1
|
Voß B. Classified Dynamic Programming in RNA Structure Analysis. Methods Mol Biol 2024; 2726:125-141. [PMID: 38780730 DOI: 10.1007/978-1-0716-3519-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Analysis of the folding space of RNA generally suffers from its exponential size. With classified Dynamic Programming algorithms, it is possible to alleviate this burden and to analyse the folding space of RNA in great depth. Key to classified DP is that the search space is partitioned into classes based on an on-the-fly computed feature. A class-wise evaluation is then used to compute class-wide properties, such as the lowest free energy structure for each class, or aggregate properties, such as the class' probability. In this paper we describe the well-known shape and hishape abstraction of RNA structures, their power to help better understand RNA function and related methods that are based on these abstractions.
Collapse
Affiliation(s)
- Björn Voß
- RNA Biology and Bioinformatics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
2
|
Martin NS, Ahnert SE. The Boltzmann distributions of molecular structures predict likely changes through random mutations. Biophys J 2023; 122:4467-4475. [PMID: 37897043 PMCID: PMC10698324 DOI: 10.1016/j.bpj.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
New folded molecular structures can only evolve after arising through mutations. This aspect is modeled using genotype-phenotype maps, which connect sequence changes through mutations to changes in molecular structures. Previous work has shown that the likelihood of appearing through mutations can differ by orders of magnitude from structure to structure and that this can affect the outcomes of evolutionary processes. Thus, we focus on the phenotypic mutation probabilities φqp, i.e., the likelihood that a random mutation changes structure p into structure q. For both RNA secondary structures and the HP protein model, we show that a simple biophysical principle can explain and predict how this likelihood depends on the new structure q: φqp is high if sequences that fold into p as the minimum-free-energy structure are likely to have q as an alternative structure with high Boltzmann frequency. This generalizes the existing concept of plastogenetic congruence from individual sequences to the entire neutral spaces of structures. Our result helps us understand why some structural changes are more likely than others, may be useful for estimating these likelihoods via sampling and makes a connection to alternative structures with high Boltzmann frequency, which could be relevant in evolutionary processes.
Collapse
Affiliation(s)
- Nora S Martin
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom; Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom; Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom.
| | - Sebastian E Ahnert
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom; The Alan Turing Institute, London, United Kingdom
| |
Collapse
|
3
|
Random and Natural Non-Coding RNA Have Similar Structural Motif Patterns but Differ in Bulge, Loop, and Bond Counts. Life (Basel) 2023; 13:life13030708. [PMID: 36983865 PMCID: PMC10054693 DOI: 10.3390/life13030708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/15/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
An important question in evolutionary biology is whether (and in what ways) genotype–phenotype (GP) map biases can influence evolutionary trajectories. Untangling the relative roles of natural selection and biases (and other factors) in shaping phenotypes can be difficult. Because the RNA secondary structure (SS) can be analyzed in detail mathematically and computationally, is biologically relevant, and a wealth of bioinformatic data are available, it offers a good model system for studying the role of bias. For quite short RNA (length L≤126), it has recently been shown that natural and random RNA types are structurally very similar, suggesting that bias strongly constrains evolutionary dynamics. Here, we extend these results with emphasis on much larger RNA with lengths up to 3000 nucleotides. By examining both abstract shapes and structural motif frequencies (i.e., the number of helices, bonds, bulges, junctions, and loops), we find that large natural and random structures are also very similar, especially when contrasted to typical structures sampled from the spaces of all possible RNA structures. Our motif frequency study yields another result, where the frequencies of different motifs can be used in machine learning algorithms to classify random and natural RNA with high accuracy, especially for longer RNA (e.g., ROC AUC 0.86 for L = 1000). The most important motifs for classification are the number of bulges, loops, and bonds. This finding may be useful in using SS to detect candidates for functional RNA within ‘junk’ DNA regions.
