1
|
Yue X, Li J, Li C, Wang Z, Du Y, Sun D, Ma H, Lu J. Controllable synthesis of Co/NC catalysts with high-density Co-N x active sites derived from Co/Zn-ZIF for cyclopropanation. RSC Adv 2024; 14:39740-39746. [PMID: 39691230 PMCID: PMC11651007 DOI: 10.1039/d4ra01816h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/22/2024] [Indexed: 12/19/2024] Open
Abstract
Novel Co/NC heterogeneous catalysts were prepared by simply employing self-made Co/Zn-ZIF (zeolitic imidazolate framework) through pyrolysis. The samples were characterized by XRD, XPS, Raman, TEM and BET, and were successfully applied in a cyclopropanation reaction with a yield of 85%. Furthermore, this one-pot synthesized catalyst could be recycled several times without apparent deactivation. The content of Co-N x active sites could be modified by adjusting the Co/Zn molar ratio of the ZIF precursor. The generation of Co-N x could be attributed to the evaporation of Zn species, which provides rich micropores.
Collapse
Affiliation(s)
- Xin Yue
- State Key Laboratory of Fluorine & Nitrogen Chemical, Xi'an Modern Chemistry Research Institute Xi'an 710065 China
| | - Jiangwei Li
- State Key Laboratory of Fluorine & Nitrogen Chemical, Xi'an Modern Chemistry Research Institute Xi'an 710065 China
| | - Chunying Li
- State Key Laboratory of Fluorine & Nitrogen Chemical, Xi'an Modern Chemistry Research Institute Xi'an 710065 China
| | - Zhixuan Wang
- State Key Laboratory of Fluorine & Nitrogen Chemical, Xi'an Modern Chemistry Research Institute Xi'an 710065 China
| | - Yongmei Du
- State Key Laboratory of Fluorine & Nitrogen Chemical, Xi'an Modern Chemistry Research Institute Xi'an 710065 China
| | - Daoan Sun
- State Key Laboratory of Fluorine & Nitrogen Chemical, Xi'an Modern Chemistry Research Institute Xi'an 710065 China
| | - Hui Ma
- State Key Laboratory of Fluorine & Nitrogen Chemical, Xi'an Modern Chemistry Research Institute Xi'an 710065 China
| | - Jian Lu
- State Key Laboratory of Fluorine & Nitrogen Chemical, Xi'an Modern Chemistry Research Institute Xi'an 710065 China
| |
Collapse
|
2
|
Jahanbakhshi A, Farahi M. A novel magnetic FSM-16 supported ionic liquid/Pd complex as a high performance and recyclable catalyst for the synthesis of pyrano[3,2- c]chromenes. RSC Adv 2024; 14:16401-16410. [PMID: 38779385 PMCID: PMC11110022 DOI: 10.1039/d4ra01381f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
In this work, Fe3O4@FSM-16/IL-Pd was successfully designed and synthesized via a new procedure of palladium(ii) complex immobilization onto magnetic FSM-16 using an ionic liquid, as a novel heterogeneous nanocatalyst. Multiple techniques were employed to characterize this magnetic nanocatalyst such as Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), Field Emission Scanning Electron Microscopy (FE-SEM), thermogravimetric analysis (TGA), Transmission electron microscopy (TEM), and Vibrating Sample Magnetometry (VSM). After complete characterization of the catalyst, its catalytic activity was used for the synthesis of pyrano[3,2-c]chromene-3-carbonitriles via the reaction of 4-hydroxycoumarin, aldehyde, and malononitrile under solvent-free conditions. Also, it can be recovered and reused several times without a significant decrease in its catalytic activity or palladium leaching.
