1
|
Ma X, Wang D, Xue G, Zheng X, Lu Y, Shi J, Hao Z, Chen J. Characterization of the Liriodendron chinense Pentatricopeptide Repeat (PPR) Gene Family and Its Role in Osmotic Stress Response. Genes (Basel) 2023; 14:1125. [PMID: 37372305 DOI: 10.3390/genes14061125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The Pentatricopeptide repeat (PPR) superfamily is a large gene family in plants that regulates organelle RNA metabolism, which is important for plant growth and development. However, a genome-wide analysis of the PPR gene family and its response to abiotic stress has not been reported for the relict woody plant Liriodendron chinense. In this paper, we identified 650 PPR genes from the L. chinense genome. A phylogenetic analysis showed that the LcPPR genes could roughly be divided into the P and PLS subfamilies. We found that 598 LcPPR genes were widely distributed across 19 chromosomes. An intraspecies synteny analysis indicated that duplicated genes from segmental duplication contributed to the expansion of the LcPPR gene family in the L. chinense genome. In addition, we verified the relative expression of Lchi03277, Lchi06624, Lchi18566, and Lchi23489 in the roots, stems, and leaves and found that all four genes had the highest expression in the leaves. By simulating a drought treatment and quantitative reverse transcription PCR (qRT-PCR) analysis, we confirmed the drought-responsive transcriptional changes in four LcPPR genes, two of which responded to drought stress independent of endogenous ABA biosynthesis. Thus, our study provides a comprehensive analysis of the L. chinense PPR gene family. It contributes to research into their roles in this valuable tree species' growth, development, and stress resistance.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Dandan Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Guoxia Xue
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Xueyan Zheng
- National Germplasm Bank of Chinese Fir at Fujian Yangkou Forest Farm, Shunchang 353211, China
| | - Ye Lu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Jisen Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaodong Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Niedziela A, Wojciechowska M, Bednarek PT. New PCR-specific markers for pollen fertility restoration QRfp-4R in rye (Secale cereale L.) with Pampa sterilizing cytoplasm. J Appl Genet 2021; 62:545-557. [PMID: 34173177 PMCID: PMC8571214 DOI: 10.1007/s13353-021-00646-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 11/26/2022]
Abstract
Pampa cytoplasmic male sterility phenomenon is used extensively in the rye hybrid breeding programs. It relies on sterilizing action of the cytoplasm resulting in non-viable pollen of female lines. The sterilizing effect is problematic for reversion, and efficient restores are needed. The most promising QTL is located on chromosome 4R, but other chromosomes may also code the trait. Advanced recombinant inbred lines formed bi-parental mapping population genotyped with DArTseq markers. Genetic mapping allowed the seven linkage groups to construct with numerous markers and represent all rye chromosomes. Single marker analysis and composite interval mapping were conducted to identify markers linked to the pollen fertility. Association mapping was used to detect additional markers associated with the trait. A highly significant QTL (QRfp-4R) that explained 42.3% of the phenotypic variation was mapped to the distal part of the long arm of the 4R chromosome. The markers localized in the QRfp-4R region achieve R2 association values up to 0.59. The homology of the 43 marker sequences to the loci responsible for fertility restoration in other species and transcription termination factor (mTERF) linked to Rf genes was established. Ten markers were successfully converted into PCR-specific conditions, and their segregation pattern was identical to that of unconverted DArTs.
Collapse
Affiliation(s)
- Agnieszka Niedziela
- Department of Plant Biochemistry and Physiology, Plant Breeding and Acclimatization Institute - NRI, 05-870, Błonie, Radzików, Poland
| | - Marzena Wojciechowska
- Department of Plant Biochemistry and Physiology, Plant Breeding and Acclimatization Institute - NRI, 05-870, Błonie, Radzików, Poland
| | - Piotr Tomasz Bednarek
- Department of Plant Biochemistry and Physiology, Plant Breeding and Acclimatization Institute - NRI, 05-870, Błonie, Radzików, Poland.