Collapse
|
4
|
Dingle K, Ghaddar F, Šulc P, Louis AA. Phenotype Bias Determines How Natural RNA Structures Occupy the Morphospace of All Possible Shapes. Mol Biol Evol 2022; 39:msab280. [PMID: 34542628 PMCID: PMC8763027 DOI: 10.1093/molbev/msab280] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Morphospaces-representations of phenotypic characteristics-are often populated unevenly, leaving large parts unoccupied. Such patterns are typically ascribed to contingency, or else to natural selection disfavoring certain parts of the morphospace. The extent to which developmental bias, the tendency of certain phenotypes to preferentially appear as potential variation, also explains these patterns is hotly debated. Here we demonstrate quantitatively that developmental bias is the primary explanation for the occupation of the morphospace of RNA secondary structure (SS) shapes. Upon random mutations, some RNA SS shapes (the frequent ones) are much more likely to appear than others. By using the RNAshapes method to define coarse-grained SS classes, we can directly compare the frequencies that noncoding RNA SS shapes appear in the RNAcentral database to frequencies obtained upon a random sampling of sequences. We show that: 1) only the most frequent structures appear in nature; the vast majority of possible structures in the morphospace have not yet been explored; 2) remarkably small numbers of random sequences are needed to produce all the RNA SS shapes found in nature so far; and 3) perhaps most surprisingly, the natural frequencies are accurately predicted, over several orders of magnitude in variation, by the likelihood that structures appear upon a uniform random sampling of sequences. The ultimate cause of these patterns is not natural selection, but rather a strong phenotype bias in the RNA genotype-phenotype map, a type of developmental bias or "findability constraint," which limits evolutionary dynamics to a hugely reduced subset of structures that are easy to "find."
Collapse
Affiliation(s)
- Kamaludin Dingle
- Centre for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
| | - Fatme Ghaddar
- Centre for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Saule C, Giegerich R. Pareto optimization in algebraic dynamic programming. Algorithms Mol Biol 2015; 10:22. [PMID: 26150892 PMCID: PMC4491898 DOI: 10.1186/s13015-015-0051-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 05/07/2015] [Indexed: 11/10/2022] Open
Abstract
Pareto optimization combines independent objectives by computing the Pareto front of its search space, defined as the set of all solutions for which no other candidate solution scores better under all objectives. This gives, in a precise sense, better information than an artificial amalgamation of different scores into a single objective, but is more costly to compute. Pareto optimization naturally occurs with genetic algorithms, albeit in a heuristic fashion. Non-heuristic Pareto optimization so far has been used only with a few applications in bioinformatics. We study exact Pareto optimization for two objectives in a dynamic programming framework. We define a binary Pareto product operator [Formula: see text] on arbitrary scoring schemes. Independent of a particular algorithm, we prove that for two scoring schemes A and B used in dynamic programming, the scoring scheme [Formula: see text] correctly performs Pareto optimization over the same search space. We study different implementations of the Pareto operator with respect to their asymptotic and empirical efficiency. Without artificial amalgamation of objectives, and with no heuristics involved, Pareto optimization is faster than computing the same number of answers separately for each objective. For RNA structure prediction under the minimum free energy versus the maximum expected accuracy model, we show that the empirical size of the Pareto front remains within reasonable bounds. Pareto optimization lends itself to the comparative investigation of the behavior of two alternative scoring schemes for the same purpose. For the above scoring schemes, we observe that the Pareto front can be seen as a composition of a few macrostates, each consisting of several microstates that differ in the same limited way. We also study the relationship between abstract shape analysis and the Pareto front, and find that they extract information of a different nature from the folding space and can be meaningfully combined.
Collapse
|
6
|
Huang J, Voß B. Analysing RNA-kinetics based on folding space abstraction. BMC Bioinformatics 2014; 15:60. [PMID: 24575751 PMCID: PMC3974018 DOI: 10.1186/1471-2105-15-60] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 02/24/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND RNA molecules, especially non-coding RNAs, play vital roles in the cell and their biological functions are mostly determined by structural properties. Often, these properties are related to dynamic changes in the structure, as in the case of riboswitches, and thus the analysis of RNA folding kinetics is crucial for their study. Exact approaches to kinetic folding are computationally expensive and, thus, limited to short sequences. In a previous study, we introduced a position-specific abstraction based on helices which we termed helix index shapes (hishapes) and a hishape-based algorithm for near-optimal folding pathway computation, called HiPath. The combination of these approaches provides an abstract view of the folding space that offers information about the global features. RESULTS In this paper we present HiKinetics, an algorithm that can predict RNA folding kinetics for sequences up to several hundred nucleotides long. This algorithm is based on RNAHeliCes, which decomposes the folding space into abstract classes, namely hishapes, and an improved version of HiPath, namely HiPath2, which estimates plausible folding pathways that connect these classes. Furthermore, we analyse the relationship of hishapes to locally optimal structures, the results of which strengthen the use of the hishape abstraction for studying folding kinetics. Finally, we show the application of HiKinetics to the folding kinetics of two well-studied RNAs. CONCLUSIONS HiKinetics can calculate kinetic folding based on a novel hishape decomposition. HiKinetics, together with HiPath2 and RNAHeliCes, is available for download at http://www.cyanolab.de/software/RNAHeliCes.htm.