Collapse
Affiliation(s)
- Azar Jahanbakhshi
- Department of Chemistry, Yasouj University Yasouj Iran 75918-74831 +98 7412242167e
| | - Mahnaz Farahi
- Department of Chemistry, Yasouj University Yasouj Iran 75918-74831 +98 7412242167e
| |
Collapse
|
3
|
Ci D, Wang N, Xu Y, Wu S, Wang J, Li H, Xuan S, Fang Q. SiO 2@AuAg/PDA hybrid nanospheres with photo-thermally enhanced synergistic antibacterial and catalytic activity. RSC Adv 2024; 14:4518-4532. [PMID: 38312727 PMCID: PMC10836413 DOI: 10.1039/d3ra07607e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Wastewater discharged from industrial, agricultural and livestock production contains a large number of harmful bacteria and organic pollutants, which usually cause serious harm to human health. Therefore, it is urgent to find a "one-stone-two-birds" strategy with good antimicrobial and pollutant degradation activity for treating waste water. In this paper, SiO2@AuAg/Polydopamine (SiO2@AuAg/PDA) core/shell nanospheres, which possessed synergistic "Ag+-release-photothermal" antibacterial and catalytic behaviors, have been successfully prepared via a simple in situ redox polymerization method. The SiO2@AuAg/PDA nanospheres showed good catalytic activity in reducing 4-nitrophenol to 4-aminophenol (0.576 min-1 mg-1). Since the AuAg nanoclusters contain both gold and silver elements, they provided a high photothermal conversion efficiency (48.1%). Under NIR irradiation (808 nm, 2.5 W-2), the catalytic kinetics were improved by 2.2 times. Besides the intrinsic Ag+-release, the photothermal behavior originating from the AuAg bimetallic nanoclusters and the PDA component of SiO2@AuAg/PDA also critically improved the antibacterial performance. Both E. coli and S. aureus could be basically killed by SiO2@AuAg/PDA nanospheres at a concentration of 90 μg mL-1 under NIR irradiation. This "Ag+-release-photothermal" coupled sterilization offers a straightforward and effective approach to antimicrobial therapy, and further exhibits high potential in nanomedicine for combating bacterial contamination in environmental treatment and biological fields.
Collapse
Affiliation(s)
- Dazheng Ci
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 PR China +86-551-62904353 +86-151-55934837 +86-551-62904353
| | - Ning Wang
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 PR China +86-551-62904353 +86-151-55934837 +86-551-62904353
| | - Yunqi Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China Hefei 230027 PR China
| | - Shanshan Wu
- School of Materials and Chemical Engineering, Anhui Jianzhu University Hefei PR China
| | - Jing Wang
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 PR China +86-551-62904353 +86-151-55934837 +86-551-62904353
| | - Haoran Li
- School of Materials and Chemical Engineering, Anhui Jianzhu University Hefei PR China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China Hefei 230027 PR China
| | - Qunling Fang
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 PR China +86-551-62904353 +86-151-55934837 +86-551-62904353
| |
Collapse
|
4
|
Mallah D, Mirjalili BBF, Bamoniri A. Fe 3O 4@nano-almondshell/Si(CH 2) 3/2-(1-piperazinyl)ethylamine as an effective magnetite almond shell-based nanocatalyst for the synthesis of dihydropyrano[3,2-c]chromene and tetrahydrobenzo[b]pyran derivatives. Sci Rep 2023; 13:6376. [PMID: 37076551 PMCID: PMC10115822 DOI: 10.1038/s41598-023-33286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
The preparation and design of nano-catalysts based on magnetic biopolymers as green and biocompatible nano-catalysts have made many advances. This paper deals with the preparation of magnetite biopolymer-based Brønsted base nano-catalyst from a nano-almond (Prunus dulcis) shell. This magnetite biopolymer-based nano-catalyst was obtained through a simple process based on the core-shelling of nano-almond shell and Fe3O4 NPs and then the immobilization of 3-chloropropyltrimethoxysilane as linker and 2-aminoethylpiperazine as a basic section. Structural and morphological analysis of this magnetite biopolymer-based nano-catalyst were done using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, Thermogravimetric analysis, Vibrating sample magnetization, Energy-dispersive X-ray spectroscopy, Brunauer-Emmett-Teller, and Transmission electron microscopy techniques. The performance of the synthesized Fe3O4@nano-almondshell/Si(CH2)3/2-(1-piperazinyl)ethylamine as a novel magnetite biopolymer-based nano-catalyst for the synthesis of dihydropyrano[3,2-c]chromene and tetrahydrobenzo[b]pyran was investigated and showed excellent efficiency.
