility increased by at least 6.6 times relative to the pure secondary organic component and 54 times relative to pure water. Using Hansen solubility parameters (HSPs), the radius of interaction (R i, j ) was found to be more strongly correlated to FDCA solubility than individual HSPs or the total solubility parameter. A MATLAB-based optimization code was developed and successful in minimizing the R i, j of a solvent blend to maximize FDCA solubility in binary and ternary aqueous solvents.
Collapse
Affiliation(s)
- Jacob
M. Molinaro
- Department of Chemical and
Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, Montana 59717, United States
| | - Matthew R. Carroll
- Department of Chemical and
Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, Montana 59717, United States
| | - Annabelle S. Young
- Department of Chemical and
Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, Montana 59717, United States
| | - Stephanie G. Wettstein
- Department of Chemical and
Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, Montana 59717, United States
| |
Collapse
|
3
|
Yong H, Sommer JU. Cononsolvency Effect: When the Hydrogen Bonding between a Polymer and a Cosolvent Matters. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Huaisong Yong
- School of New Energy and Materials, Southwest Petroleum University, 610500Chengdu, China
- Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application, Southwest Petroleum University, 610500Chengdu, China
- Institute Theory of Polymers, Leibniz-Institut für Polymerforschung Dresden e.V., D-01069Dresden, Germany
| | - Jens-Uwe Sommer
- Institute Theory of Polymers, Leibniz-Institut für Polymerforschung Dresden e.V., D-01069Dresden, Germany
- Institute for Theoretical Physics, Technische Universität Dresden, D-01069Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, D-01307Dresden, Germany
| |
Collapse
|
4
|
Zhao Z, Zhang L, Wu H. Hydro/Organo/Ionogels: "Controllable" Electromagnetic Wave Absorbers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205376. [PMID: 36067008 DOI: 10.1002/adma.202205376] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Demand for electromagnetic wave (EMW) absorbers continues to increase with technological advances in wearable electronics and military applications. In this study, a new strategy to overcome the drawbacks of current absorbers by employing the co-contribution of functional polymer frameworks and liquids with strong EMW absorption properties is proposed. Strongly polar water, dimethyl sulfoxide/water mixtures, and highly conductive 1-ethyl-3-methylimidazolium ethyl sulfate ([EMI][ES]) are immobilized in dielectrically inert polymer networks to form different classes of gels (hydrogels, organogels, and ionogels). These gels demonstrate a high correlation between their dielectric properties and polarity/ionic conductivity/non-covalent interaction of immobilized liquids. Thus, the EMW absorption performances of the gels can be precisely tuned over a wide range due to the diversity and stability of the liquids. The prepared hydrogels show good shielding performance (shielding efficiency > 20 dB) due to the high dielectric constants, while organogels with moderate attenuation ability and impedance matching achieve full-wave absorption in X-band (8.2-12.4 GHz) at 2.5 ± 0.5 mm. The ionogels also offer a wide effective absorption bandwidth (10.79-16.38 GHz at 2.2 mm) via prominent ionic conduction loss. In short, this work provides a conceptually novel platform to develop high-efficient, customizable, and low-cost functional absorbers.
Collapse
Affiliation(s)
- Zehao Zhao
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Limin Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
5
|
Hydrogen bonding structure and dynamics of cis- and trans- conformers of N-methylformamide in water, DMSO and water-DMSO mixtures at varying compositions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Przybyłek M, Miernicka A, Nowak M, Cysewski P. New Screening Protocol for Effective Green Solvents Selection of Benzamide, Salicylamide and Ethenzamide. Molecules 2022; 27:3323. [PMID: 35630800 PMCID: PMC9144492 DOI: 10.3390/molecules27103323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
New protocol for screening efficient and environmentally friendly solvents was proposed and experimentally verified. The guidance for solvent selection comes from computed solubility via COSMO-RS approach. Furthermore, solute-solvent affinities computed using advanced quantum chemistry level were used as a rationale for observed solvents ranking. The screening protocol pointed out that 4-formylomorpholine (4FM) is an attractive solubilizer compared to commonly used aprotic solvents such as DMSO and DMF. This was tested experimentally by measuring the solubility of the title compounds in aqueous binary mixtures in the temperature range between 298.15 K and 313.15 K. Additional measurements were also performed for aqueous binary mixtures of DMSO and DMF. It has been found that the solubility of studied aromatic amides is very high and quite similar in all three aprotic solvents. For most aqueous binary mixtures, a significant decrease in solubility with a decrease in the organic fraction is observed, indicating that all systems can be regarded as efficient solvent-anti-solvent pairs. In the case of salicylamide dissolved in aqueous-4FM binary mixtures, a strong synergistic effect has been found leading to the highest solubility for 0.6 mole fraction of 4-FM.
