1
|
Zhang J, Ma J, Dai H, Zhang H. The application and functional mechanism of Chinese herbal medicines in the treatment of chronic hepatitis B. Future Virol 2024; 19:325-338. [DOI: 10.1080/17460794.2024.2388479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/01/2024] [Indexed: 01/04/2025]
Affiliation(s)
- Jiao Zhang
- Zhaotong Health Vocational College, Zhaotong, Yunnan, 657000, China
| | - Junrui Ma
- School of Nursing, Yunnan University of Traditional Chinese Medicines, Kunming, Yunnan, 650022, P.R. China
| | - Hongyang Dai
- Zhaotong Health Vocational College, Zhaotong, Yunnan, 657000, China
| | - Hushan Zhang
- Zhaotong Health Vocational College, Zhaotong, Yunnan, 657000, China
| |
Collapse
|
2
|
Yu X, Gao Y, Zhang X, Ji L, Fang M, Li M, Gao Y. Hepatitis B: Model Systems and Therapeutic Approaches. J Immunol Res 2024; 2024:4722047. [PMID: 38745751 PMCID: PMC11093688 DOI: 10.1155/2024/4722047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
Hepatitis B virus (HBV) infection is a major global health issue and ranks among the top causes of liver cirrhosis and hepatocellular carcinoma. Although current antiviral medications, including nucleot(s)ide analogs and interferons, could inhibit the replication of HBV and alleviate the disease, HBV cannot be fully eradicated. The development of cellular and animal models for HBV infection plays an important role in exploring effective anti-HBV medicine. During the past decades, advancements in several cell culture systems, such as HepG2.2.15, HepAD38, HepaRG, hepatocyte-like cells, and primary human hepatocytes, have propelled the research in inhibiting HBV replication and expression and thus enriched our comprehension of the viral life cycle and enhancing antiviral drug evaluation efficacy. Mouse models, in particular, have emerged as the most extensively studied HBV animal models. Additionally, the present landscape of HBV therapeutics research now encompasses a comprehensive assessment of the virus's life cycle, targeting numerous facets and employing a variety of immunomodulatory approaches, including entry inhibitors, strategies aimed at cccDNA, RNA interference technologies, toll-like receptor agonists, and, notably, traditional Chinese medicine (TCM). This review describes the attributes and limitations of existing HBV model systems and surveys novel advancements in HBV treatment modalities, which will offer deeper insights toward discovering potentially efficacious pharmaceutical interventions.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yating Gao
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Zhang
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Longshan Ji
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao Fang
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Man Li
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| |
Collapse
|
3
|
Han X, Ning Y, Dou X, Wang Y, Shan Q, Shi K, Wang Z, Ding C, Hao M, Wang K, Peng M, Kuang H, Yang Q, Sang X, Cao G. Cornus officinalis with high pressure wine steaming enhanced anti-hepatic fibrosis: Possible through SIRT3-AMPK axis. J Pharm Anal 2024; 14:100927. [PMID: 38646453 PMCID: PMC11024659 DOI: 10.1016/j.jpha.2023.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 04/23/2024] Open
Abstract
Cornus officinalis, a medicinal and edible plant known for its liver-nourishing properties, has shown promise in inhibiting the activation of hepatic stellate cells (HSCs), crucial indicators of hepatic fibrosis, especially when processed by high pressure wine steaming (HPWS). Herein, this study aims to investigate the regulatory effects of cornus officinalis, both in its raw and HPWS forms, on inflammation and apoptosis in liver fibrosis and their underlying mechanisms. In vivo liver fibrosis models were established by subcutaneous injection of CCl4, while in vitro HSCs were exposed to transforming growth factor-β (TGF-β). These findings demonstrated that cornus officinalis with HPWS conspicuously ameliorated histopathological injury, reduced the release of proinflammatory factors, and decreased collagen deposition in CCl4-induced rats compared to its raw form. Utilizing ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometer (UHPLC-QTOF-MS) combined with network analysis, we identified that the pharmacological effects of the changed components of cornus officinalis before and after HPWS, primarily centered on the adenosine phosphate (AMP)-activated protein kinase (AMPK) pathway. Of note, cornus officinalis activated AMPK and Sirtuin 3 (SIRT3), promoting the apoptosis of activated HSCs through the caspase cascade by regulating caspase3, caspase6 and caspase9. siRNA experiments showed that cornus officinalis could regulate AMPK activity and its mediated-apoptosis through SIRT3. In conclusion, cornus officinalis exhibited the ability to reduce inflammation and apoptosis, with the SIRT3-AMPK signaling pathway identified as a potential mechanism underlying the synergistic effect of cornus officinalis with HPWS on anti-liver fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kao Shi