Collapse
Affiliation(s)
- Dina Mallah
- Department of Chemistry, College of Science, Yazd University, P.O. Box 89195-741, Yazd, Islamic Republic of Iran
| | - Bi Bi Fatemeh Mirjalili
- Department of Chemistry, College of Science, Yazd University, P.O. Box 89195-741, Yazd, Islamic Republic of Iran.
| | - Abdolhamid Bamoniri
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran
| |
Collapse
|
5
|
Ahmad I, Jasim SA, Yasin G, Al-Qargholi B, Hammid AT. Synthesis and characterization of new 1,4-dihydropyran derivatives by novel Ta-MOF nanostructures as reusable nanocatalyst with antimicrobial activity. Front Chem 2022; 10:967111. [PMID: 36238096 PMCID: PMC9552082 DOI: 10.3389/fchem.2022.967111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/07/2022] [Indexed: 12/12/2022] Open
Abstract
Novel Ta- MOF was synthesized under mild conditions by ultrasound irradiations. The sample was characterized by SEM, FTIR, XRD, XPS, TG and BET technique. The final structures showed high physicho-chemical properties including narrow particle size distribution, homogenous morphology, high thermal stability and remarkable surface area. Ta- MOF synthesized in this study was used as a catalyst in the synthesis of 1,4-dihydropyran derivatives. The results proved that it has a high catalyst capability. Its advantages include high recyclability, less reaction time with higher efficiency and synthesis of new1,4-dihydropyran derivatives. In the following, antimicrobial activity including antifungal and antibacterial activity of Ta- MOF nanoparticles based on Minimum Inhibitory Concentration, Minimum Fungicidal Concentration and Minimum Bactericidal Concentration were evaluated. The synthesized Ta- MOF, in addition to high catalytic properties, showed high antimicrobial activity with MIC value between 16 and −256 μg/ml, and can be introduced as an agent against bacteria and fungi.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-anbar-Ramadi, Iraq
- *Correspondence: Saade Abdalkareem Jasim,
| | - Ghulam Yasin
- Department of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Basim Al-Qargholi
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja’afar Al-Sadiq University, Baghdad, Iraq
| |
Collapse
|
6
|
Becerra D, Abonia R, Castillo JC. Recent Applications of the Multicomponent Synthesis for Bioactive Pyrazole Derivatives. Molecules 2022; 27:4723. [PMID: 35897899 PMCID: PMC9331265 DOI: 10.3390/molecules27154723] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Pyrazole and its derivatives are considered a privileged N-heterocycle with immense therapeutic potential. Over the last few decades, the pot, atom, and step economy (PASE) synthesis of pyrazole derivatives by multicomponent reactions (MCRs) has gained increasing popularity in pharmaceutical and medicinal chemistry. The present review summarizes the recent developments of multicomponent reactions for the synthesis of biologically active molecules containing the pyrazole moiety. Particularly, it covers the articles published from 2015 to date related to antibacterial, anticancer, antifungal, antioxidant, α-glucosidase and α-amylase inhibitory, anti-inflammatory, antimycobacterial, antimalarial, and miscellaneous activities of pyrazole derivatives obtained exclusively via an MCR. The reported analytical and activity data, plausible synthetic mechanisms, and molecular docking simulations are organized in concise tables, schemes, and figures to facilitate comparison and underscore the key points of this review. We hope that this review will be helpful in the quest for developing more biologically active molecules and marketed drugs containing the pyrazole moiety.
Collapse
Affiliation(s)
- Diana Becerra
- Escuela de Ciencias Química, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte, Tunja 150003, Colombia;
| | - Rodrigo Abonia
- Research Group of Heterocyclic Compounds, Department of Chemistry, Universidad del Valle, A.A. 25360, Cali 76001, Colombia;
| | - Juan-Carlos Castillo
- Escuela de Ciencias Química, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte, Tunja 150003, Colombia;
| |
Collapse
|