1
|
Wu M, Zhang Y, Guo P, Liu H, Xia L, Wang M, Zeng C, Wang H, Shang F. Full-Length Transcriptome Sequencing and Comparative Transcriptomic Analyses Provide Comprehensive Insight into Molecular Mechanisms of Flavonoid Metabolites Biosynthesis in Styphnolobium japonicum. Genes (Basel) 2024; 15:329. [PMID: 38540388 PMCID: PMC10970609 DOI: 10.3390/genes15030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 06/14/2024] Open
Abstract
Styphnolobium japonicum L. is a commonly consumed plant in China, known for its medicinal and nutritional benefits. This study focuses on the medicinal properties influenced by flavonoid metabolites, which vary during flower development. Utilizing full-length transcriptome sequencing on S. japonicum flowers, we observed changes in gene expression levels as the flowers progressed through growth stages. During stages S1 and S2, key genes related to flavonoid synthesis (PAL, 4CL, CHS, F3H, etc.) exhibited heightened expression. A weighted gene co-expression network analysis (WGCNA) identified regulatory genes (MYB, bHLH, WRKY) potentially involved in the regulatory network with flavonoid biosynthesis-related genes. Our findings propose a regulatory mechanism for flavonoid synthesis in S. japonicum flowers, elucidating the genetic underpinnings of this process. The identified candidate genes present opportunities for genetic enhancements in S. japonicum, offering insights into potential applications for improving its medicinal attributes.
Collapse
Affiliation(s)
- Miao Wu
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan 467044, China; (M.W.)
| | - Yu Zhang
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou 450002, China (H.W.)
| | - Peng Guo
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou 450002, China (H.W.)
| | - Huiyuan Liu
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan 467044, China; (M.W.)
| | - Linkui Xia
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan 467044, China; (M.W.)
| | - Mengyuan Wang
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan 467044, China; (M.W.)
| | - Chuqi Zeng
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan 467044, China; (M.W.)
| | - Hongwei Wang
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou 450002, China (H.W.)
| | - Fude Shang
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou 450002, China (H.W.)
| |
Collapse
|
2
|
Kaur A, Ghai D, Yadav VG, Pawar SV, Sembi JK. Polyketide synthases (PKSs) of secondary metabolism: in silico identification and characterization in orchids. J Biomol Struct Dyn 2022:1-13. [PMID: 35735783 DOI: 10.1080/07391102.2022.2090439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Type III polyketide synthases (PKSs) catalyse the formation of an array of polyketides with diverse structures that play an important role in secondary metabolism in plants. This group of enzymes is encoded by a multigene family, the Type III polyketide synthase (PKS) gene family. Vast reserves of secondary metabolites in orchids make these plants suitable candidates for research in the area. In this study, genome-wide searches lead to the identification of five PeqPKS, eight DcaPKS and six AshPKS genes in Phalaenopsis equestris, Dendrobium catenatum and Apostasia shenzhenica, respectively. All the members showed the presence of two characteristic conserved domains (Chal_sti_synt_N and Chal_sti_synt_C) and were generally localised in the cytoplasm. The phylogenetic analysis led to the classification of these proteins into two groups: CHS (chalcone synthase (CHS) and non-CHS. A single protein in P. equestris and two proteins each in D. catenatum and A. shenzhenica clustered within the CHS clade. The majority of the genes exhibited similar structural patterns with a single intron. Expression profiling revealed the tissue-specific expression of these genes with high expression in reproductive tissues for most genes. A number of stress-responsive cis-regulatory elements were predicted, noteworthy amongst these are, ABRE and CGTCA that are chiefly responsible for responding to abscisic acid and methyl jasmonate, respectively. Our study provides a reference framework for future studies involving functional elucidation of PKS genes and biotechnological production of polyketides.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arshpreet Kaur
- Department of Botany, Panjab University, Chandigarh, India
| | - Devina Ghai
- Department of Botany, Panjab University, Chandigarh, India
| | - Vikramaditya G Yadav
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
3
|
Yao H, Wang F, Bi Q, Liu H, Liu L, Xiao G, Zhu J, Shen H, Li H. Combined Analysis of Pharmaceutical Active Ingredients and Transcriptomes of Glycyrrhiza uralensis Under PEG6000-Induced Drought Stress Revealed Glycyrrhizic Acid and Flavonoids Accumulation via JA-Mediated Signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:920172. [PMID: 35769299 PMCID: PMC9234494 DOI: 10.3389/fpls.2022.920172] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/19/2022] [Indexed: 05/16/2023]
Abstract
