1
|
Shabat Y, Rotnemer-Golinkin D, Zolotarov L, Ilan Y. Inter-organ correlations in inflammation regulation: a novel biological paradigm in a murine model. J Med Life 2025; 18:67-72. [PMID: 40071160 PMCID: PMC11891616 DOI: 10.25122/jml-2024-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/17/2024] [Indexed: 03/14/2025] Open
Abstract
Interactions between immune system constituents are mediated through direct contact or the transfer of mediators. The study aimed to assess the correlation between system components and out-of-body signals in a model of liver inflammation. In the first experiment, mice injected with Concanavalin A (ConA) were housed in a cage with a tube on top containing healthy livers or livers harvested from mice injected with ConA. In the second experiment, mice were housed in a cage with a tube that contained splenocytes harvested from naïve donors or from naïve donors treated in vitro with dexamethasone. Mice were tested for serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. External whole livers and spleens influenced the immune-mediated inflammatory response of mice. When ConA-injected mice were housed in cages with tubes containing livers harvested from naïve mice, ALT serum levels were significantly reduced. ALT serum levels were significantly elevated when mice were kept in cages with a tube containing livers harvested from ConA-injected mice. In the second part of the experiment, mice injected with ConA and housed in cages with a tube on top that contained splenocytes harvested from naïve donors had increased ALT levels. Similarly, mice with tubes containing splenocytes from dexamethasone-treated naïve donors also showed elevated ALT levels. The data suggest that correlations between immune system constituents can be established using out-of-body whole livers or spleens without contact or transfer of mediators.
Collapse
Affiliation(s)
- Yehudit Shabat
- Faculty of Medicine, Hebrew University, Jerusalem, Isreal
- Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Devorah Rotnemer-Golinkin
- Faculty of Medicine, Hebrew University, Jerusalem, Isreal
- Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Lidya Zolotarov
- Faculty of Medicine, Hebrew University, Jerusalem, Isreal
- Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Faculty of Medicine, Hebrew University, Jerusalem, Isreal
- Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
2
|
Ilan Y. The Constrained Disorder Principle Overcomes the Challenges of Methods for Assessing Uncertainty in Biological Systems. J Pers Med 2024; 15:10. [PMID: 39852203 PMCID: PMC11767140 DOI: 10.3390/jpm15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
Different disciplines are developing various methods for determining and dealing with uncertainties in complex systems. The constrained disorder principle (CDP) accounts for the randomness, variability, and uncertainty that characterize biological systems and are essential for their proper function. Per the CDP, intrinsic unpredictability is mandatory for the dynamicity of biological systems under continuously changing internal and external perturbations. The present paper describes some of the parameters and challenges associated with uncertainty and randomness in biological systems and presents methods for quantifying them. Modeling biological systems necessitates accounting for the randomness, variability, and underlying uncertainty of systems in health and disease. The CDP provides a scheme for dealing with uncertainty in biological systems and sets the basis for using them. This paper presents the CDP-based second-generation artificial intelligence system that incorporates variability to improve the effectiveness of medical interventions. It describes the use of the digital pill that comprises algorithm-based personalized treatment regimens regulated by closed-loop systems based on personalized signatures of variability. The CDP provides a method for using uncertainties in complex systems in an outcome-based manner.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hadassah Medical Center, Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel
| |
Collapse
|
3
|
Shabat Y, Ilan Y. Correlations between components of the immune system. F1000Res 2024; 10:1174. [PMID: 38628268 PMCID: PMC11019305 DOI: 10.12688/f1000research.54487.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 04/19/2024] Open
Abstract