Collapse
Affiliation(s)
- Maciej Przybyłek
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950 Bydgoszcz, Poland; (A.M.); (M.N.)
| | | | | | - Piotr Cysewski
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950 Bydgoszcz, Poland; (A.M.); (M.N.)
| |
Collapse
|
7
|
Singh K, Kumar A. Physicochemical aspects for the binding mechanism of sodium carboxymethyl cellulose onto mesoporous tea waste carbon from its aqueous solutions. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2020.1842762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Kaman Singh
- Advanced Centre of Surface Chemistry, Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Ashok Kumar
- Advanced Centre of Surface Chemistry, Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| |
Collapse
|
8
|
Su T, Sun Y, Han L, Cai W, Shao X. Revealing the interactions of water with cryoprotectant and protein by near-infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120417. [PMID: 34600324 DOI: 10.1016/j.saa.2021.120417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/03/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Taking formamide (FA) as a model compound of protein, the water structure in the ternary mixtures of dimethyl sulfoxide (DMSO)-water-FA was studied by near-infrared (NIR) spectroscopy. The interaction of DMSO and water, and the effect of FA on the interaction, were analyzed with the help of chemometric methods. Continuous wavelet transform (CWT) was used to enhance the resolution of the spectra. A peak at 6437 cm-1 depicting the interaction of DMSO and water through hydrogen bonding (SO…HO) was observed in the transformed spectra. When FA exists in the mixture, the intensity of the peak decreases with the increase of formamide content, showing that FA may replace the water to form the hydrogen bond of SO and HN. In addition, temperature-dependent NIR spectroscopy was used to analyze the effect of the three components on the spectral variation with temperature. Analyzing the spectral data by alternating trilinear decomposition (ATLD) and multiple linear regression, two varying spectral features were obtained that are related to water and DMSO, but no spectral feature was found that significantly varies with the content of FA. The result implies that DMSO is still the key component to prevent the water from icing, although FA may reduce slightly the anti-freezing effect.
Collapse
Affiliation(s)
- Tao Su
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, PR China
| | - Yan Sun
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, PR China
| | - Li Han
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, PR China
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, PR China
| | - Xueguang Shao
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, PR China.
| |
Collapse
|
9
|
Bisht B, Imandi V, Pant S, Sen A. Solvent-Dependent Spectral Properties in Diverse Solvents, Light Harvesting and Antiviral Properties of Mono-Azo Dye (Direct Yellow-27): A Combined Experimental and Theoretical Study. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416521500368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this paper, we have discussed for the first time a detailed electronic absorption study of the mono-azo dye Direct Yellow 27 [C[Formula: see text]H[Formula: see text]N4Na2O9S3] (DY-27) with five different homogeneous media by applying experimental and theoretical techniques along with some new characteristics of DY-27 in the field of solar cells as well as antiviral activities. A clear absorption band in the UV-visible region was observed, although the absorption maxima lie in the visible region. The electronic absorption transitions observed in our study were fully spin and symmetry allowed transitions with [Formula: see text]–[Formula: see text] character. Time-dependent density functional theory (TD-DFT) analysis has been done for understanding the electronic and the charge transfer performance. Moreover, the impacts of polar protic and polar aprotic solvents in the structural variation of DY-27 have been reported here. Further, applications of the dye in the field of solar cell, as well as antiviral activity, were performed using molecular modeling approaches. The dye exhibited a D–[Formula: see text]–A–A structure with a high light-harvesting efficiency (LHE) and good injection efficiency acts as an effective dye sensitized solar cell (DSSC). Molecular docking studies of the dye DY-27 performed with M-protease of the different corona viruses, MERS, SARS-CoV-1 and SARS-CoV-2 indicated comparable binding energies with the controlled inhibitors and best interactions are observed for the SARS-CoV-1.
