1
|
De Liu T, Huang DD, Chang LY, Qiao TF, Xia JH. Identification of a Novel QTL on LG16 Associated with Acute Salt Tolerance in Red Tilapia (Oreochromis spp.) Using GWAS. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:39. [PMID: 39891786 DOI: 10.1007/s10126-025-10422-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
Culturing saline tilapia has become a new trend in the aquaculture due to the scarcity of freshwater resources. In this study, the genetic basis controlling for salt tolerance were investigated by using a ddRAD-seq-based GWAS in 288 individuals with extreme salt tolerant traits from half-sib families of red tilapia. 12 genome-wide significant SNPs and 6 chromosome-wide significant SNPs associated with acute salt tolerance were identified. Two QTLs on LG18:25,593,701-7009020 and on LG16:19,735,164-21,231,391 were defined. It is noteworthy that the QTL on LG16 is a novel QTL associated with acute salt stress. Near the significant SNP sites, we identified candidate genes sik1, ltb4r2b, pnp5b and kirrel1b with differential transcript expression under salt stress. Furthermore, significant physiological differences in serum osmolality and ion concentrations were confirmed between the tolerant group and sensitive group under 4.5 h of 22 ppt stress. The sensitive group had much higher serum osmolality (osmolality: 642.20 ± 6.30 mOsm/kg) and higher concentrations of sodium and chloride ions (sodium: 317.67 ± 5.03 mmol/L and chloride: 316.43 ± 8.28 mmol/L) than the tolerant group (547.60 ± 15.44 mOsm/kg, p osmolality = 0.0002; sodium: 280.53 ± 9.13 mmol/L, p sodium < 0.0242; chloride: 266.00 ± 12.00 mmol/L, p chloride < 0.0184). However, the lowest bicarbonate concentration was detected in the sensitive group at 22 ppt (2.53 ± 0.30 mmol/L), which was significantly different from both the sensitive group at 0 ppt (p = 0.0008) and the tolerant group at 22 ppt (p = 0.0164). Our research laid the foundation for exploring the genetic mechanisms of acute salt tolerance and osmoregulation in red tilapia and for developing strains of red tilapia adapted to saltwater.
Collapse
Affiliation(s)
- Tong De Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Dan Dan Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Le Yi Chang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Tao Fei Qiao
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jun Hong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
2
|
Han W, Qi M, Ye K, He Q, Yekefenhazi D, Xu D, Han F, Li W. Genome-wide association study for growth traits with 1066 individuals in largemouth bass ( Micropterus salmoides). Front Mol Biosci 2024; 11:1443522. [PMID: 39385983 PMCID: PMC11461307 DOI: 10.3389/fmolb.2024.1443522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
The largemouth bass is a native species of North America that was first introduced to mainland China in the 1980s. In recent years, it has been extensively farmed in China due to its high meat quality and broad adaptability. In this study, we collected growth trait data from 1,066 largemouth bass individuals across two populations. We generated an average of approximately 7× sequencing coverage for these fish using Illumina sequencers. From the samples, we identified 2,695,687 SNPs and retained 1,809,116 SNPs for further analysis after filtering. To estimate the number of genome-wide effective SNPs, we performed LD pruning with PLINK software and identified 77,935 SNPs. Our GWAS revealed 15 SNPs associated with six growth traits. We identified a total of 24 genes related to growth, with three genes-igf1, myf5, and myf6-directly associated with skeletal muscle development and growth, located near the leading SNP on chromosome 23. Other candidate genes are involved in the development of tissues and organs or other physiological processes. These findings provide a valuable set of SNPs and genes that could be useful for genetic breeding programs aimed at enhancing growth in largemouth bass.
