1
|
Zhou YJ, Tang Y, Liu SJ, Zeng PH, Qu L, Jing QC, Yin WJ. Radiation-induced liver disease: beyond DNA damage. Cell Cycle 2023; 22:506-526. [PMID: 36214587 PMCID: PMC9928481 DOI: 10.1080/15384101.2022.2131163] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/03/2022] Open
Abstract
Radiation-induced liver disease (RILD), also known as radiation hepatitis, is a serious side effect of radiotherapy (RT) for hepatocellular carcinoma. The therapeutic dose of RT can damage normal liver tissue, and the toxicity that accumulates around the irradiated liver tissue is related to numerous physiological and pathological processes. RILD may restrict treatment use or eventually deteriorate into liver fibrosis. However, the research on the mechanism of radiation-induced liver injury has seen little progress compared with that on radiation injury in other tissues, and no targeted clinical pharmacological treatment for RILD exists. The DNA damage response caused by ionizing radiation plays an important role in the pathogenesis and development of RILD. Therefore, in this review, we systematically summarize the molecular and cellular mechanisms involved in RILD. Such an analysis is essential for preventing the occurrence and development of RILD and further exploring the potential treatment of this disease.
Collapse
Affiliation(s)
- Ying Jie Zhou
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yun Tang
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Si Jian Liu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Peng Hui Zeng
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Qu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qian Cheng Jing
- The Affiliated Changsha Central Hospital, Department of Otolaryngology Head and Neck Surgery,Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Wen Jun Yin
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory, Changsha Central Hospital, University of South China, Changsha, Hunan, China
| |
Collapse
|
2
|
Amargant F, Manuel SL, Larmore MJ, Johnson BW, Lawson M, Pritchard MT, Zelinski MB, Duncan FE. Sphingosine-1-phosphate and its mimetic FTY720 do not protect against radiation-induced ovarian fibrosis in the nonhuman primate†. Biol Reprod 2021; 104:1058-1070. [PMID: 33524104 DOI: 10.1093/biolre/ioab012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/18/2020] [Accepted: 01/29/2021] [Indexed: 12/26/2022] Open
Abstract
Oocytes are highly radiosensitive, so agents that prevent radiation-induced ovarian follicle destruction are important fertility preservation strategies. A previous study in rhesus macaques demonstrated that ovarian treatment with antiapoptotic agents, sphingosine-1-phosphate (S1P) and FTY720, its long-acting mimetic, preserved follicles following a single dose of 15 Gy X-ray radiation, and live offspring were obtained from FTY720-treated animals. However, it is unknown whether these antiapoptotic agents also protected the ovarian stroma from late effects of radiation, including vascular damage and fibrosis. Using ovarian histological sections from this study, we evaluated the vasculature and extracellular matrix in the following cohorts: vehicle + sham irradiation, vehicle + irradiation (OXI), S1P + irradiation (S1P), and FTY720 + irradiation (FTY720). One ovary from each animal was harvested prior to radiation whereas the contralateral ovary was harvested 10 months post-treatment. We assessed vasculature by immunohistochemistry with a PECAM1 antibody, hyaluronan by a hyaluronan binding protein assay, and collagen by picrosirius red and Masson's trichrome staining. Disorganized vessels were observed in the medulla in the OXI and S1P cohorts relative to the sham, but the vasculature in the FTY720 cohort appeared intact, which may partially explain fertoprotection. There were no differences in the hyaluronan matrix among the cohorts, but there was thickening of the tunica albuginea and fibrosis in the OXI cohort relative to the sham, which was not mitigated by either S1P or FTY720 treatment. Thus, the fertoprotective properties of S1P and FTY720 may be limited given their inability to protect the ovarian stroma against the late effects of radiation-induced fibrosis.