Background No evidence of the possibility of altering a constituent of the immune system without directly affecting one of its associated components has yet been shown. Methods A schematic model was developed in which two triggers, fasting and splenectomy, were studied for their ability to affect the expression of cell membrane epitopes and the cytokine secretion of out-of-body autogeneic and syngeneic lymphocytes. Results The effect of fasting and/or splenectomy on promoting correlations between immune systems was studied by determining the alterations in expressions of cell membrane epitopes and in cytokine secretion by out-of-body autogeneic and syngeneic lymphocytes. The effect of fasting as a trigger decreased expression of CD8 and CD25 and increased TNFα levels. The effect of splenectomy as a trigger was investigated in non-fasting mice by comparing splenectomized and non-splenectomized mice. An increase in the CD8 expression and in TNFα, IFNg, and IL10 secretion was noted. The effect of splenectomy as a trigger in fasting mice was determined by comparing splenectomized and non-splenectomized mice. Splenectomy significantly affected the expression of CD25 and CD4 CD25 and on secretion of TNFα, IFNg, and IL10. To determine the effect of keeping the cells in an out-of-body location on the expression of lymphocyte epitopes, tubes kept on top of the cages of the fasting mice were compared with tubes kept on top of empty cages. The results showed a significant change in the CD8 expression was noted. To determine the effect of keeping cells in an out-of-body location on cytokine secretion, tubes kept on cages were tested for cytokine levels significant decrease was noted in the secretion of TNFα and IFNg. Conclusions The study showed that a mouse could affect cells at a distance and alter the expression of surface markers and cytokine secretion following two types of triggers: fasting and/or splenectomy. The data characterized a system for the induction of correlations between two's immune system components without a transfer of mediators. It suggests that an out-of-body correlation can be induced between two components of the immune system.
Collapse
Affiliation(s)
- Yehudit Shabat
- Hadassah University Hospital, Jerusalem, Jerusalem, Israel, Israel
| | - Yaron Ilan
- Hadassah University Hospital, Jerusalem, Jerusalem, Israel, Israel
| |
Collapse
|
4
|
Ottaiano A, Ianniello M, Santorsola M, Ruggiero R, Sirica R, Sabbatino F, Perri F, Cascella M, Di Marzo M, Berretta M, Caraglia M, Nasti G, Savarese G. From Chaos to Opportunity: Decoding Cancer Heterogeneity for Enhanced Treatment Strategies. BIOLOGY 2023; 12:1183. [PMID: 37759584 PMCID: PMC10525472 DOI: 10.3390/biology12091183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Cancer manifests as a multifaceted disease, characterized by aberrant cellular proliferation, survival, migration, and invasion. Tumors exhibit variances across diverse dimensions, encompassing genetic, epigenetic, and transcriptional realms. This heterogeneity poses significant challenges in prognosis and treatment, affording tumors advantages through an increased propensity to accumulate mutations linked to immune system evasion and drug resistance. In this review, we offer insights into tumor heterogeneity as a crucial characteristic of cancer, exploring the difficulties associated with measuring and quantifying such heterogeneity from clinical and biological perspectives. By emphasizing the critical nature of understanding tumor heterogeneity, this work contributes to raising awareness about the importance of developing effective cancer therapies that target this distinct and elusive trait of cancer.
Collapse
Affiliation(s)
- Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (M.C.); (M.D.M.); (G.N.)
| | - Monica Ianniello
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (R.R.); (R.S.); (G.S.)
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (M.C.); (M.D.M.); (G.N.)
| | - Raffaella Ruggiero
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (R.R.); (R.S.); (G.S.)
| | - Roberto Sirica
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (R.R.); (R.S.); (G.S.)
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy;
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (M.C.); (M.D.M.); (G.N.)
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (M.C.); (M.D.M.); (G.N.)
| | - Massimiliano Di Marzo
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (M.C.); (M.D.M.); (G.N.)