Collapse
Affiliation(s)
- Wei Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Ming Qi
- Zhejiang Fisheries Technical Extension Center, Hangzhou, China
| | - Kun Ye
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Qiwei He
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Dinaer Yekefenhazi
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Dongdong Xu
- Key Lab of Mariculture and enhancement of Zhejiang Province, Zhejiang Marine fisheries Research institute, Zhoushan, China
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| |
Collapse
|
3
|
Cheng Z, Huang H, Qiao G, Wang Y, Wang X, Yue Y, Gao Q, Peng S. Metagenomic and Metabolomic Analyses Reveal the Role of Gut Microbiome-Associated Metabolites in the Muscle Elasticity of the Large Yellow Croaker ( Larimichthys crocea). Animals (Basel) 2024; 14:2690. [PMID: 39335279 PMCID: PMC11428853 DOI: 10.3390/ani14182690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The large yellow croaker (LYC, Larimichthys crocea) is highly regarded for its delicious taste and unique flavor. The gut microbiota has the ability to affect the host muscle performance and elasticity by regulating nutrient metabolism. The purpose of this study is to establish the relationship between muscle quality and intestinal flora in order to provide reference for the improvement of the muscle elasticity of LYC. In this study, the intestinal contents of high muscle elasticity males (IEHM), females (IEHF), and low muscle elasticity males (IELM) and females (IELF) were collected and subjected to metagenomic and metabolomic analyses. Metagenomic sequencing results showed that the intestinal flora structures of LYCs with different muscle elasticities were significantly different. The abundance of Streptophyta in the IELM (24.63%) and IELF (29.68%) groups was significantly higher than that in the IEHM and IEHF groups. The abundance of Vibrio scophthalmi (66.66%) in the IEHF group was the highest. Based on metabolomic analysis by liquid chromatograph-mass spectrometry, 107 differentially abundant metabolites were identified between the IEHM and IELM groups, and 100 differentially abundant metabolites were identified between the IEHF and IELF groups. Based on these metabolites, a large number of enriched metabolic pathways related to muscle elasticity were identified. Significant differences in the intestinal metabolism between groups with different muscle elasticities were identified. Moreover, the model of the relationship between the intestinal flora and metabolites was constructed, and the molecular mechanism of intestinal flora regulation of the nutrient metabolism was further revealed. The results help to understand the molecular mechanism of different muscle elasticities of LYC and provide an important reference for the study of the mechanism of the effects of LYC intestinal symbiotic bacteria on muscle development, and the development and application of probiotics in LYC.
Collapse
Affiliation(s)
- Zhenheng Cheng
- College of Life Sciences, Huzhou University, 759 Erhuan East Road, Wuxing District, Huzhou 313000, China
- East China Sea Fishery Research Institute, Shanghai 200090, China
| | - Hao Huang
- College of Life Sciences, Huzhou University, 759 Erhuan East Road, Wuxing District, Huzhou 313000, China
- East China Sea Fishery Research Institute, Shanghai 200090, China
| | - Guangde Qiao
- East China Sea Fishery Research Institute, Shanghai 200090, China
| | - Yabing Wang
- East China Sea Fishery Research Institute, Shanghai 200090, China
| | - Xiaoshan Wang
- East China Sea Fishery Research Institute, Shanghai 200090, China
| | - Yanfeng Yue
- East China Sea Fishery Research Institute, Shanghai 200090, China
| | - Quanxin Gao
- College of Life Sciences, Huzhou University, 759 Erhuan East Road, Wuxing District, Huzhou 313000, China
| | - Shiming Peng
- East China Sea Fishery Research Institute, Shanghai 200090, China
| |
Collapse
|
4
|
