1
|
Wang JH, Choi HK, Lee HJ, Lee HG. On the Species Identification of Two Non-Native Tilapia Species, Including the First Record of a Feral Population of Oreochromis aureus (Steindachner, 1864) in South Korea. Animals (Basel) 2023; 13:ani13081351. [PMID: 37106914 PMCID: PMC10134965 DOI: 10.3390/ani13081351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Tilapia is an invasive species that has become widely distributed around the world. In Korea, introduced tilapia into its aquatic ecosystem for the first time with a species from Thailand in 1955, and later additionally introduced two more species from Japan and Taiwan, thus securing a total of three species of tilapia (O. niloticus, O. mossambicus and O. aureus) as food resources. Since then, O. niloticus has been reported to inhabit certain streams with thermal effluent outlets. Morphological species identification is very difficult for tilapia and a combined analysis of morphological and molecular-based species identification is therefore necessary. This study investigated a tilapia population that inhabits a thermal effluent stream (Dalseo Stream) in Daegu Metropolitan City, Korea, in order to conduct a morphological and genetic species identification of this population. In total, 37 tilapia individuals were sampled. The results of the morphological and genetic species identification analyses found that two species, O. aureus and O. niloticus, inhabit the Dalseo Stream. In Korea, the habitat of the O. niloticus natural population has been reported, but the O. aureus natural population has not been reported. Thus, we observed for the first time that a new invasive species, O. aureus, inhabits a stream in Korea. They are known to cause disturbances to aquatic organisms (e.g., fish, aquatic insects, plankton, aquatic plants) and the habitat environment (e.g., water quality, bottom structure). Accordingly, it is important to study the ecological effects of O. aureus and O. niloticus on the corresponding freshwater ecosystem closely and to prepare a management plan to prevent the spread of these species, as they are notoriously invasive.
Collapse
Affiliation(s)
- Ju Hyoun Wang
- Aquatic Ecosystem Research Laboratory, Department of Biological Science, College of Science & Engineering, Sangji University, Wonju 26339, Republic of Korea
| | - Hee-Kyu Choi
- Molecular Ecology and Evolution Laboratory, Department of Biological Science, College of Science & Engineering, Sangji University, Wonju 26339, Republic of Korea
| | - Hyuk Je Lee
- Molecular Ecology and Evolution Laboratory, Department of Biological Science, College of Science & Engineering, Sangji University, Wonju 26339, Republic of Korea
| | - Hwang Goo Lee
- Aquatic Ecosystem Research Laboratory, Department of Biological Science, College of Science & Engineering, Sangji University, Wonju 26339, Republic of Korea
| |
Collapse
|
2
|
Master-Key Regulators of Sex Determination in Fish and Other Vertebrates-A Review. Int J Mol Sci 2023; 24:ijms24032468. [PMID: 36768795 PMCID: PMC9917144 DOI: 10.3390/ijms24032468] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
In vertebrates, mainly single genes with an allele ratio of 1:1 trigger sex-determination (SD), leading to initial equal sex-ratios. Such genes are designated master-key regulators (MKRs) and are frequently associated with DNA structural variations, such as copy-number variation and null-alleles. Most MKR knowledge comes from fish, especially cichlids, which serve as a genetic model for SD. We list 14 MKRs, of which dmrt1 has been identified in taxonomically distant species such as birds and fish. The identification of MKRs with known involvement in SD, such as amh and fshr, indicates that a common network drives SD. We illustrate a network that affects estrogen/androgen equilibrium, suggesting that structural variation may exert over-expression of the gene and thus form an MKR. However, the reason why certain factors constitute MKRs, whereas others do not is unclear. The limited number of conserved MKRs suggests that their heterologous sequences could be used as targets in future searches for MKRs of additional species. Sex-specific mortality, sex reversal, the role of temperature in SD, and multigenic SD are examined, claiming that these phenomena are often consequences of artificial hybridization. We discuss the essentiality of taxonomic authentication of species to validate purebred origin before MKR searches.