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haodan Kuang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Xu F, Zhang H, Chen J, Zhan J, Liu P, Liu W, Qi S, Mu Y. Recent progress on the application of compound formulas of traditional Chinese medicine in clinical trials and basic research in vivo for chronic liver disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117514. [PMID: 38042388 DOI: 10.1016/j.jep.2023.117514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic liver diseases mainly include chronic viral liver disease, metabolic liver disease, cholestatic liver disease (CLD), autoimmune liver disease, and liver fibrosis or cirrhosis. Notably, the compound formulas of traditional Chinese medicine (TCM) is effective for chronic liver diseases in clinical trials and basic research in vivo, which provide evidence of chronic liver disease treatment with integrated TCM and traditional Western medicine. AIM OF THE REVIEW This paper aims to provide a comprehensive review of the compound formulas of TCM for treating different chronic liver diseases to elucidate the composition, main curative effects, and mechanisms of these formulas and research methods. MATERIALS AND METHODS Different keywords related to chronic liver diseases and keywords related to the compound formulas of TCM were used to search the literature. PubMed, Scopus, Web of Science, and CNKI were searched to screen out original articles about the compound formulas of TCM related to the treatment of chronic liver diseases, mainly including clinical trials and basic in vivo research related to Chinese patent drugs, classic prescriptions, proven prescriptions, and hospital preparations. We excluded review articles, meta-analysis articles, in vitro experiments, articles about TCM monomers, articles about single-medicine extracts, and articles with incomplete or uncertain description of prescription composition. Plant names were checked with MPNS (http://mpns.kew.org). RESULTS In this review, the clinical efficacy and mechanism of compound formulas of TCM were summarized for the treatment of chronic viral hepatitis, nonalcoholic fatty liver disease, CLD, and liver fibrosis or cirrhosis developed from these diseases and other chronic liver diseases. For each clinical trial and basic research in vivo, this review provides a detailed record of the specific composition of the compound formulas of TCM, type of clinical research, modeling method of animal experiments, grouping methods, medication administration, main efficacy, and mechanisms. CONCLUSION The general development process of chronic liver disease can be summarized as chronic hepatitis, liver fibrosis or cirrhosis, and hepatocellular carcinoma. The compound formulas of TCM have some applications in these stages of chronic liver diseases. Owing to the continuous progress of medical technology, the benefits of the compound formulas of TCM in the treatment of chronic liver diseases are constantly changing and developing.
Collapse
Affiliation(s)
- Feipeng Xu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Hua Zhang
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Jiamei Chen
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Junyi Zhan
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Ping Liu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China; Institute of Interdisciplinary Complex Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Liu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China; Department of pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Shenglan Qi
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China; Department of pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Interdisciplinary Complex Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yongping Mu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
5
|
Zhao Q, Bai J, Chen Y, Liu X, Zhao S, Ling G, Jia S, Zhai F, Xiang R. An optimized herbal combination for the treatment of liver fibrosis: Hub genes, bioactive ingredients, and molecular mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115567. [PMID: 35870684 DOI: 10.1016/j.jep.2022.115567] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver fibrosis is a chronic liver disease that can lead to cirrhosis, liver failure, and hepatocellular carcinoma, and it is associated with long-term adverse outcomes and mortality. As a primary resource for complementary and alternative medicine, traditional Chinese medicine (TCM) has accumulated a large number of effective formulas for the treatment of liver fibrosis in clinical practice. However, studies on how to systematically optimize TCM formulas are still lacking. AIM OF THE REVIEW To provide a methodological reference for the systematic optimization of TCM formulae against liver fibrosis and explored