Fu S, Liu J. Genome-wide association study identified genes associated with ammonia nitrogen tolerance in Litopenaeus vannamei. Front Genet 2022; 13:961009. [PMID: 36072655 PMCID: PMC9441690 DOI: 10.3389/fgene.2022.961009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Ammonia nitrogen tolerance is an economically important trait of the farmed penaeid shrimp Litopenaeus vannamei. To identify the genes associated with ammonia nitrogen tolerance, we performed an extreme phenotype genome-wide association study method (XP-GWAS) on a population of 200 individuals. The single nucleotide polymorphism (SNP) genotyping array method was used to construct the libraries and 36,048 SNPs were genotyped. Using the MLM, FarmCPU and Blink models, six different SNPs, located on SEQ3, SEQ4, SEQ5, SEQ7 and SEQ8, were determined to be significantly associated with ammonia nitrogen tolerance. By integrating the results of the GWAS and the biological functions of the genes, seven candidate genes (PDI, OZF, UPF2, VPS16, TMEM19, MYCBP2, and HOX7) were found to be associated with ammonia nitrogen tolerance in L. vannamei. These genes are involved in cell transcription, cell division, metabolism, and immunity, providing the basis for further study of the genetic mechanisms of ammonia nitrogen tolerance in L. vannamei. Further candidate gene association analysis in the offspring population revealed that the SNPs in the genes zinc finger protein OZF-like (OZF) and homeobox protein Hox-B7-like (HOX7) were significantly associated with ammonia nitrogen tolerance trait of L. vannamei. Our results provide fundamental genetic information that will be useful for further investigation of the molecular mechanisms of ammonia nitrogen tolerance. These associated SNPs may also be promising candidates for improving ammonia nitrogen tolerance in L. vannamei.
Collapse
Affiliation(s)
- Shuo Fu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang, China
| | - Jianyong Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang, China
- *Correspondence: Jianyong Liu,
| |
Collapse
|
5
|
Fine Mapping and Functional Analysis of the Gene PcTYR, Involved in Control of Cap Color of Pleurotus cornucopiae. Appl Environ Microbiol 2022; 88:e0217321. [PMID: 35289641 DOI: 10.1128/aem.02173-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oyster mushrooms have a high biological efficiency and are easy to cultivate, which is why they are produced all over the world. Cap color is an important commercial trait for oyster mushrooms. Little is known about the genetic mechanism of the cap color trait in oyster mushrooms, which limits molecular breeding for the improvement of cap color-type cultivars. In this study, a 0.8-Mb major quantitative trait locus (QTL) region controlling cap color in the oyster mushroom Pleurotus cornucopiae was mapped on chromosome 7 through bulked-segregant analysis sequencing (BSA-seq) and extreme-phenotype genome-wide association studies (XP-GWAS). Candidate genes were further selected by comparative transcriptome analysis, and a tyrosinase gene (PcTYR) was identified as the highest-confidence candidate gene. Overexpression of PcTYR resulted in a significantly darker cap color, while the cap color of RNA interference (RNAi) strains for this gene was significantly lighter than that of the wild-type (WT) strains, suggesting that PcTYR plays an essential role in cap color formation. This is the first report about fine mapping and functional verification of a gene controlling cap color in oyster mushrooms. This will enhance our understanding of the genetic basis for cap color formation in oyster mushrooms and will facilitate molecular breeding for cap color. IMPORTANCE Oyster mushrooms are widely cultivated and consumed over the world for their easy cultivation and high biological efficiency (mushroom fresh weight/substrate dry weight × 100%). Fruiting bodies with dark caps are more and more popular according to consumer preferences, but dark varieties are rarely seen on the market. Little is known about the genetic mechanism of the cap color trait in oyster mushrooms, which limits molecular breeding for the improvement of cap color-type cultivars. A major QTL of cap color in oyster mushroom P. cornucopiae was fine mapped by using bulked-segregant analysis (BSA) and extreme-phenotype genome-wide association study (XP-GWAS) analysis. A candidate gene PcTYR coding tyrosinase was further identified with the help of comparative transcriptome analysis. qPCR analysis and genetic transformation tests proved that PcTYR played an essential role in cap color formation. This study will contribute to revealing the genetic mechanism of cap color formation in mushrooms, thereby facilitating molecular breeding for cap color trait.
