1
|
Tian Y, Sun M, Sun H, Liu Y, Ju B. Cellulose-based hydrogel simultaneously possessing solar and evaporative cooling performances for energy-saving window and personal thermal management. Carbohydr Polym 2025; 352:123148. [PMID: 39843053 DOI: 10.1016/j.carbpol.2024.123148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 01/24/2025]
Abstract
Thermochromic smart windows have been widely developed for building energy saving. However, most smart windows suffer from limited energy-saving performance, fixed phase transition temperature, and are not suitable for the temperature regulation needs of different application scenarios. Herein, a unique self-adaptive thermochromic hydrogel (HBPEC-PNA) with self-moisture-absorbing performance is reported that assembles solar energy cooling and evaporative heat dissipation. Importantly, the hydrogel shows excellent energy-saving performance by using the synergistic interaction of solar and evaporative cooling. The HBPEC-PNA hydrogel has an adjustable critical transition temperature (21.8-33.9 °C), a high solar modulation (ΔTsol = 78.90 %), and a high light transmittance (Tlum = 90.15 %). Interestingly, the hydrogel harvests water molecules from the surrounding air, enabling it to be directly used in circumstances without losing its ability to dynamically regulate solar energy transmission due to water loss. Furthermore, the indoor simulation experiments confirmed that the dual-cooling system can reduce 14.2 and 2.4 °C, respectively, compared to ordinary glass and conventional smart window. Dramatically, HBPEC-PNA hydrogel can be utilized to personal thermal management due to its superior cooling property. This work provides an attractive strategy that will contribute to the development of thermochromic materials with excellent temperature regulation ability.
Collapse
Affiliation(s)
- Ye Tian
- College of Biosystems Engineering and Food Science (BEFS), Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, Dalian 116023, China; College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China.
| | - Meng Sun
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, Dalian 116023, China; College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China
| | - Hui Sun
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, Dalian 116023, China; College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China
| | - Ying Liu
- College of Biosystems Engineering and Food Science (BEFS), Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, Dalian 116023, China.
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
2
|
Qian D, Yang S, Wang X, Tian Y, Wen W. Thermosensitive Scattering Hydrogels Based on Triblock Poly-Ethers: A Novel Approach to Solar Radiation Regulation. Polymers (Basel) 2023; 16:8. [PMID: 38201674 PMCID: PMC10780760 DOI: 10.3390/polym16010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Energy conservation in buildings is paramount, especially considering that glass accounts for 50% of energy consumption. The solar heat gain coefficient (SHGC) of glass is a critical energy-saving index for transparent structures. However, the fixed SHGC of ordinary glass makes it difficult to provide both summer shading and winter heating. In this study, we synthesized a hydrogel with a thermosensitive scattering (TS) property using triblock polyether and acrylamide. This hydrogel can realize the transition of clearness and atomization based on the temperature. When sealed within a glass cavity, it exhibits a high SHGC of 0.682 in its transparent state and a low SHGC of less than 0.31 when atomized. The lower critical solution temperature (LCST) of the TS glass can be adjusted from 0 to 70 °C to suit different regions. The photothermal properties of the material remained stable after 200 hot and cold cycles and 200 h of ultraviolet irradiation. This glass can prevent solar radiation from entering the room in summer, thereby reducing air conditioning usage and power consumption. In winter, it allows solar heat radiation to enter the room, minimizing the need for artificial heating. Its adaptable temperature design makes it an excellent solution for designers to create energy-efficient building exteriors.
Collapse
Affiliation(s)
- Dewei Qian
- Division of Emerging Interdisciplinary Areas, Academy of Interdisciplinary Studies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong;
- Thrust of Advanced Materials, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
- Shenzhen-Hong Kong Collaborative Innovation Research Institute, The Hong Kong University of Science and Technology, Futian, Shenzhen 518000, China
| | - Siyu Yang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong;
| | - Xiaofang Wang
- Chongqing Hewei Technology Co., Ltd., Chongqing 401120, China; (X.W.); (Y.T.)
| | - Yang Tian
- Chongqing Hewei Technology Co., Ltd., Chongqing 401120, China; (X.W.); (Y.T.)
| | - Weijia Wen
- Thrust of Advanced Materials, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
- Shenzhen-Hong Kong Collaborative Innovation Research Institute, The Hong Kong University of Science and Technology, Futian, Shenzhen 518000, China
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong;
| |
Collapse
|
3
|
Hou Z, Zeng S, Shen K, Healey PR, Schipper HJ, Zhang L, Zhang M, Jones MD, Sun L. Interactive deformable electroluminescent devices enabled by an adaptable hydrogel system with optical/photothermal/mechanical tunability. MATERIALS HORIZONS 2023; 10:5931-5941. [PMID: 37873969 DOI: 10.1039/d3mh01412f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Deformable electroluminescent devices (DELDs) with mechanical adaptability are promising for new applications in smart soft electronics. However, current DELDs still present some limitations, including having stimuli-insensitive electroluminescence (EL), untunable mechanical properties, and a lack of versatile stimuli response properties. Herein, a facile approach for fabricating in situ interactive and multi-stimuli responsive DELDs with optical/photothermal/mechanical tunability was proposed. A polyvinyl alcohol (PVA)/polydopamine (PDA)/graphene oxide (GO) adaptable hydrogel exhibiting optical/photothermal/mechanical tunability was used as the top ionic conductor (TIC). The TIC can transform from a viscoelastic state to an elastic state via a special freezing-salting out-rehydration (FSR) process. Meanwhile, it endows the DELDs with a photothermal response and thickness-dependent light shielding properties, allowing them to dynamically demonstrate "on" or "off" or "gradually change" EL response to various mechanical/photothermal stimuli. Thereafter, the DELDs with a viscoelastic TIC can be utilized as pressure-responsive EL devices and laser-engravable EL devices. The DELDs with an elastic TIC can withstand both linear and out-of-plane deformation, enabling the designs of various interactive EL devices/sensors to monitor linear sliders, human finger bending, and pneumatically controllable bulging. This work offers new opportunities for developing next-generation EL-responsive devices with widespread application based on adaptable hydrogel systems.