Collapse
|
3
|
Curzon AY, Shirak A, Benet-Perlberg A, Naor A, Low-Tanne SI, Sharkawi H, Ron M, Seroussi E. Gene Variant of Barrier to Autointegration Factor 2 ( Banf2w) Is Concordant with Female Determination in Cichlids. Int J Mol Sci 2021; 22:7073. [PMID: 34209244 PMCID: PMC8268354 DOI: 10.3390/ijms22137073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 11/15/2022] Open
Abstract
Oreochromis fishes exhibit variability of sex-determination (SD) genes whose characterization contributes to understanding of the sex differentiation network, and to effective tilapia farming, which requires all-male culture. However, O. niloticus (On) amh is the only master-key regulator (MKR) of SD that has been mapped (XY/XX SD-system on LG23). In O. aureus (Oa), LG3 controls a WZ/ZZ SD-system that has recently been delimited to 9.2 Mbp, with an embedded interval rich with female-specific variation, harboring two paics genes and banf2. Developing genetic markers within this interval and using a hybrid Oa stock that demonstrates no recombination repression in LG3, we mapped the critical SD region to 235 Kbp on the orthologous On physical map (p < 1.5 × 10-26). DNA-seq assembly and peak-proportion analysis of variation based on Sanger chromatograms allowed the characterization of copy-number variation (CNV) of banf2. Oa males had three exons capable of encoding 90-amino-acid polypeptides, yet in Oa females, we found an extra copy with an 89-amino-acid polypeptide and three non-conservative amino acid substitutions, designated as banf2w. CNV analysis suggested the existence of two to five copies of banf2 in diploidic Cichlidae. Disrupting the Hardy-Weinberg equilibrium (p < 4.2 × 10-3), banf2w was concordant with female determination in Oa and in three cichlids with LG3 WZ/ZZ SD-systems (O. tanganicae, O. hornorum and Pelmatolapia mariae). Furthermore, exclusive RNA-seq expression in Oa females strengthened the candidacy of banf2w as the long-sought LG3 SD MKR. As banf genes mediate nuclear assembly, chromatin organization, gene expression and gonad development, banf2w may play a fundamental role inducing female nucleus formation that is essential for WZ/ZZ SD.
Collapse
Affiliation(s)
- Arie Yehuda Curzon
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Andrey Shirak
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Ayana Benet-Perlberg
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Alon Naor
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Shai Israel Low-Tanne
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Haled Sharkawi
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Micha Ron
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Eyal Seroussi
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| |
Collapse
|
4
|
Zhao N, Jia L, Che J, He X, Zhang B. Novel molecular marker for RAA-LFD visual detection of Cynoglossus semilaevis sex. Anim Reprod Sci 2021; 226:106713. [PMID: 33549888 DOI: 10.1016/j.anireprosci.2021.106713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 11/28/2022]
Abstract
Due to the significant sex dimorphism, Cynoglossus semilaevis has long been a species of research interest in the field of artificial sex manipulation. The existence of pseudo-males both in the natural habitat and aquaculture enterprises also is indicative of the importance for identification of the genetic sex in this species. In the present study, there was elucidation of a novel molecular marker for utilizing the recombinase aided amplification-lateral flow dipstick (RAA-LFD) visual system to identify the genetic sex of C. semilaevis. This 533 bp novel marker is a differential single copy fragment between the Z and W chromosome of C. semilaevis and exists only in the W chromosome. After primer designing and probe labeling, this marker has been utilized in a RAA isothermal amplification system. There were 49 C. semilaevis specimens evaluated for genetic sex identification using both PCR-agarose gel electrophoresis based InDel marker detection and the novel RAA-LFD system. The results from conducting evaluations with the two methods were consistent in all samples. Also, results from sensitivity analysis with use of the RAA-LFD system indicated the detection system was effective and reliable from 108 copy number to 101. With use of the RAA reaction, there was only need to utilize a constant temperature of 37 ℃ for specific DNA amplification within 30 min. The combination use of RAA with LFD resulted in more efficient and convenient sex determination with there being a lesser technical threshold.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Shanghai Ocean University, Shanghai, 201306, China
| | - Lei Jia
- Tianjin Fisheries Research Institute, Tianjin, 300457, China
| | - Jinyuan Che
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaoxu He
- Tianjin Fisheries Research Institute, Tianjin, 300457, China
| | - Bo Zhang
- Tianjin Fisheries Research Institute, Tianjin, 300457, China.