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy;
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (M.C.); (M.D.M.); (G.N.)
| | - Giovanni Savarese
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (R.R.); (R.S.); (G.S.)
| |
Collapse
|
5
|
Xu J, Cornelissen J. Disequilibrium and complexity across scales: a patch-dynamics framework for organizational ecology. HUMANITIES & SOCIAL SCIENCES COMMUNICATIONS 2023; 10:211. [PMID: 37192950 PMCID: PMC10163862 DOI: 10.1057/s41599-023-01730-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/27/2023] [Indexed: 05/18/2023]
Abstract
Based on equilibrium assumptions, traditional ecological models have been widely applied in the fields of management and organization studies. While research using these models is still ongoing, studies have nonetheless struggled with ways to address multiple levels of analysis, uncertainty, and complexity in their analyses. This paper conceptualizes the dynamic co-evolution mechanisms that operate in an ecosystem across multiple organizational scales. Specifically, informed by recent advances in modelling in biology, a general 'patch-dynamics' framework that is theoretically and methodologically able to capture disequilibrium, uncertainty, disturbances, and changes in organizational populations or ecosystems, as complex and dynamically evolving resource environments are introduced. Simulation models are built to show the patch-dynamics framework's functioning and test its robustness. The patch-dynamics framework and modelling methodology integrates equilibrium and disequilibrium perspectives, co-evolutions across multiple organization levels, uncertainties, and random disturbances into a single framework, opening new avenues for future research on topics in the field of management and organization studies, as well as on the mechanisms that shape ecosystems. Such a framework has the potential to help analyse the sustainability and healthiness of the business environment, and deserves more attention in future research on management and organization theory, particularly in the context of significant uncertainty and disturbances in business and management practice. Overall, the paper offers a distinct theoretical perspective and methodology for modelling population and ecosystem dynamics across different scales.
Collapse
Affiliation(s)
- Jin Xu
- School of Economics and Management, South China Normal University, Guangzhou, China
| | - Joep Cornelissen
- Rotterdam School of Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Ilan Y. Constrained disorder principle-based variability is fundamental for biological processes: Beyond biological relativity and physiological regulatory networks. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:37-48. [PMID: 37068713 DOI: 10.1016/j.pbiomolbio.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/26/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
The constrained disorder principle (CDP) defines systems based on their degree of disorder bounded by dynamic boundaries. The principle explains stochasticity in living and non-living systems. Denis Noble described the importance of stochasticity in biology, emphasizing stochastic processes at molecular, cellular, and higher levels in organisms as having a role beyond simple noise. The CDP and Noble's theories (NT) claim that biological systems use stochasticity. This paper presents the CDP and NT, discussing common notions and differences between the two theories. The paper presents the CDP-based concept of taking the disorder beyond its role in nature to correct malfunctions of systems and improve the efficiency of biological systems. The use of CDP-based algorithms embedded in second-generation artificial intelligence platforms is described. In summary, noise is inherent to complex systems and has a functional role. The CDP provides the option of using noise to improve functionality.
Collapse
Affiliation(s)
- Yaron Ilan
- Faculty of Medicine, Hebrew University, Department of Medicine, Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
7
|
Ilan Y. Making use of noise in biological systems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:83-90. [PMID: 36640927 DOI: 10.1016/j.pbiomolbio.2023.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Disorder and noise are inherent in biological systems. They are required to provide systems with the advantages required for proper functioning. Noise is a part of the flexibility and plasticity of biological systems. It provides systems with increased routes, improves information transfer, and assists in response triggers. This paper reviews recent studies on noise at the genome, cellular, and whole organ levels. We focus on the need to use noise in system engineering. We present some of the challenges faced in studying noise. Optimizing the efficiency of complex systems requires a degree of variability in their functions within certain limits. Constrained noise can be considered a method for improving system robustness by regulating noise levels in continuously dynamic settings. The digital pill-based artificial intelligence (AI)-based platform is the first to implement second-generation AI comprising variability-based signatures. This platform enhances the efficacy of the therapeutic regimens. Systems requiring variability and mechanisms regulating noise are mandatory for understanding biological functions.