the underlying molecular mechanisms; To provide an efficient method for searching for lead compounds from natural sources and developing from herbal medicines; To enable clinicians and patients to make more reasonable choices and promote the effective treatment toward those patients with liver fibrosis. MATERIALS AND METHODS TCM formulas related to treating liver fibrosis were collected from the Web of Science, PubMed, the China National Knowledge Infrastructure (CNKI), Wan Fang, and the Chinese Scientific Journals Database (VIP). Furthermore, the TCM compatibility patterns were mined using association analysis. The core TCM combinations were found by designing an optimized formulas algorithm. Finally, the hub target proteins, potential molecular mechanisms, and active compounds were explored through integrative pharmacology and docking-based inverse virtual screening (IVS) approaches. RESULTS We found that the herbs for reinforcing deficiency, activating blood, removing blood stasis, and clearing heat were the basis of TCM formulae patterns. Furthermore, the combination of Salviae Miltiorrhizae (Salvia miltiorrhiza Bunge; Chinese salvia/Danshen), Astragali Radix (Astragalus membranaceus (Fisch.) Bunge; Astragalus/Huangqi), and Radix Bupleuri (Bupleurum chinense DC.; Bupleurum/Chaihu) was identified as core groups. A total of six targets (TNF, STAT3, EGFR, IL2, ICAM1, PTGS2) play a pivotal role in TCM-mediated liver fibrosis inhibition. (-)-Cryptotanshinone, Tanshinaldehyde, Ononin, Thymol, Daidzein, and Formononetin were identified as active compounds in TCM. And mechanistically, TCM could affect the development of liver fibrosis by regulating inflammation, immunity, angiogenesis, antioxidants, and involvement in TNF, MicroRNAs, Jak-STAT, NF-kappa B, and C-type lectin receptors (CLRs) signaling pathways. Molecular docking results showed that key components had good potential to bind to the target genes. CONCLUSION In summary, this study provides a methodological reference for the systematic optimization of TCM formulae and exploration of underlying molecular mechanisms.
Collapse
Affiliation(s)
- Qianqian Zhao
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Jinwei Bai
- School of Medical Equipment, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yiwei Chen
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xin Liu
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Shangfeng Zhao
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Guixia Ling
- School of Medical Equipment, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Shubing Jia
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Fei Zhai
- School of Medical Equipment, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Rongwu Xiang
- School of Medical Equipment, Shenyang Pharmaceutical University, Shenyang, 110016, China; Liaoning Professional Technology Innovation Center on Medical Big Data and Artificial Intelligence, Shenyang, 110016, China.
| |
Collapse
|
6
|
Cao X, Chen H, Li Z, Li X, Yang X, Jin Q, Liang Y, Zhang J, Zhou M, Zhang N, Chen G, Du H, Zao X, Ye Y. Network pharmacology and in vitro experiments-based strategy to investigate the mechanisms of KangXianYiAi formula for hepatitis B virus-related hepatocellular carcinoma. Front Pharmacol 2022; 13:985084. [PMID: 36133813 PMCID: PMC9483169 DOI: 10.3389/fphar.2022.985084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The Chinese traditional medicine KangXianYiAi formula (KXYA) is used to treat hepatic disease in the clinic. Here we aim to confirm the therapeutic effects and explore the pharmacological mechanisms of KXYA on hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). We first collected and analyzed clinical data of 40 chronic hepatitis B (CHB) patients with precancerous liver lesions under KXYA treatment. Then, the cell viability, migration, cell cycle, and apoptosis of HepAD38 cells with KXYA treatment were examined. Next, we performed network pharmacological analysis based on database mining to obtain the key target pathways and genes of KXYA treatment on HBV-related HCC. We finally analyzed the expression of the key genes between normal and HBV-related HCC tissues in databases and measured the mRNA expression of the key genes in HepAD38 cells after KXYA treatment. The KXYA treatment could reduce the liver nodule size of CHB patients, suppress the proliferation and migration capabilities, and promote apoptosis of HepAD38 cells. The key pathways of KXYA on HBV-related HCC were Cancer, Hepatitis B, Viral carcinogenesis, Focal adhesion, and PI3K-Akt signaling, and KXYA treatment could regulate the expression of the key genes including HNF4A, MAPK8, NR3C1, PTEN, EGFR, and HDAC1. The KXYA exhibited a curative effect via inhibiting proliferation, migration, and promoting apoptosis of HBV-related HCC and the pharmacological mechanism was related to the regulation of the expression of HNF4A, MAPK8, NR3C1, PTEN, EGFR, and HDAC1.