Collapse
Affiliation(s)
- Jiabin Huang
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Björn Voß
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| |
Collapse
|
7
|
Abstract
Abstract shape analysis abstract shape analysis is a method to learn more about the complete Boltzmann ensemble of the secondary structures of a single RNA molecule. Abstract shapes classify competing secondary structures into classes that are defined by their arrangement of helices. It allows us to compute, in addition to the structure of minimal free energy, a set of structures that represents relevant and interesting structural alternatives. Furthermore, it allows to compute probabilities of all structures within a shape class. This allows to ensure that our representative subset covers the complete Boltzmann ensemble, except for a portion of negligible probability. This chapter explains the main functions of abstract shape analysis, as implemented in the tool RNA shapes. RNA shapes It reports on some other types of analysis that are based on the abstract shapes idea and shows how you can solve novel problems by creating your own shape abstractions.
Collapse
|
8
|
Huang J, Backofen R, Voß B. Abstract folding space analysis based on helices. RNA (NEW YORK, N.Y.) 2012; 18:2135-2147. [PMID: 23104999 PMCID: PMC3504666 DOI: 10.1261/rna.033548.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/24/2012] [Indexed: 06/01/2023]
Abstract
RNA has many pivotal functions especially in the regulation of gene expression by ncRNAs. Identification of their structure is an important requirement for understanding their function. Structure prediction alone is often insufficient for this task, due to algorithmic problems, parameter inaccuracies, and biological peculiarities. Among the latter, there are base modifications, cotranscriptional folding leading to folding traps, and conformational switching as in the case of riboswitches. All these require more in-depth analysis of the folding space. The major drawback, which all methods have to cope with, is the exponential growth of the folding space. Therefore, methods are often limited in the sequence length they can analyze, or they make use of heuristics, sampling, or abstraction. Our approach adopts the abstraction strategy and remedies some problems of existing methods. We introduce a position-specific abstraction based on helices that we term helix index shapes, or hishapes for short. Utilizing a dynamic programming framework, we have implemented this abstraction in the program RNAHeliCes. Furthermore, we developed two hishape-based methods, one for energy barrier estimation, called HiPath, and one for abstract structure comparison, termed HiTed. We demonstrate the superior performance of HiPath compared to other existing methods and the competitive accuracy of HiTed. RNAHeliCes, together with HiPath and HiTed, are available for download at http://www.cyanolab.de/software/RNAHeliCes.htm.
Collapse
Affiliation(s)
- Jiabin Huang
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Rolf Backofen
- Chair for Bioinformatics, Faculty of Technology, University of Freiburg, Freiburg 79110, Germany
| | - Björn Voß
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| |
Collapse
|
9
|
Scheid A, Nebel ME. Evaluating the effect of disturbed ensemble distributions on SCFG based statistical sampling of RNA secondary structures. BMC Bioinformatics 2012; 13:159. [PMID: 22776037 PMCID: PMC3871765 DOI: 10.1186/1471-2105-13-159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 06/06/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Over the past years, statistical and Bayesian approaches have become increasingly appreciated to address the long-standing problem of computational RNA structure prediction. Recently, a novel probabilistic method for the prediction of RNA secondary structures from a single sequence has been studied which is based on generating statistically representative and reproducible samples of the entire ensemble of feasible structures for a particular input sequence. This method samples the possible foldings from a distribution implied by a sophisticated (traditional or length-dependent) stochastic context-free grammar (SCFG) that mirrors the standard thermodynamic model applied in modern physics-based prediction algorithms. Specifically, that grammar represents an exact probabilistic counterpart to the energy model underlying the Sfold software, which employs a sampling extension of the partition function (PF) approach to produce statistically representative subsets of the Boltzmann-weighted ensemble. Although both sampling approaches have the same worst-case time and space complexities, it has been indicated that they differ in performance (both with respect to prediction accuracy and quality of generated samples), where neither of these two competing approaches generally outperforms the other. RESULTS In this work, we will consider the SCFG based approach in order to perform an analysis on how the quality of generated sample sets and the corresponding prediction accuracy changes when different degrees of disturbances are incorporated into the needed sampling probabilities. This is motivated by the fact that if the results prove to be resistant to large errors on the distinct sampling probabilities (compared to the exact ones), then it will be an indication that these probabilities do not need to be computed exactly, but it may be sufficient and more efficient to approximate them. Thus, it might then be possible to decrease the worst-case time requirements of such an SCFG based sampling method without significant accuracy losses. If, on the other hand, the quality of sampled structures can be observed to strongly react to slight disturbances, there is little hope for improving the complexity by heuristic procedures. We hence provide a reliable test for the hypothesis that a heuristic method could be implemented to improve the time scaling of RNA secondary structure prediction in the worst-case - without sacrificing much of the accuracy of the results. CONCLUSIONS Our experiments indicate that absolute errors generally lead to the generation of useless sample sets, whereas relative errors seem to have only small negative impact on both the predictive accuracy and the overall quality of resulting structure samples. Based on these observations, we present some useful ideas for developing a time-reduced sampling method guaranteeing an acceptable predictive accuracy. We also discuss some inherent drawbacks that arise in the context of approximation. The key results of this paper are crucial for the design of an efficient and competitive heuristic prediction method based on the increasingly accepted and attractive statistical sampling approach. This has indeed been indicated by the construction of prototype algorithms.