Collapse
Affiliation(s)
- Yaron Ilan
- Hebrew University, Faculty of Medicine, Department of Medicine, Hadassah Medical Center, POB 1200, IL91120, Jerusalem, Israel.
| |
Collapse
|
8
|
Rotnemer-Golinkin D, Ilan Y. Personalized-Inherent Variability in a Time-Dependent Immune Response: A Look into the Fifth Dimension in Biology. Pharmacology 2022; 107:417-422. [PMID: 35537442 PMCID: PMC9254286 DOI: 10.1159/000524747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/08/2022] [Indexed: 11/24/2022]
Abstract
Introduction Individualized response to the immune triggers influences the course of immune-mediated diseases and the response to immunotherapies. Both inter- and intra-subject variations occur in time-dependent dynamics of biological systems. The present study aimed to establish a model for inherent personalized-time-dependent variability in response to immune triggers. Methods Male C57BL/6 mice were administered concanavalin A (ConA) and followed every 2 h for 10 h and at 24 h for serum alanine aminotransferase (ALT) levels. Results A marked intragroup variability was noted for both the timing of the effect of ConA, the magnitude of the increase in ALT levels, and the time to peak. While in some mice, a peak level was achieved, whereas a continuous increase in liver damage was noted in others. Four mice died at different time points during the study irrespective of their liver damage, further supporting the individualized-based response to the trigger. Conclusions This feasibility study established a model for determining the personalized-inherent variability in a time-dependent response to the immune triggers. These results highlight the importance of considering both the time and the wide range of individualized variability in immune responses while designing personalized-based immunotherapies.
Collapse
Affiliation(s)
| | - Yaron Ilan
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
9
|
McEntire KD, Gage M, Gawne R, Hadfield MG, Hulshof C, Johnson MA, Levesque DL, Segura J, Pinter-Wollman N. Understanding Drivers of Variation and Predicting Variability Across Levels of Biological Organization. Integr Comp Biol 2021; 61:2119-2131. [PMID: 34259842 DOI: 10.1093/icb/icab160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/27/2022] Open
Abstract
Differences within a biological system are ubiquitous, creating variation in nature. Variation underlies all evolutionary processes and allows persistence and resilience in changing environments; thus, uncovering the drivers of variation is critical. The growing recognition that variation is central to biology presents a timely opportunity for determining unifying principles that drive variation across biological levels of organization. Currently, most studies that consider variation are focused at a single biological level and not integrated into a broader perspective. Here we explain what variation is and how it can be measured. We then discuss the importance of variation in natural systems, and briefly describe the biological research that has focused on variation. We outline some of the barriers and solutions to studying variation and its drivers in biological systems. Finally, we detail the challenges and opportunities that may arise when studying the drivers of variation due to the multi-level nature of biological systems. Examining the drivers of variation will lead to a reintegration of biology. It will further forge interdisciplinary collaborations and open opportunities for training diverse quantitative biologists. We anticipate that these insights will inspire new questions and new analytic tools to study the fundamental questions of what drives variation in biological systems and how variation has shaped life.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Danielle L Levesque
- University of Maine College of Natural Sciences Forestry and Agriculture, School of Biology and Ecology
| | | | | |
Collapse
|
10
|
Ilan Y. Second-Generation Digital Health Platforms: Placing the Patient at the Center and Focusing on Clinical Outcomes. Front Digit Health 2020; 2:569178. [PMID: 34713042 PMCID: PMC8521820 DOI: 10.3389/fdgth.2020.569178] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Artificial intelligence (AI) digital health systems have drawn much attention over the last decade. However, their implementation into medical practice occurs at a much slower pace than expected. This paper reviews some of the achievements of first-generation AI systems, and the barriers facing their implementation into medical practice. The development of second-generation AI systems is discussed with a focus on overcoming some of these obstacles. Second-generation systems are aimed at focusing on a single subject and on improving patients' clinical outcomes. A personalized closed-loop system designed to improve end-organ function and the patient's response to chronic therapies is presented. The system introduces a platform which implements a personalized therapeutic regimen and introduces quantifiable individualized-variability patterns into its algorithm. The platform is designed to achieve a clinically meaningful endpoint by ensuring that chronic therapies will have sustainable effect while overcoming compensatory mechanisms associated with disease progression and drug resistance. Second-generation systems are expected to assist patients and providers in adopting and implementing of these systems into everyday care.
