1
|
Garcia-Orrit S, Vega-Mayoral V, Chen Q, Serra G, Guizzardi M, Romano V, Dal Conte S, Cerullo G, Di Mario L, Kot M, Loi MA, Narita A, Müllen K, Tommasini M, Cabanillas-González J. Visualizing Thermally Activated Conical Intersections Governing Non-Radiative Triplet Decay in a Ni(II) Porphyrin-Nanographene Conjugate with Variable Temperature Transient Absorption Spectroscopy. J Phys Chem Lett 2024; 15:10366-10374. [PMID: 39374120 DOI: 10.1021/acs.jpclett.4c02712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Metalloporphyrins based on open-shell transition metals, such as Ni(II), exhibit typically fast excited-state relaxation. In this work, we shed light into the nonradiative relaxation mechanism in a nanographene-Ni(II) porphyrin conjugate. Variable temperature transient absorption and global fit analysis are combined to produce a picture of the relaxation pathways. At room temperature, photoexcitation of the lowest π-π* transition is followed by vibrational cooling in 1.6 ps, setting a short 20 ps temporal window wherein a small fraction of relaxed singlets radiatively decay to the ground state before intersystem crossing proceeds. Following intersystem crossing, triplets relax rapidly to the ground state (S0) in a few tens of picoseconds. By performing measurements at low temperature, we provide evidence for a competition between two terminal relaxation pathways from the lowest (metal-centered) triplet to the ground state: a slow ground state relaxation process proceeding in time scales beyond 1.6 ns and a faster pathway dictated by a sloped conical intersection, which is thermally accessible at room temperature from the triplet state. The overall triplet decay at a given temperature is dictated by the interplay of these two contributions. This observation bears significance in understanding the underlying fast relaxation processes in Ni-based molecules and related transition metal complexes, opening avenues for potential applications for energy harvesting and optoelectronics.
Collapse
Affiliation(s)
- Saül Garcia-Orrit
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, c/Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain
| | - Víctor Vega-Mayoral
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, c/Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain
| | - Qiang Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Gianluca Serra
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G.Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
| | - Michele Guizzardi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano, Italy
| | - Valentino Romano
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano, Italy
| | - Stefano Dal Conte
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano, Italy
| | - Lorenzo Di Mario
- Photophysics and OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Mordechai Kot
- Photophysics and OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Maria Antonietta Loi
- Photophysics and OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute for Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Matteo Tommasini
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G.Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
| | - Juan Cabanillas-González
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, c/Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
2
|
Upoma N, Akter N, Ferdousi FK, Sultan MZ, Rahman S, Alodhayb A, Alibrahim KA, Habib A. Interactions of Co(II)- and Zn(II)porphyrin of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin with DNA in Aqueous Solution and Their Antimicrobial Activities. ACS OMEGA 2024; 9:22325-22335. [PMID: 38799349 PMCID: PMC11112571 DOI: 10.1021/acsomega.4c01708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Antibiotics are frequently used to treat, prevent, or control bacterial infections, but in recent years, infections resistant to all known classes of conventional antibiotics have significantly grown. The development of novel, nontoxic, and nonincursive antimicrobial methods that work more quickly and efficiently than the present antibiotics is required to combat this growing public health issue. Here, Co(II) and Zn(II) derivatives of tetrakis(1-methylpyridinium-4yl)porphyrin [H2TMPyP]4+ as a tetra(ρ-toluenesulfonate) were synthesized and purified to investigate their interactions with DNA (pH 7.40, 25 °C) using UV-vis, fluorescence techniques, and antimicrobial activity. UV-vis results showed that [H2TMPyP]4+ had a high hypochromicity (∼64%) and a substantial bathochromic shift (Δλ, 14 nm), while [Co(II)TMPyP]4+ and [Zn(II)TMPyP]4+ showed little hypochromicity (∼37%) and a small bathochromic shift (Δλ, 3-6 nm). Results reveal that [H2TMPyP]4+ interacts with DNA via intercalation, while Co(II)- and [Zn(II)TMPyP]4+ interact with DNA via outside self-stacking. Fluorescence results also confirmed the interaction of [H2TMPyP]4+ and the metalloporphyrins with DNA. Results of the antimicrobial activity assay revealed that the metalloporphyrins showed inhibitory effects on Gram-positive and Gram-negative bacteria and fungi, but that neither the counterions nor [H2TMPyP]4+ exhibited any inhibitory effects. Mechanism of antimicrobial activities of metalloporphyrins are discussed.
Collapse
Affiliation(s)
| | - Nazmin Akter
- Department
of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | | | - Md. Zakir Sultan
- Centre
for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka 1000, Bangladesh
| | - Shofiur Rahman
- Biological
and Environmental Sensing Research Unit, King Abdullah Institute for
Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alodhayb
- Biological
and Environmental Sensing Research Unit, King Abdullah Institute for
Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khuloud A. Alibrahim
- Department
of Chemistry, College of Science, Princess
Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ahsan Habib
- Department
of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
3
|
Major MM, Valicsek Z, Horváth O. Effects of Temperature, Axial Ligand, and Photoexcitation on the Structure and Spin-State of Nickel(II) Complexes with Water-Soluble 5,10,15,20-Tetrakis(1-methylpyridinium-4-yl)porphyrin. Molecules 2024; 29:310. [PMID: 38257224 PMCID: PMC10818337 DOI: 10.3390/molecules29020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Water-soluble metalloporphyrins, depending on the metal center, possess special spectral, coordination, and photochemical features. In nickel(II) porphyrins, the Ni(II) center can occur with low-spin or high-spin electronic configuration. In aqueous solution, the cationic nickel(II) complex (Ni(II)TMPyP4+, where H2TMPyP4+ = 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin), exists in both forms in equilibrium. In this study, an equilibrium system involving the low-spin and high-spin forms of Ni(II)TMPyP4+ was investigated via application of irradiation, temperature change, and various potential axial ligands. Soret band excitation of this aqueous system, in the absence of additional axial ligands, resulted in a shift in the equilibrium toward the low-spin species due to the removal of axial solvent ligands. The kinetics and the thermodynamics of the processes were also studied via determination of the rate and equilibrium constants, as well as the ΔS, ΔH, and ΔG values. Temperature increase had a similar effect. The equilibrium of the spin isomers was also shifted by decreasing the solvent polarity (using n-propanol) as well as by the addition of a stronger coordinating axial ligand (such as ammonia). Since triethanolamine is an efficient electron donor in Ni(II)TMPyP4+-based photocatalytic systems, its interaction with this metalloporphyin was also studied. The results promote the development of efficient photocatalytic systems based on this complex.
Collapse
Affiliation(s)
| | | | - Ottó Horváth
- Research Group of Environmental and Inorganic Photochemistry, Center for Natural Sciences, Faculty of Engineering, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary; (M.M.M.); (Z.V.)
| |
Collapse
|