| |
Collapse
|
3
|
Anisimova IN. Structural and Functional Organization of Genes That Induce and Suppress Cytoplasmic Male Sterility in Plants. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420110022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Cheng J, Chen Y, Hu Y, Zhou Z, Hu F, Dong J, Chen W, Cui J, Wu Z, Hu K. Fine mapping of restorer-of-fertility gene based on high-density genetic mapping and collinearity analysis in pepper (Capsicum annuum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:889-902. [PMID: 31863157 DOI: 10.1007/s00122-019-03513-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/13/2019] [Indexed: 05/24/2023]
Abstract
The pepper restorer-of-fertility (CaRf) gene was fine mapped based on conjoint analysis of recombinants and collinearity between the two pepper reference genomes. Capana06g003028, encoding an Rf-like PPR protein, was proposed as the strongest candidate for pepper CaRf based on sequence comparison and expression analysis. The cytoplasmic male sterility (CMS)/restorer-of-fertility (Rf) system not only provides an excellent model to dissect genetic interactions between the mitochondria and nucleus but also plays a vital role in high-efficiency hybrid seed production in crops including pepper (Capsicum spp.). Although two important CMS candidate genes, orf507 and Ψatp6-2, have previously been suggested, the pepper Rf gene (CaRf) has not yet been isolated. In this study, a high-density genetic map comprising 7566 SNP markers in 1944 bins was first constructed with the array genotyping results from 317 F2 individuals. Based on this map, the CaRf gene was preliminarily mapped to a region of 1.15 Mb in length at the end of chromosome P6. Then, by means of a conjoint analysis of recombinants and collinearity between the two pepper reference genomes, an important candidate interval with 270.10 kb in length was delimited for CaRf. Finally, Capana06g003028, which encodes an Rf-like PPR protein, was proposed as the strongest candidate for CaRf based on sequence analysis and expression characteristics in sterile and fertile plants. The high-density genetic map and fine mapping results provided here lay a foundation for the application of molecular breeding, as well as cloning and functional analysis of CaRf, in pepper.
Collapse
Affiliation(s)
- Jiaowen Cheng
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Yijian Chen
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Yafei Hu
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Ziyan Zhou
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Fang Hu
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Jichi Dong
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Weili Chen
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Junjie Cui
- Department of Horticulture, College of Food Science and Engineering, Foshan University, Foshan, 528200, Guangdong, China
| | - Zhiming Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Kailin Hu
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Anisimova IN, Alpatieva NV, Karabitsina YI, Gavrilenko TA. Nucleotide sequence polymorphism in the RFL-PPR genes of potato. J Genet 2019. [DOI: 10.1007/s12041-019-1130-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Han Z, Qin Y, Li X, Yu J, Li R, Xing C, Song M, Wu J, Zhang J. A genome-wide analysis of pentatricopeptide repeat (PPR) protein-encoding genes in four Gossypium species with an emphasis on their expression in floral buds, ovules, and fibers in upland cotton. Mol Genet Genomics 2019; 295:55-66. [PMID: 31446488 DOI: 10.1007/s00438-019-01604-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/13/2019] [Indexed: 11/28/2022]
Abstract
Cotton is the most important natural fiber used in textiles. Breeding for "three-lines", i.e., cytoplasmic male sterility (CMS)-based sterile (A), maintainer (B), and restorer (R) line, is a promising approach to harness hybrid vigor in cotton. Pentatricopeptide repeat (PPR) protein-encoding genes play an important role in plant growth and development including restoration of CMS plants to male fertility. However, PPRs, especially those contributing to CMS and fiber development, remain largely unknown in cotton. In this study, a genome-wide identification and characterization of PPR gene family in four Gossypium species with genome sequences (G. arboreum, G. raimondii, G. hirsutum, and G. barbadense) were performed, and expressed PPR genes in developing floral buds, ovules, and fibers were compared to identify possible PPRs related to CMS restoration and fiber development. A total of 539, 558, 1032, and 1055 PPRs were predicted in the above four species, respectively, which were further mapped to chromosomes for a synteny analysis. Through an RNA-seq analysis, 86% (882) PPRs were expressed in flowering buds of upland cotton (G. hirsutum); however, only 11 and 6 were differentially expressed (DE) between restorer R and its near-isogenic (NI) B and between R and its NI A line, respectively. Another RNA-seq analysis identified the expression of only 54% (556) PPRs in 0 and 3 day(s) post-anthesis (DPA) ovules and 24% (247) PPRs in 10 DPA fibers; however, only 59, 6, and 27 PPRs were DE in 0 and 3 DPA ovules, and 10 DPA fibers between two backcross inbred lines (BILs) with differing fiber length, respectively. Only 2 PPRs were DE between Xuzhou 142 and its fiberless and fuzzless mutant. Quantitative RT-PCR analysis confirmed the validity of the RNA-seq results for the gene expression pattern. Therefore, only a very small number of PPRs may be associated with fertility restoration of CMS and genetic differences in fiber initiation and elongation. These results lay a foundation for understanding the roles of PPR genes in cotton, and will be useful in the prioritization of candidate PPR gene functional validation for cotton CMS restoration and fiber development.
Collapse
Affiliation(s)
- Zongfu Han
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, 88003, USA. .,Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Yuxiang Qin
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Xihua Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research (ICR), Chinese Academy of Agricultural Sciences (CAAS), Anyang, 455000, China
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research (ICR), Chinese Academy of Agricultural Sciences (CAAS), Anyang, 455000, China
| | - Ruzhong Li
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chaozhu Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research (ICR), Chinese Academy of Agricultural Sciences (CAAS), Anyang, 455000, China
| | - Mingzhou Song
- Department of Computer Science, New Mexico State University, Las Cruces, 88003, USA
| | - Jianyong Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research (ICR), Chinese Academy of Agricultural Sciences (CAAS), Anyang, 455000, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, 88003, USA.
| |
Collapse
|