Zhao Y, Yuan PQ, Xu XR, Yang J. Removal of Phosphate by Adsorption with 2-Phenylimidazole-Modified Porous ZIF-8: Powder and Chitosan Spheres.
ACS OMEGA 2023;
8:28436-28447. [PMID:
37576661 PMCID:
PMC10413465 DOI:
10.1021/acsomega.3c02671]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
Due to rapid socioeconomic development, increased phosphorus concentrations can cause eutrophication of water bodies, with devastating effects on environmental sustainability and aquatic ecosystems. In this study, ZIF-8-PhIm was prepared for phosphorus removal using 2-phenylimidazole via the solvent-assisted ligand exchange (SALE) method. The structure and composition of ZIF-8-PhIm were characterized by various methods, including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), 1H nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) analysis. Compared to the ZIF-8 material, it exhibited a multistage pore structure with larger pore capacity and pore size, increased hydrophilicity, exposure of more adsorption sites, and also stronger electrostatic interaction. Under optimized conditions (T = 298 K, C0 = 150 mg/L, dose = 0.2 g/L), the adsorption capacity of ZIF-8-PhIm reached 162.93 mg/g, which was greater than that of the ZIF-8 material (92.07 mg/g). The Langmuir isotherm and pseudo-second-order kinetic models were suitable for describing the phosphate adsorption of ZIF-8-PhIm. The main effects of ZIF-8-PhIm on phosphate adsorption were Zn-O-P bonding and electrostatic interactions. It also had good regeneration properties. The ZIF-8-PhIm/CS spheres were prepared using chitosan (CS) as the cross-linking agent. The results of dynamic adsorption experiments on the spheres showed a saturation capacity of 85.69 mg/g and a half-penetration time of 514.15 min at 318 K according to the fitted results.
Collapse