Collapse
Affiliation(s)
- Farners Amargant
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sharrón L Manuel
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Megan J Larmore
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Brian W Johnson
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Maralee Lawson
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mary B Zelinski
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA.,Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
3
|
Wang X, Li M, Yu Y, Liu G, Yu Y, Zou Y, Ge J, Chen R. FTY720 alleviates coxsackievirus B3‐induced myocarditis and inhibits viral replication through regulating sphingosine 1‐phosphate receptors and AKT/caspase‐3 pathways. J Cell Physiol 2019; 234:18029-18040. [PMID: 30843214 DOI: 10.1002/jcp.28434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/03/2019] [Accepted: 02/14/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Xinggang Wang
- Department of Cardiology, Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital, Fudan University, Ministry of Public Health Shanghai China
| | - Minghui Li
- Department of Cardiology, Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital, Fudan University, Ministry of Public Health Shanghai China
| | - Ying Yu
- Department of Cardiology, Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital, Fudan University, Ministry of Public Health Shanghai China
| | - Guijian Liu
- Department of Cardiology, Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital, Fudan University, Ministry of Public Health Shanghai China
| | - Yong Yu
- Department of Cardiology, Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital, Fudan University, Ministry of Public Health Shanghai China
| | - Yunzeng Zou
- Department of Cardiology, Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital, Fudan University, Ministry of Public Health Shanghai China
| | - Junbo Ge
- Department of Cardiology, Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital, Fudan University, Ministry of Public Health Shanghai China
| | - Ruizhen Chen
- Department of Cardiology, Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital, Fudan University, Ministry of Public Health Shanghai China
| |
Collapse
|
4
|
Smith P, O'Sullivan C, Gergely P. Sphingosine 1-Phosphate Signaling and Its Pharmacological Modulation in Allogeneic Hematopoietic Stem Cell Transplantation. Int J Mol Sci 2017; 18:ijms18102027. [PMID: 28934113 PMCID: PMC5666709 DOI: 10.3390/ijms18102027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/10/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2022] Open
Abstract
Allogeneic haemopoietic stem cell transplantation (HSCT) is increasingly used to treat haematological malignant diseases via the graft-versus-leukaemia (GvL) or graft-versus-tumour effects. Although improvements in infectious disease prophylaxis, immunosuppressive treatments, supportive care, and molecular based tissue typing have contributed to enhanced outcomes, acute graft-versus-host disease and other transplant related complications still contribute to high mortality and significantly limit the more widespread use of HSCT. Sphingosine 1-phosphate (S1P) is a zwitterionic lysophospholipid that has been implicated as a crucial signaling regulator in many physiological and pathophysiological processes including multiple cell types such as macrophages, dendritic cells, T cells, T regulatory cells and endothelial cells. Recent data suggested important roles for S1P signaling in engraftment, graft-versus-host disease (GvHD), GvL and other processes that occur during and after HSCT. Based on such data, pharmacological intervention via S1P modulation may have the potential to improve patient outcome by regulating GvHD and enhancing engraftment while permitting effective GvL.
Collapse
Affiliation(s)
- Philip Smith
- Novartis Institutes for BioMedical Research, WSJ-386, CH-4002 Basel, Switzerland.
| | - Catherine O'Sullivan
- Novartis Institutes for BioMedical Research, WSJ-386, CH-4002 Basel, Switzerland.
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Peter Gergely
- Novartis Institutes for BioMedical Research, WSJ-386, CH-4002 Basel, Switzerland.
| |
Collapse
|
5
|
Yun KL, Wang ZY. Target/signalling pathways of natural plant-derived radioprotective agents from treatment to potential candidates: A reverse thought on anti-tumour drugs. Biomed Pharmacother 2017; 91:1122-1151. [DOI: 10.1016/j.biopha.2017.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/15/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023] Open
|
6
|
Zhang D, Huang Y, Huang Z, Zhang R, Wang H, Huang D. FTY-720P Suppresses Osteoclast Formation by Regulating Expression of Interleukin-6 (IL-6), Interleukin-4 (IL-4), and Matrix Metalloproteinase 2 (MMP-2). Med Sci Monit 2016; 22:2187-94. [PMID: 27344392 PMCID: PMC4924886 DOI: 10.12659/msm.896690] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background Osteoclast formation is closely related to the immune system. FTY720, a new immunosuppressive agent, has some functions in immune regulation. Its main active ingredients become FTY-720P in vivo by phosphorylation modification. The objective of this study was to determine the effects of FTY-720 with various concentrations on osteoclasts in vitro. Material/Methods RAW264.7 cells and bone marrow-derived mononuclear phagocytes (BMMs) were treated with RANKL to obtain osteoclasts in vitro. To investigate the role of FTY-720 in osteoclast formation, trap enzyme staining was performed and the number of osteoclasts was counted. Bone slices were stained with methylene blue, we counted the number of lacunae after bone slices were placed into dishes together with osteoclasts, and we observed the effect and function of FTY-720 in osteoclasts induced by RAW264.7 cells and BMMs. Then, we used a protein array kit to explore the effects of FTY-720P on osteoclasts. Results The results of enzyme trap staining and F-actin staining experiments show that, with the increasing concentration of FTY-720P, the number of osteoclast induced by RAW264.7 cells and BMMs gradually decreased (P<0.05), especially when the FTY-720P concentration reached 1000 ng/ml, and the number of osteoclasts formed was the lowest (P<0.05). With bone lacuna toluidine blue staining, the results also show that, with the increasing concentration of FTY-720P, the number of bone lacuna gradually decreased (P<0.05), and the number of lacunae is lowest when the concentration reached 800 ng/ml. Finally, protein array results showed that IL-4, IL-6, IL-12, MMP-2, VEGF-C, GFR, basic FGF, MIP-2, and insulin proteins were regulated after FTY-720P treatment. Conclusions FTY-720P can suppress osteoclast formation and function, and FTY-720P induces a series of cytokine changes.
Collapse
Affiliation(s)
- Dawei Zhang
- Section 2, Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China (mainland)
| | - Yongjun Huang
- Department of Microsurgery and Orthopedic Trauma, Guangdong No. 2 Provincial People's Hospital, Guangzhou, Guangdong, China (mainland)
| | - Zongwen Huang
- Section 2, Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China (mainland)
| | - Rongkai Zhang
- Section 2, Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China (mainland)
| | - Honggang Wang
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Dong Huang
- Department of Microsurgery and Orthopedic Trauma, Guangdong No. 2 Provincial People's Hospital, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|