| |
Collapse
|
5
|
Curzon AY, Shirak A, Dor L, Zak T, Perelberg A, Seroussi E, Ron M. A duplication of the Anti-Müllerian hormone gene is associated with genetic sex determination of different Oreochromis niloticus strains. Heredity (Edinb) 2020; 125:317-327. [PMID: 32647338 PMCID: PMC7555829 DOI: 10.1038/s41437-020-0340-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/25/2020] [Indexed: 11/08/2022] Open
Abstract
Sex determination (SD) mechanisms are ancient and conserved, yet much diversity is exhibited in primary sex-determining signals that trigger male or female development. In O. niloticus, SD is associated with a male-specific locus on linkage group (LG) 23 which harbors the Y-linked Anti-Müllerian hormone (amh) gene, and a truncated duplication, denoted amhΔy. We have evaluated the possible role of identified indels and SNPs in the amh gene on SD, based on conservation in different O. niloticus strains. A fluorescent assay for the detection of a 5 bp insertion in amhΔy exon VI, efficiently discriminated between XX, XY, and YY genotypes. Concordance rate between amhΔy and sex varied in six Oreochromis strains, from 100% (Ghana) through 90% (Swansea) to 85% (Thai-Chitralada). The association of amhΔy with sex was found to be conserved in all tested O. niloticus strains, and thus supports its key role in SD. However, the previously identified missense SNP (C/T) in amh exon II was found only in the Swansea strain, thus excluding its candidacy for the causal variation of SD across all strains. Effects of markers on LGs 1, 3, and 23 (amhΔy) fully explained sex distribution in one Thai-Chitralada family (R2 = 1.0), whereas in another family only the major effect of LG23 (amhΔy) was significant (R2 = 0.37). Thus, amhΔy on LG23 is associated with genetic SD, either as a single causal gene in different O. niloticus strains, or in combination with segregating genes on LGs 1 and 3 in the Thai-Chitralada hybrid strain.
Collapse
Affiliation(s)
- A Y Curzon
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Institute of Animal Science, Agricultural Research Organization, 50250, Bet Dagan, Israel
| | - A Shirak
- Institute of Animal Science, Agricultural Research Organization, 50250, Bet Dagan, Israel
| | - L Dor
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Institute of Animal Science, Agricultural Research Organization, 50250, Bet Dagan, Israel
| | - T Zak
- Dor Research Station, Fisheries and Aquaculture Department, Ministry of Agriculture and Rural Development, Bet Dagan, Israel
| | - A Perelberg
- Dor Research Station, Fisheries and Aquaculture Department, Ministry of Agriculture and Rural Development, Bet Dagan, Israel
| | - E Seroussi
- Institute of Animal Science, Agricultural Research Organization, 50250, Bet Dagan, Israel
| | - M Ron
- Institute of Animal Science, Agricultural Research Organization, 50250, Bet Dagan, Israel.
| |
Collapse
|
6
|
Su H, Ma D, Zhu H, Liu Z, Gao F. Transcriptomic response to three osmotic stresses in gills of hybrid tilapia (Oreochromis mossambicus female × O. urolepis hornorum male). BMC Genomics 2020; 21:110. [PMID: 32005144 PMCID: PMC6995152 DOI: 10.1186/s12864-020-6512-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
Background Osmotic stress is a widespread phenomenon in aquatic animal. The ability to cope with salinity stress and alkaline stress is quite important for the survival of aquatic species under natural conditions. Tilapia is an important commercial euryhaline fish species. What’s more tilapia is a good experimental material for osmotic stress regulation research, but the molecular regulation mechanism underlying different osmotic pressure of tilapia is still unexplored. Results To elucidate the osmoregulation strategy behind its hyper salinity, alkalinity and salinity-alkalinity stress of tilapia, the transcriptomes of gills in hybrid tilapia (Oreochromis mossambicus ♀ × O. urolepis hornorum ♂) under salinity stress (S: 25‰), alkalinity stress(A: 4‰) and salinity-alkalinity stress (SA: S: 15‰, A: 4‰) were sequenced using deep-sequencing platform Illumina/HiSeq-2000 and differential expression genes (DEGs) were identified. A total of 1958, 1472 and 1315 upregulated and 1824, 1940 and 1735 downregulated genes (P-value < 0.05) were identified in the salt stress, alkali stress and saline-alkali stress groups, respectively, compared with those in the control group. Furthermore, Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted in the significant different expression genes. In all significant DEGs, some of the typical genes involved in osmoregulation, including carbonic anhydrase (CA), calcium/calmodulin-dependent protein kinase (CaM kinase) II (CAMK2), aquaporin-1(AQP1), sodium bicarbonate cotransporter (SLC4A4/NBC1), chloride channel 2(CLCN2), sodium/potassium/chloride transporter (SLC12A2 / NKCC1) and other osmoregulation genes were also identified. RNA-seq results were validated with quantitative real-time PCR (qPCR), the 17 random selected genes showed a consistent direction in both RNA-Seq and qPCR analysis, demonstrated that the results of RNA-seq were reliable. Conclusions The present results would be helpful to elucidate the osmoregulation mechanism of aquatic animals adapting to saline-alkali challenge. This study provides a global overview of gene expression patterns and pathways that related to osmoregulation in hybrid tilapia, and could contribute to a better understanding of the molecular regulation mechanism in different osmotic stresses.