Collapse
Affiliation(s)
- Zaili Hou
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Songshan Zeng
- Macao Institute of Materials Science and Engineering, Zhuhai MUST Science and Technology Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, 999078, Macao, China.
| | - Kuangyu Shen
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Patrick R Healey
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Holly J Schipper
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Luqi Zhang
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Miranda Zhang
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Michael D Jones
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Luyi Sun
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
4
|
Zhang Z, Zhang L, Zhou Y, Cui Y, Chen Z, Liu Y, Li J, Long Y, Gao Y. Thermochromic Energy Efficient Windows: Fundamentals, Recent Advances, and Perspectives. Chem Rev 2023. [PMID: 37053573 DOI: 10.1021/acs.chemrev.2c00762] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Thermochromic energy efficient windows represent an important protocol technology for advanced architectural windows with energy-saving capabilities through the intelligent regulation of indoor solar irradiation and the modulation of window optical properties in response to real-time temperature stimuli. In this review, recent progress in some promising thermochromic systems is summarized from the aspects of structures, the micro-/mesoscale regulation of thermochromic properties, and integration with other emerging energy techniques. Furthermore, the challenges and opportunities in thermochromic energy-efficient windows are outlined to promote future scientific investigations and practical applications in building energy conservation.
Collapse
Affiliation(s)
- Zongtao Zhang
- School of Materials Science and Engineering, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| | - Liangmiao Zhang
- School of Materials Science and Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, China
| | - Yang Zhou
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yuanyuan Cui
- School of Materials Science and Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, China
| | - Zhang Chen
- School of Materials Science and Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, China
| | - Yinping Liu
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jin Li
- School of Materials Science and Engineering, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| | - Yi Long
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Yanfeng Gao
- School of Materials Science and Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, China
| |
Collapse
|
5
|
Shi H, Yang Y, Huang Y, Li X, Shi Y. Anisotropic Single-Domain Hydrogel with Stimulus Response to Temperature and Ionic Strength. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Haidong Shi
- School of Physical Science and Technology, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo, Zhejiang 315211, China
| | - Yanling Yang
- School of Physical Science and Technology, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo, Zhejiang 315211, China
| | - Yanping Huang
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo, Zhejiang 315211, China
| | - Xuke Li
- Ningbo Key Laboratory of Specialty Polymers, School of Materials Science and Chemical Engineering, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo, Zhejiang 315211, China
| | - Yue Shi
- School of Physical Science and Technology, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo, Zhejiang 315211, China
| |
Collapse
|
6
|
Jiang N, Chen S, Wang J, He C, Fang K, Yin H, Liu Y, Li Y, Yu D. Smart thermally responsive perovskite materials: Thermo-chromic application and density function theory calculation. Heliyon 2023; 9:e12845. [PMID: 36704277 PMCID: PMC9871234 DOI: 10.1016/j.heliyon.2023.e12845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
With the continuous improvement of human's requirements for temperature control suitable for living, the energy consumption of electrical appliances such as air conditioners has become a major challenge in traditional architectural design. Generally, most of the solar energy passes through the glass to enter and exit the building, but the traditional glass can hardly control the light and heat energy, causing the indoor temperature to change dramatically with the environment. Therefore, it is more urgent to develop green and efficient smart windows. Perovskite is a temperature-adaptive material, which has the ability of phase transition and can adjust its band gap for thermochromic applications. In this work, we study the perovskite-based thermochromic smart window. As a new application of perovskite, a number of experiments have been carried out. However, there is still a lack of theoretical analysis on phase transition mechanisms and crystal structure prediction. Density functional theory (DFT) calculation is the most useful tool in optoelectronics, especially for perovskite crystal. Here, we extracted typical cases from published literature for analysis and comparison and summarized the crystal structure, electronic structure stability, interface engineering, and thermal characteristics employing DFT calculation We believe this work will pave the way for DFT application for the study of thermochromic perovskite.
Collapse
Affiliation(s)
- Ning Jiang
- College of Physics, Changchun University of Science and Technology, Changchun, Jilin Province, China
| | - Shuming Chen
- College of Physics, Changchun University of Science and Technology, Changchun, Jilin Province, China
| | - Jintao Wang
- College of Physics, Changchun University of Science and Technology, Changchun, Jilin Province, China
| | - Chenyang He
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun, Jilin Province, China
| | - Kai Fang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun, Jilin Province, China
| | - Hanlin Yin
- College of Physics, Changchun University of Science and Technology, Changchun, Jilin Province, China
| | - Yitong Liu
- College of Physics, Changchun University of Science and Technology, Changchun, Jilin Province, China
| | - Ye Li
- College of Physics, Changchun University of Science and Technology, Changchun, Jilin Province, China
- Corresponding author.
| | - Duan Yu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun, Jilin Province, China
- Corresponding author.
| |
Collapse
|