Collapse
Affiliation(s)
- Babita Bisht
- Photophysics Laboratory, Department of Physics, Centre of Advance Study, DSB Campus, Kumaun University, Nainital 263002, India
| | - Venkataramana Imandi
- Center for Computational Biology and Bioinformatics School of Computational & Integrative Sciences (SCIS), Jawaharlal Nehru University, New Delhi, India
| | - Sanjay Pant
- Photophysics Laboratory, Department of Physics, Centre of Advance Study, DSB Campus, Kumaun University, Nainital 263002, India
| | - Anik Sen
- Department of Chemistry, GITAM Institute of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| |
Collapse
|
10
|
Bristol AN, Saha J, George HE, Das PK, Kemp LK, Jarrett WL, Rangachari V, Morgan SE. Effects of Stereochemistry and Hydrogen Bonding on Glycopolymer-Amyloid-β Interactions. Biomacromolecules 2020; 21:4280-4293. [PMID: 32786526 PMCID: PMC7847044 DOI: 10.1021/acs.biomac.0c01077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Saccharide stereochemistry plays an important role in carbohydrate functions such as biological recognition processes and protein binding. Synthetic glycopolymers with pendant saccharides of controlled stereochemistry provide an attractive approach for the design of polysaccharide-inspired biomaterials. Acrylamide-based polymers containing either β,d-glucose or β,d-galactose pendant groups, designed to mimic GM1 ganglioside saccharides, and their small-molecule analogues were used to evaluate the effect of stereochemistry on glycopolymer solution aggregation processes alone and in the presence of Aβ42 peptide using dynamic light scattering, gel permeation chromatography-multiangle laser light scattering, and fluorescence assays. Fourier transform infrared and nuclear magnetic resonance (NMR) were employed to determine hydrogen bonding patterns of the systems. The galactose-containing polymer displayed significant intramolecular hydrogen bonding and self-aggregation and minimal association with Aβ42, while the glucose-containing glycopolymers showed intermolecular interactions with the surrounding environment and association with Aβ42. Saturation transfer difference NMR spectroscopy demonstrated different binding affinities for the two glycopolymers to Aβ42 peptide.
Collapse
Affiliation(s)
- Ashleigh N Bristol
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Jhinuk Saha
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Hannah E George
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Pradipta K Das
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Lisa K Kemp
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - William L Jarrett
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Sarah E Morgan
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| |
Collapse
|
11
|
Kumar A, von Wolff N, Rauch M, Zou YQ, Shmul G, Ben-David Y, Leitus G, Avram L, Milstein D. Hydrogenative Depolymerization of Nylons. J Am Chem Soc 2020; 142:14267-14275. [PMID: 32706584 PMCID: PMC7441490 DOI: 10.1021/jacs.0c05675] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
The
widespread crisis of plastic pollution demands discovery of new and
sustainable approaches to degrade robust plastics such as nylons.
Using a green and sustainable approach based on hydrogenation, in
the presence of a ruthenium pincer catalyst at 150 °C and 70
bar H2, we report here the first example of hydrogenative
depolymerization of conventional, widely used nylons and polyamides,
in general. Under the same catalytic conditions, we also demonstrate
the hydrogenation of a polyurethane to produce diol, diamine, and
methanol. Additionally, we demonstrate an example where monomers (and
oligomers) obtained from the hydrogenation process can be dehydrogenated
back to a poly(oligo)amide of approximately similar molecular weight,
thus completing a closed loop cycle for recycling of polyamides. Based
on the experimental and density functional theory studies, we propose
a catalytic cycle for the process that is facilitated by metal–ligand
cooperativity. Overall, this unprecedented transformation, albeit
at the proof of concept level, offers a new approach toward a cleaner
route to recycling nylons.