Collapse
Affiliation(s)
- Huanhuan Su
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou City, 510380, China.,Shanghai Ocean University, College of Fisheries and Life Science, Shanghai, 201306, China
| | - Dongmei Ma
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou City, 510380, China
| | - Huaping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou City, 510380, China.
| | - Zhigang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou City, 510380, China
| | - Fengying Gao
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou City, 510380, China
| |
Collapse
|
7
|
Quantitative trait loci on LGs 9 and 14 affect the reproductive interaction between two Oreochromis species, O. niloticus and O. aureus. Heredity (Edinb) 2018; 122:341-353. [PMID: 30082919 DOI: 10.1038/s41437-018-0131-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 11/08/2022] Open
Abstract
Effective farming of tilapia requires all-male culture, characterized by uniformity and high growth rate. Males of O. aureus (Oa) and females of O. niloticus (On) produce all-male offspring, but there is a behavioral reproductive barrier between the two species that prevents mass production. In crosses between Oa and On broodstocks, few hybrid females are attracted to the Oa male nests (denoted responders), and if they harbor the On alleles for the sex determination (SD) sites on linkage groups (LGs) 1, 3, and 23, all-male progeny are produced. Yet, without controlling for the alleles underlying SD, the parental stocks gradually lose their capability for all-male production. Hypothesizing that marker-assisted selection for female responders would allow production of sustainable broodstocks, we applied genotyping-by-sequencing to generate 4983 informative SNPs from 13 responding and 28 non-responding females from two full-sib families. Accounting for multiple comparisons in a genome-wide association study, seven SNPs met a false discovery rate of 0.061. Lowest nominal probabilities were on LGs 9 and 14, for which microsatellite DNA markers were designed within the candidate genes PTGDSL and CASRL, respectively. By increasing the sample size to 22 responders and 47 non-responders and by genotyping additional established microsatellites, we confirmed the association of these LGs with female responsiveness. The combined effects of microsatellites GM171 and CARSL-LOC100690618 on LGs 9 and 14 explained 37% of the phenotypic variance of reproductive interaction (p < 0.0001). Based on these findings, we propose a strategy for mass production of all-male tilapia hybrids through selection for genomic loci affecting SD and female responsiveness.
Collapse
|
8
|
Zhu H, Liu Z, Gao F, Lu M, Liu Y, Su H, Ma D, Ke X, Wang M, Cao J, Yi M. Characterization and expression of Na +/K +-ATPase in gills and kidneys of the Teleost fish Oreochromis mossambicus, Oreochromis urolepis hornorum and their hybrids in response to salinity challenge. Comp Biochem Physiol A Mol Integr Physiol 2018; 224:1-10. [PMID: 29852253 DOI: 10.1016/j.cbpa.2018.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 10/14/2022]
Abstract
Tilapia (Oreochromis mossambicus, O. urolepis hornorum, their hybrids O. mossambicus♀ × O. hornorum♂ and O. hornorum♀ × O. mossambicus♂) were exposed to a high salinity environment to evaluate their osmoregulatory responses. The plasma osmolality of all the tilapia species were elevated with the salinity challenge. The activities of Na+/K+-ATPase (NKA) in both the gill and kidney showed a similar increased change tendency compared with the control. The distribution of NKA α1 mRNA in all the examined tissues suggested that NKA α1 has a possible housekeeping role for this isoform. The amount of NKA α1 mRNA in the gill and kidney was elevated in the four fishes with similar expression patterns after transfer from freshwater to seawater. The NKAα1 mRNA expression levels in the gill reached their peak level at 24 h after transfer (P < 0.01) compared to the freshwater group, following decreases in the pretreatment level at 48 h (P > 0.05). However, the NKAα1 mRNA expression levels in the kidney were not significantly affected with increasing environmental salinity (P > 0.05). The differences in the responses to saltwater challenge may be associated with differences in saltwater tolerance between the four tilapia. The drastic increase in the plasma osmolality, NKA activities and mRNA expression suggested that the hybrids (O. mossambicus♀ × O. hornorum♂) possess heterosis in salinity responsiveness compared to that of both the parents, indicating a maternal effect on the salinity tolerance of the tilapia hybrids. This study provides a theoretical basis to further study the mechanism of fish osmoregulation response to salinity challenge.
Collapse
Affiliation(s)
- Huaping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| | - Zhigang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Fengying Gao
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Maixin Lu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yujiao Liu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Huanhuan Su
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Dongmei Ma
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Xiaoli Ke
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Miao Wang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jianmeng Cao
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Mengmeng Yi
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|