Collapse
Affiliation(s)
- Anika Scheid
- Department of Computer Science, University of Kaiserslautern, P.O. Box 3049, D-67653 Kaiserslautern, Germany
| | - Markus E Nebel
- Department of Computer Science, University of Kaiserslautern, P.O. Box 3049, D-67653 Kaiserslautern, Germany
| |
Collapse
|
10
|
Nebel ME, Scheid A. Evaluation of a sophisticated SCFG design for RNA secondary structure prediction. Theory Biosci 2011; 130:313-36. [DOI: 10.1007/s12064-011-0139-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022]
|
11
|
Janssen S, Schudoma C, Steger G, Giegerich R. Lost in folding space? Comparing four variants of the thermodynamic model for RNA secondary structure prediction. BMC Bioinformatics 2011; 12:429. [PMID: 22051375 PMCID: PMC3293930 DOI: 10.1186/1471-2105-12-429] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 11/03/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many bioinformatics tools for RNA secondary structure analysis are based on a thermodynamic model of RNA folding. They predict a single, "optimal" structure by free energy minimization, they enumerate near-optimal structures, they compute base pair probabilities and dot plots, representative structures of different abstract shapes, or Boltzmann probabilities of structures and shapes. Although all programs refer to the same physical model, they implement it with considerable variation for different tasks, and little is known about the effects of heuristic assumptions and model simplifications used by the programs on the outcome of the analysis. RESULTS We extract four different models of the thermodynamic folding space which underlie the programs RNAFOLD, RNASHAPES, and RNASUBOPT. Their differences lie within the details of the energy model and the granularity of the folding space. We implement probabilistic shape analysis for all models, and introduce the shape probability shift as a robust measure of model similarity. Using four data sets derived from experimentally solved structures, we provide a quantitative evaluation of the model differences. CONCLUSIONS We find that search space granularity affects the computed shape probabilities less than the over- or underapproximation of free energy by a simplified energy model. Still, the approximations perform similar enough to implementations of the full model to justify their continued use in settings where computational constraints call for simpler algorithms. On the side, we observe that the rarely used level 2 shapes, which predict the complete arrangement of helices, multiloops, internal loops and bulges, include the "true" shape in a rather small number of predicted high probability shapes. This calls for an investigation of new strategies to extract high probability members from the (very large) level 2 shape space of an RNA sequence. We provide implementations of all four models, written in a declarative style that makes them easy to be modified. Based on our study, future work on thermodynamic RNA folding may make a choice of model based on our empirical data. It can take our implementations as a starting point for further program development.
Collapse
Affiliation(s)
- Stefan Janssen
- Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | | | | | | |
Collapse
|
12
|
|
13
|
Abstract
Motivation: Abstract shape analysis allows efficient computation of a representative sample of low-energy foldings of an RNA molecule. More comprehensive information is obtained by computing shape probabilities, accumulating the Boltzmann probabilities of all structures within each abstract shape. Such information is superior to free energies because it is independent of sequence length and base composition. However, up to this point, computation of shape probabilities evaluates all shapes simultaneously and comes with a computation cost which is exponential in the length of the sequence. Results: We device an approach called RapidShapes that computes the shapes above a specified probability threshold T by generating a list of promising shapes and constructing specialized folding programs for each shape to compute its share of Boltzmann probability. This aims at a heuristic improvement of runtime, while still computing exact probability values. Conclusion: Evaluating this approach and several substrategies, we find that only a small proportion of shapes have to be actually computed. For an RNA sequence of length 400, this leads, depending on the threshold, to a 10–138 fold speed-up compared with the previous complete method. Thus, probabilistic shape analysis has become feasible in medium-scale applications, such as the screening of RNA transcripts in a bacterial genome. Availability:RapidShapes is available via http://bibiserv.cebitec.uni-bielefeld.de/rnashapes Contact:robert@techfak.uni-bielefeld.de Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Stefan Janssen
- Practical Computer Science, Faculty of Technology, Bielefeld University, D-33615 Bielefeld, Germany
| | | |
Collapse
|