Collapse
|
6
|
Kong S, Zhou Z, Zhou T, Zhao J, Chen L, Lin H, Pu F, Ke Q, Bai H, Xu P. Genome-Wide Association Study of Body Shape-Related Traits in Large Yellow Croaker (Larimichthys crocea). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:631-643. [PMID: 32666363 DOI: 10.1007/s10126-020-09983-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is one of the most important cultured marine fish on the southeast coast of China. Its body shape is important for the aquaculture industry since it affects the behavior such as swimming, ingesting, and evading, as well as customer preference. Due to the greater consumer demand of small head, slender body large yellow croaker, selecting and breeding of slender individuals with the assistance of genetic markers will benefit the industry quickly. In this study, several traits were employed to represent body shape, including body depth/body length (BD/BL), body thickness/body length (BT/BL), caudal peduncle depth/caudal peduncle length (CPDLR), tail length/body length (TL/BL), and body area/head area (BA/HA). Genome-wide association study was conducted with a panmictic population of 280 individuals to identify SNP and genes potentially associated with body shape. A set of 20 SNPs on 12 chromosomes were identified to be significantly associated with body shape-related traits. Besides, 5 SNPs were identified to be suggestive associated with CPDLR and BT/BL. Surrounding these SNPs, we found some body shape-related candidate genes, including fabp1, acrv1, bcor, mstn, bambi, and neo1, which involved in lipid metabolism, TGF-β signaling, and BMP pathway and other important regulatory pathways. These results will be useful for the understanding of the genetic basis of body shape formation and helpful for body shape controlling of large yellow croaker by using marker-assisted selection.
Collapse
Affiliation(s)
- Shengnan Kong
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhixiong Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ji Zhao
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lin Chen
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Huanling Lin
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Fei Pu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China
| | - Qiaozhen Ke
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Huaqiang Bai
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Peng Xu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
7
|
Zhou Z, Han K, Wu Y, Bai H, Ke Q, Pu F, Wang Y, Xu P. Genome-Wide Association Study of Growth and Body-Shape-Related Traits in Large Yellow Croaker (Larimichthys crocea) Using ddRAD Sequencing. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:655-670. [PMID: 31332575 DOI: 10.1007/s10126-019-09910-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is an economically important marine fish species of China. Due to overfishing and marine pollution, the wild stocks of this croaker have collapsed in the past decades. Meanwhile, the cultured croaker is facing the difficulties of reduced genetic diversity and low growth rate. To explore the molecular markers related to the growth traits of croaker and providing the related SNPs for the marker-assisted selection, we used double-digest restriction-site associated DNA (ddRAD) sequencing to dissect the genetic bases of growth traits in a cultured population and identify the SNPs that associated with important growth traits by GWAS. A total of 220 individuals were genotyped by ddRAD sequencing. After quality control, 27,227 SNPs were identified in 220 samples and used for GWAS analysis. We identified 13 genome-wide significant associated SNPs of growth traits on 8 chromosomes, and the beta P of these SNPs ranged from 0.01 to 0.86. Through the definition of candidate regions and gene annotation, candidate genes related to growth were identified, including important regulators such as fgf18, fgf1, nr3c1, cyp8b1, fabp2, cyp2r1, ppara, and ccm2l. We also identified SNPs and candidate genes that significantly associated with body shape, including bmp7, col1a1, col11a2, and col18a1, which are also economically important traits for large yellow croaker aquaculture. The results provided insights into the genetic basis of growth and body shape in large yellow croaker population and would provide reliable genetic markers for molecular marker-assisted selection in the future. Meanwhile, the result established a basis for our subsequent fine mapping and related gene study.
Collapse
Affiliation(s)
- Zhixiong Zhou
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Kunhuang Han
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yidi Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Huaqiang Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qiaozhen Ke
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Fei Pu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yilei Wang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China.
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Peng Xu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China.
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|