1
|
Gao J, Wang Y, Yu Y, Zhu M, Kong W, Liu G, Luo X. Carbonized cellulose microspheres loaded with Pd NPs as catalyst in p-nitrophenol reduction and Suzuki-Miyaura coupling reaction. Int J Biol Macromol 2024; 269:131904. [PMID: 38688337 DOI: 10.1016/j.ijbiomac.2024.131904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/07/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Catalytic reduction of p-nitrophenol is usually carried out using transition metal nanoparticles such as gold, palladium, silver, and copper, especially palladium nanoparticles (Pd NPs), which are characterized by fast reaction rate, high turnover frequency, good selectivity, and high yield. However, the aggregation and precipitation of the metals lead to the decomposition of the catalyst, which results in a significant reduction of the catalytic activity. Therefore, the preparation of homogeneous stabilized palladium nanoparticles catalysts has been widely studied. Stabilized palladium nanoparticles mainly use synthetic polymers. Cellulose microspheres, as a natural polymer material with low-cost and porous fiber network structure, are excellent carriers for stabilizing metal nanoparticles. Cellulose microspheres impregnated with palladium metal nanoparticles were carbonized to have a larger specific surface area and highly dispersed palladium nanoparticles, which exhibited excellent catalytic activity in the catalytic reduction of p-nitrophenol. In this work, the cellulose carbon-based microspheres palladium (Pd@CCM) catalysts were designed and characterized by SEM, TEM, EDS, XRD, FTIR, XPS, TGA, BET, and so on. Furthermore, the catalytic performance of Pd@CCM catalysts was investigated via p-nitrophenol reduction, which showed high catalytic activity. This catalyst also exhibited excellent catalytic performance in the Suzuki-Miyaura coupling reaction. Linking aromatic monomer and benzene through Suzuki-Miyaura coupling was presented as an effective route to obtaining biaryls, and the synthesis method is low-cost and simple. In addition, Pd@CCM showed desirable recyclability while maintaining its catalytic activity even after five recycles. This work is highly suggestive of the design and application of the heterogeneous catalyst.
Collapse
Affiliation(s)
- Jiayin Gao
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China
| | - Yaoyao Wang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China
| | - Yuqing Yu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China
| | - Mengxiang Zhu
- Department of Medical Research Center, the First Affiliated Hospital of Ningbo University, Ningbo 315010, PR China
| | - Wen Kong
- Hubei Key Lab for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China
| | - Genyan Liu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China.
| | - Xiaogang Luo
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China.
| |
Collapse
|
2
|
Ashraf M, Ahmad MS, Inomata Y, Ullah N, Tahir MN, Kida T. Transition metal nanoparticles as nanocatalysts for Suzuki, Heck and Sonogashira cross-coupling reactions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
3
|
Zhang L, Long S, Jiao H, Liu Z, Zhang P, Lei A, Gong W, Pei X. Cellulose derived Pd nano-catalyst for efficient catalysis. RSC Adv 2022; 12:18676-18684. [PMID: 35873326 PMCID: PMC9231465 DOI: 10.1039/d2ra02799b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
Using green, environmentally friendly and resource-rich cellulose as a raw material, a ligand-free and highly dispersed palladium (Pd) nano-catalyst was successfully prepared in a facile way. A variety of characterization results showed that the Pd nanoparticles (NPs) were uniformly spread on the cellulose nanoporous microspheres, with an average particle size of ∼2.75 nm. As a carrier, cellulose microspheres with nanoporous structure and rich -OH groups greatly promoted the attachment and distribution of the highly dispersed Pd NPs, along with the diffusion and exchange of reactants, so as to greatly promote the catalytic activity. In the Suzuki-Miyaura coupling reaction, the catalyst of C-Pd exhibited excellent catalytic activity (TOF up to 2126 h-1), broad applicability, and good recyclability with almost no active loss in 6 continuous runs. This utilizing of bioresources to build catalyst materials is important for sustainable chemistry.
Collapse
Affiliation(s)
- Lingyu Zhang
- School of Materials and Architectural Engineering, Guizhou Normal University Guiyang 550025 China
| | - Siyu Long
- School of Materials and Architectural Engineering, Guizhou Normal University Guiyang 550025 China
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Huibin Jiao
- School of Materials Science and Engineering, Guizhou Minzu University Guiyang 550025 China
| | - Zhuoyue Liu
- School of Materials and Architectural Engineering, Guizhou Normal University Guiyang 550025 China
| | - Ping Zhang
- School of Materials and Architectural Engineering, Guizhou Normal University Guiyang 550025 China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Wei Gong
- School of Materials and Architectural Engineering, Guizhou Normal University Guiyang 550025 China
| | - Xianglin Pei
- School of Materials and Architectural Engineering, Guizhou Normal University Guiyang 550025 China
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
4
|
Fabrication and catalytic properties of “cage like” aryl imine Pd(II)/Cu(II)-bimetallic catalytic monolayer supported on graphene oxide for Suzuki coupling reaction. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Jain SK, Fazil M, Naaz F, Pandit NA, Ahmed J, Alshehri SM, Mao Y, Ahmad T. Silver-doped SnO 2 nanostructures for photocatalytic water splitting and catalytic nitrophenol reduction. NEW J CHEM 2022. [DOI: 10.1039/d1nj05432e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Driven by the quest of renewable and clean energy sources, researchers around the globe are seeking solutions to replace non-renewable fossil fuels to meet the ever-increasing energy supply requirements and solve the relevant environment concerns.
Collapse
Affiliation(s)
- Sapan K. Jain
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Fazil
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Farha Naaz
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Nayeem Ahmad Pandit
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saad M. Alshehri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yuanbing Mao
- Department of Chemistry, Illinois Institute of Technology, 3105 South Dearborn Street, Chicago, IL 60616, USA
| | - Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|