Collapse
Affiliation(s)
| | - Niklas von Wolff
- Laboratoire d'Electrochimie Moléculaire, UMR 7591, CNRS/University of Paris, 75013 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Mezhuev YO, Varankin AV, Luss AL, Dyatlov VA, Tsatsakis AM, Shtilman MI, Korshak YV. Immobilization of dopamine on the copolymer of
N
‐vinyl‐2‐pyrrolidone and allyl glycidyl ether and synthesis of new hydrogels. POLYM INT 2020. [DOI: 10.1002/pi.6073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yaroslav O Mezhuev
- Department of Biomaterials D. Mendeleev University of Chemical Technology of Russia Moscow Russia
| | - Alexander V Varankin
- Department of Biomaterials D. Mendeleev University of Chemical Technology of Russia Moscow Russia
| | - Anna L Luss
- Department of Biomaterials D. Mendeleev University of Chemical Technology of Russia Moscow Russia
| | - Valerie A Dyatlov
- Department of Biomaterials D. Mendeleev University of Chemical Technology of Russia Moscow Russia
| | - Aristidis M Tsatsakis
- Center of Toxicology Science and Research, Division of Morphology Medical School, University of Crete Heraklion Greece
| | - Mikhail I Shtilman
- Department of Biomaterials D. Mendeleev University of Chemical Technology of Russia Moscow Russia
| | - Yuri V Korshak
- Department of Biomaterials D. Mendeleev University of Chemical Technology of Russia Moscow Russia
| |
Collapse
|
13
|
Panuszko A, Stangret J, Nowosielski B, Bruździak P. Interactions between hydration spheres of two different solutes in solution: The least squares fitting with constraints as a tool to determine water properties in ternary systems. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Angmo D, Peng X, Seeber A, Zuo C, Gao M, Hou Q, Yuan J, Zhang Q, Cheng YB, Vak D. Controlling Homogenous Spherulitic Crystallization for High-Efficiency Planar Perovskite Solar Cells Fabricated under Ambient High-Humidity Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904422. [PMID: 31651094 DOI: 10.1002/smll.201904422] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/30/2019] [Indexed: 06/10/2023]
Abstract
The influence of precursor solution properties, fabrication environment, and antisolvent properties on the microstructural evolution of perovskite films is reported. First, the impact of fabrication environment on the morphology of methyl ammonium lead iodide (MAPbI3 ) perovskite films with various Lewis-base additives is reported. Second, the influence of antisolvent properties on perovskite film microstructure is investigated using antisolvents ranging from nonpolar heptane to highly polar water. This study shows an ambient environment that accelerates crystal growth at the expense of nucleation and introduces anisotropies in crystal morphology. The use of antisolvents enhances nucleation but also influences ambient moisture interaction with the precursor solution, resulting in different crystal morphology (shape, size, dispersity) in different antisolvents. Crystal morphology, in turn, dictates film quality. A homogenous spherulitic crystallization results in pinhole-free films with similar microstructure irrespective of processing environment. This study further demonstrates propyl acetate, an environmentally benign antisolvent, which can induce spherulitic crystallization under ambient environment (52% relative humidity, 25 °C). With this, planar perovskite solar cells with ≈17.78% stabilized power conversion efficiency are achieved. Finally, a simple precipitation test and in situ crystallization imaging under an optical microscope that can enable a facile a priori screening of antisolvents is shown.