Collapse
|
11
|
Ilan Y. Order Through Disorder: The Characteristic Variability of Systems. Front Cell Dev Biol 2020; 8:186. [PMID: 32266266 PMCID: PMC7098948 DOI: 10.3389/fcell.2020.00186] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
Randomness characterizes many processes in nature, and therefore its importance cannot be overstated. In the present study, we investigate examples of randomness found in various fields, to underlie its fundamental processes. The fields we address include physics, chemistry, biology (biological systems from genes to whole organs), medicine, and environmental science. Through the chosen examples, we explore the seemingly paradoxical nature of life and demonstrate that randomness is preferred under specific conditions. Furthermore, under certain conditions, promoting or making use of variability-associated parameters may be necessary for improving the function of processes and systems.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
12
|
Ilan Y. Advanced Tailored Randomness: A Novel Approach for Improving the Efficacy of Biological Systems. J Comput Biol 2020; 27:20-29. [DOI: 10.1089/cmb.2019.0231] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
13
|
El-Haj M, Kanovitch D, Ilan Y. Personalized inherent randomness of the immune system is manifested by an individualized response to immune triggers and immunomodulatory therapies: a novel platform for designing personalized immunotherapies. Immunol Res 2019; 67:337-347. [DOI: 10.1007/s12026-019-09101-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Noble R, Tasaki K, Noble PJ, Noble D. Biological Relativity Requires Circular Causality but Not Symmetry of Causation: So, Where, What and When Are the Boundaries? Front Physiol 2019; 10:827. [PMID: 31379589 PMCID: PMC6656930 DOI: 10.3389/fphys.2019.00827] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/13/2019] [Indexed: 01/23/2023] Open
Abstract
Since the Principle of Biological Relativity was formulated and developed there have been many implementations in a wide range of biological fields. The purpose of this article is to assess the status of the applications of the principle and to clarify some misunderstandings. The principle requires circular causality between levels of organization. But the forms of causality are also necessarily different. They contribute in asymmetric ways. Upward causation can be represented by the differential or similar equations describing the mechanics of lower level processes. Downward causation is then best represented as determining initial and boundary conditions. The questions tackled in this article are: (1) where and when do these boundaries exist? and (2) how do they convey the influences between levels? We show that not all boundary conditions arise from higher-level organization. It is important to distinguish those that do from those that don't. Both forms play functional roles in organisms, particularly in their responses to novel challenges. The forms of causation also change according to the levels concerned. These principles are illustrated with specific examples.
Collapse
Affiliation(s)
- Raymond Noble
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Kazuyo Tasaki
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Penelope J. Noble
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Denis Noble
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Poret A, Guziolowski C. Therapeutic target discovery using Boolean network attractors: improvements of kali. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171852. [PMID: 29515890 PMCID: PMC5830779 DOI: 10.1098/rsos.171852] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/04/2018] [Indexed: 06/10/2023]
Abstract
In a previous article, an algorithm for identifying therapeutic targets in Boolean networks modelling pathological mechanisms was introduced. In the present article, the improvements made on this algorithm, named kali, are described. These improvements are (i) the possibility to work on asynchronous Boolean networks, (ii) a finer assessment of therapeutic targets and (iii) the possibility to use multivalued logic. kali assumes that the attractors of a dynamical system, such as a Boolean network, are associated with the phenotypes of the modelled biological system. Given a logic-based model of pathological mechanisms, kali searches for therapeutic targets able to reduce the reachability of the attractors associated with pathological phenotypes, thus reducing their likeliness. kali is illustrated on an example network and used on a biological case study. The case study is a published logic-based model of bladder tumorigenesis from which kali returns consistent results. However, like any computational tool, kali can predict but cannot replace human expertise: it is a supporting tool for coping with the complexity of biological systems in the field of drug discovery.