Glycyrrhiza uralensis contains many secondary metabolites with a wide range of pharmacological activities. Drought stress acts as a positive regulator to stimulate the production of medicinal active component in G. uralensis, however, the underlying mechanism remains unclear. The aim of this work is to investigate the accumulation and regulatory mechanism of pharmaceutical active ingredients in G. uralensis under drought stress. The materials of the aerial and underground parts of G. uralensis seedlings treated by 10% PEG6000 for 0, 2, 6, 12, and 24 h were used for RNA sequencing and determination of phytohormones and pharmaceutical active ingredients. PEG6000, ibuprofen (IBU), and jasmonic acid (JA) were utilized to treat G. uralensis seedlings for content detection and gene expression analysis. The results showed that, the contents of glycyrrhizic acid, glycyrrhetinic acid, and flavonoids (licochalcone A, glabridin, liquiritigenin, isoliquiritigenin, and liquiritin) were significantly accumulated in G. uralensis underground parts under drought stress. Kyoto Encyclopedia of Genes and Genomes analysis of the transcriptome data of drought-treated G. uralensis indicated that up-regulated differentially expressed genes (UDEGs) involved in glycyrrhizic acid synthesis in the underground parts and flavonoids synthesis in both aerial and underground parts were significantly enriched. Interestingly, the UDEGs participating in jasmonic acid (JA) signal transduction in both aerial and underground parts were discovered. In addition, JA content in both aerial and underground parts under drought stress showed the most significantly accumulated. And drought stress stimulated the contents of JA, glycyrrhizic acid, and flavonoids, coupled with the induced expressions of genes regulating the synthesis and transduction pathway. Moreover, In PEG6000- and JA-treated G. uralensis, significant accumulations of glycyrrhizic acid and flavonoids, and induced expressions of corresponding genes in these pathways, were observed, while, these increases were significantly blocked by JA signaling inhibitor IBU. JA content and expression levels of genes related to JA biosynthesis and signal transduction were also significantly increased by PEG treatment. Our study concludes that drought stress might promote the accumulation of pharmaceutical active ingredients via JA-mediated signaling pathway, and lay a foundation for improving the medicinal component of G. uralensis through genetic engineering technology.
Collapse
Affiliation(s)
- Hua Yao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
- Department of Pharmacology, Institute of Materia Medica of Xinjiang, Urumqi, China
| | - Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Quan Bi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Hailiang Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Liu
- Cotton Institute, Xingjiang Academy of Agricultural and Reclamation Science/Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding, Shihezi, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Jianbo Zhu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
- *Correspondence: Jianbo Zhu,
| | - Haitao Shen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
- Haitao Shen,
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
- Hongbin Li,
| |
Collapse
|
4
|
El-Garhy HAS, Sherif HSA, Soliman SM, Haredy SA, Bonfill M. Effect of gamma rays and colchicine on silymarin production in cell suspension cultures of Silybum marianum: A transcriptomic study of key genes involved in the biosynthetic pathway. Gene 2021; 790:145700. [PMID: 33964378 DOI: 10.1016/j.gene.2021.145700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 04/08/2021] [Accepted: 04/30/2021] [Indexed: 01/12/2023]
Abstract
The aim of this study was to investigate secondary metabolite production in Silybum marianum L. cell suspension cultures obtained from seeds treated with gamma rays (200 and 600 Gy) and 0.05% colchicine. The effects of these treatments on callus induction, growth, viability, and silymarin production were studied, along with the changes in the transcriptome and DNA sequence of chalcone synthase (CHS) genes. The effect of gamma radiation (200 and 600 Gy) on silymarin production in S. marianum dry seeds was also studied using HPLC-UV. All three treatments induced high callus biomass production from leaf segments. The viability of the cell suspension cultures was over 90%. The flavonolignan content measured in the extracellular culture medium of the S. marianum cell suspension was highest after treatment with 600 Gy, followed by 0.05% colchicine, and finally, 200 Gy, after a growth period of 12 days. In general, an increased expression of CHS1, CHS2, and CHS3 genes, accompanied by an increase of silymarin content, was observed in response to all the studied treatments, although the effect was greatest on CHS2 expression. Bioinformatics analysis confirmed that the three CHS2 clones exhibited the highest genetic variation, both in relation to each other and to the CHS1 and CHS3 clones. Based on the results, S. marianum plants obtained from seeds previously exposed to 600 and 200 Gy as well as colchicine constitute a renewable resource with the potential to obtain large amounts of silymarin.
Collapse
Affiliation(s)
- Hoda A S El-Garhy
- Genetics Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Qalyubia, Egypt.
| | - Hassan S A Sherif
- Genetics Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Qalyubia, Egypt
| | - Sara M Soliman
- Genetics Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Qalyubia, Egypt
| | - Shimaa A Haredy
- Physiology Department, National Organization for Drug Control and Research (NODCAR), Giza 12553, Egypt
| | - Mercedes Bonfill
- Department of Biology, Health, and Environment, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| |
Collapse
|