Collapse
Affiliation(s)
- Dechan Angmo
- CSIRO, Manufacturing, Clayton, VIC, 3168, Australia
| | - Xiaojin Peng
- CSIRO, Manufacturing, Clayton, VIC, 3168, Australia
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
- Glass and Technology Research Institute of Shahe, Shahe, 054100, Hebei, P. R. China
| | - Aaron Seeber
- CSIRO, Manufacturing, Clayton, VIC, 3168, Australia
| | | | - Mei Gao
- CSIRO, Manufacturing, Clayton, VIC, 3168, Australia
| | - Qicheng Hou
- Department of Chemical Engineering, Monash University, Victoria, 3800, Australia
| | - Jian Yuan
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
- Glass and Technology Research Institute of Shahe, Shahe, 054100, Hebei, P. R. China
| | - Qi Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
- Glass and Technology Research Institute of Shahe, Shahe, 054100, Hebei, P. R. China
- School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Yi-Bing Cheng
- Department of Chemical Engineering, Monash University, Victoria, 3800, Australia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Doojin Vak
- CSIRO, Manufacturing, Clayton, VIC, 3168, Australia
| |
Collapse
|
15
|
Santra K, Geraskin I, Nilsen-Hamilton M, Kraus GA, Petrich JW. Characterization of the Photophysical Behavior of DFHBI Derivatives: Fluorogenic Molecules that Illuminate the Spinach RNA Aptamer. J Phys Chem B 2019; 123:2536-2545. [PMID: 30807171 DOI: 10.1021/acs.jpcb.8b11166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
( Z)-5-(3,5-Difluoro-4-hydroxybenzylidene)-2,3-dimethyl-3,5-dihydro-4 H-imidazol-4-one (DFHBI) and its analogues are fluorogenic molecules that bind the Spinach aptamer (a small RNA molecule), which was selected for imaging RNA. They are extremely weakly fluorescent in liquid solvents. It had been hypothesized that photoisomerization is a very efficient nonradiative process of deactivation. We show, consistent with the results of other studies, that if the isomerization is impeded, the fluorescence signal is enhanced significantly. In addition, we provide a thorough characterization of the photophysical behavior of DFHBI and its derivatives, notably that of ( Z)-5-(3,5-difluoro-4-hydroxybenzylidene)-2-methyl-3-((perfluorophenyl)methyl)-3,5-dihydro-4 H-imidazol-4-one (PFP-DFHBI) in various solvent environments. Solvent-dependent studies were performed with various mixtures of solvents. The results suggest that hydrogen bonding or strong interactions of the solvents with the phenolic-OH group change the absorption band near 420-460 nm and the nature of emission near 430 and 500 nm through various degrees of stabilization and the transformation between the neutral and the anionic species at both ground and excited states. These observations are confirmed by using a methoxy-substituted molecule (( Z)-5-(4-methoxybenzylidene)-2,3-dimethyl-3,5-dihydro-4 H-imidazol-4-one), where the 420-460 nm band is absent in the presence of methanol and the spectra are similar to those of PFP-DFHBI in noninteracting solvents, such as acetonitrile and dichloromethane. Thus, in addition to the major role of photoisomerization as a nonradiative process of deactivation of the excited state, the fluorescence of DFHBI-type molecules is very sensitively dependent upon the pH of the medium as well as upon solvent-specific interactions, such as hydrogen-bonding ability and polarity.
Collapse
|
16
|
Biernacki KA, Kaczkowska E, Bruździak P. Aqueous solutions of NMA, Na2HPO4, and NaH2PO4 as models for interaction studies in phosphate–protein systems. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Mathis L, Chen Y, Shull KR. Tuning the Viscoelasticity of Hydrogen-Bonded Polymeric Materials through Solvent Composition. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lele Mathis
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Yaoyao Chen
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Kenneth R. Shull
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
18
|
Porayath C, Salim A, Palillam Veedu A, Babu P, Nair B, Madhavan A, Pal S. Characterization of the bacteriophages binding to human matrix molecules. Int J Biol Macromol 2018; 110:608-615. [PMID: 29246876 PMCID: PMC5864510 DOI: 10.1016/j.ijbiomac.2017.12.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/28/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
Abstract
Recent literature has suggested a novel symbiotic relationship between bacteriophage and metazoan host that provides antimicrobial defense protecting mucosal surface by binding to host matrix mucin glycoproteins. Here, we isolated and studied different bacteriophages that specifically interact with human extracellular matrix molecules such as fibronectin, gelatin, heparin and demonstrated their potency for protection to host against microbial infections. We showed that subpopulations of bacteriophages that work against clinical isolates of Escherichia coli can bind to pure gelatin, fibronectin and heparin and reduced bacterial load in human colon cell line HT29. The bacteriophages were characterized with respect to their genome sizes, melting curve patterns and host tropism (cross-reactivity with different hosts). Since, the bacteriophages are non-toxic to the host and can effectively reduce bacterial load in HT29 cell line their therapeutic potency against bacterial infection could be explored.
Collapse
Affiliation(s)
- Chandni Porayath
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Amrita Salim
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | | | - Pradeesh Babu
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Bipin Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Ajith Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Sanjay Pal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India.
| |
Collapse
|