Collapse
|
16
|
Mothersill C, Smith R, Wang J, Rusin A, Fernandez-Palomo C, Fazzari J, Seymour C. Biological Entanglement-Like Effect After Communication of Fish Prior to X-Ray Exposure. Dose Response 2018; 16:1559325817750067. [PMID: 29479295 PMCID: PMC5818098 DOI: 10.1177/1559325817750067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/31/2017] [Accepted: 09/26/2017] [Indexed: 12/24/2022] Open
Abstract
The phenomenon by which irradiated organisms including cells in vitro communicate with unirradiated neighbors is well established in biology as the radiation-induced bystander effect (RIBE). Generally, the purpose of this communication is thought to be protective and adaptive, reflecting a highly conserved evolutionary mechanism enabling rapid adjustment to stressors in the environment. Stressors known to induce the effect were recently shown to include chemicals and even pathological agents. The mechanism is unknown but our group has evidence that physical signals such as biophotons acting on cellular photoreceptors may be implicated. This raises the question of whether quantum biological processes may occur as have been demonstrated in plant photosynthesis. To test this hypothesis, we decided to see whether any form of entanglement was operational in the system. Fish from 2 completely separate locations were allowed to meet for 2 hours either before or after which fish from 1 location only (group A fish) were irradiated. The results confirm RIBE signal production in both skin and gill of fish, meeting both before and after irradiation of group A fish. The proteomic analysis revealed that direct irradiation resulted in pro-tumorigenic proteomic responses in rainbow trout. However, communication from these irradiated fish, both before and after they had been exposed to a 0.5 Gy X-ray dose, resulted in largely beneficial proteomic responses in completely nonirradiated trout. The results suggest that some form of anticipation of a stressor may occur leading to a preconditioning effect or temporally displaced awareness after the fish become entangled.
Collapse
Affiliation(s)
| | | | - Jiaxi Wang
- Department of Chemistry, Mass Spectrometry Facility, Queen’s University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
17
|
Fiedler D, Tröbst S, Harms U. University Students' Conceptual Knowledge of Randomness and Probability in the Contexts of Evolution and Mathematics. CBE LIFE SCIENCES EDUCATION 2017; 16:16/2/ar38. [PMID: 28572180 PMCID: PMC5459256 DOI: 10.1187/cbe.16-07-0230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 06/02/2023]
Abstract
Students of all ages face severe conceptual difficulties regarding key aspects of evolution-the central, unifying, and overarching theme in biology. Aspects strongly related to abstract "threshold" concepts like randomness and probability appear to pose particular difficulties. A further problem is the lack of an appropriate instrument for assessing students' conceptual knowledge of randomness and probability in the context of evolution. To address this problem, we have developed two instruments, Randomness and Probability Test in the Context of Evolution (RaProEvo) and Randomness and Probability Test in the Context of Mathematics (RaProMath), that include both multiple-choice and free-response items. The instruments were administered to 140 university students in Germany, then the Rasch partial-credit model was applied to assess them. The results indicate that the instruments generate reliable and valid inferences about students' conceptual knowledge of randomness and probability in the two contexts (which are separable competencies). Furthermore, RaProEvo detected significant differences in knowledge of randomness and probability, as well as evolutionary theory, between biology majors and preservice biology teachers.
Collapse
Affiliation(s)
- Daniela Fiedler
- Department of Biology Education, Leibniz Institute for Science and Mathematics Education at Kiel University, 24118 Kiel, Germany
| | - Steffen Tröbst
- Institute of Educational Sciences at Kiel University, 24118 Kiel, Germany
| | - Ute Harms
- Department of Biology Education, Leibniz Institute for Science and Mathematics Education at Kiel University, 24118 Kiel, Germany
| |
Collapse
|
18
|
Rocha J, Hughes SJ, Almeida P, Garcia-Cabral I, Amich F, Crespí AL. Contemporary and future distribution patterns of fluvial vegetation under different climate change scenarios and implications for integrated water resource management. Ecol Res 2015. [DOI: 10.1007/s11284-015-1300-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Bravi B, Longo G. The Unconventionality of Nature: Biology, from Noise to Functional Randomness. UNCONVENTIONAL COMPUTATION AND NATURAL COMPUTATION 2015. [DOI: 10.1007/978-3-319-21819-9_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|