Collapse
Affiliation(s)
- Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hening Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiguo Li
- Beijing Fengtai Hospital of Integrated Traditional and Western Medicine, Beijing, China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Xianzhao Yang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Qiushuo Jin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yijun Liang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Meiyue Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ningyi Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guang Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Guang Chen, ; Hongbo Du, ; Xiaobin Zao, ; Yong’an Ye,
| | - Hongbo Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Guang Chen, ; Hongbo Du, ; Xiaobin Zao, ; Yong’an Ye,
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Guang Chen, ; Hongbo Du, ; Xiaobin Zao, ; Yong’an Ye,
| | - Yong’an Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Guang Chen, ; Hongbo Du, ; Xiaobin Zao, ; Yong’an Ye,
| |
Collapse
|
7
|
Cao X, Liang Y, Liu R, Zao X, Zhang J, Chen G, Liu R, Chen H, He Y, Zhang J, Ye Y. Uncovering the Pharmacological Mechanisms of Gexia-Zhuyu Formula (GXZY) in Treating Liver Cirrhosis by an Integrative Pharmacology Strategy. Front Pharmacol 2022; 13:793888. [PMID: 35330838 PMCID: PMC8940433 DOI: 10.3389/fphar.2022.793888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/25/2022] [Indexed: 12/22/2022] Open
Abstract
Liver cirrhosis (LC) is a fibrotic lesion of liver tissue caused by the repeated progression of chronic hepatitis. The traditional Chinese medicine Gexia-Zhuyu formula (GXZY) has a therapeutic effect on LC. However, its pharmacological mechanisms on LC remain elucidated. Here, we used the network pharmacology approach to explore the action mechanisms of GXZY on LC. The compounds of GXZY were from the traditional Chinese medicine systems pharmacology (TCMSP) database, and their potential targets were from SwissTargetPrediction and STITCH databases. The disease targets of LC came from GeneCards, DisGeNET, NCBI gene, and OMIM databases. Then we constructed the protein-protein interaction (PPI) network to obtain the key target genes. And the gene ontology (GO), pathway enrichment, and expression analysis of the key genes were also performed. Subsequently, the potential action mechanisms of GXZY on LC predicted by the network pharmacology analyses were experimentally validated in LC rats and LX2 cells. A total of 150 components in GXZY were obtained, among which 111 were chosen as key compounds. The PPI network included 525 targets, and the key targets were obtained by network topological parameters analysis, whereas the predicted key genes of GXZY on LC were AR, JUN, MYC, CASP3, MMP9, GAPDH, and RELA. Furthermore, these key genes were related to pathways in cancer, hepatitis B, TNF signaling pathway, and MAPK signaling pathway. The in vitro and in vivo experiments validated that GXZY inhibited the process of LC mainly via the regulation of cells proliferation and migration through reducing the expression of MMP9. In conclusion, through the combination of network pharmacology and experimental verification, this study offered more insight molecular mechanisms of GXZY on LC.
Collapse
Affiliation(s)
- Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Yijun Liang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ruijia Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaying Zhang
- Ministry of Education Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Guang Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Ruijie Liu
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hening Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yannan He
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Yong'an Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Systematic analysis of the mechanism of Xiaochaihu decoction in hepatitis B treatment via network pharmacology and molecular docking. Comput Biol Med 2021; 138:104894. [PMID: 34607274 DOI: 10.1016/j.compbiomed.2021.104894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022]
Abstract
Hepatitis B (HB) is a globally prevalent infectious disease caused by the HB virus. Xiaochaihu decoction (XCHD) is a classic herbal formula with a long history of clinical application in treating HB. Although the anti-HB activity of XCHD has been reported, systematic research on the exact mechanism of action is lacking. Here, a network pharmacology-based approach was used to predict the active components, important targets, and potential mechanism of XCHD in HB treatment. Investigation included drug-likeness evaluation; absorption, distribution, metabolism, and elimination (ADME) screening; protein-protein interaction (PPI) network construction and cluster analysis; Gene Ontology (GO) analysis; and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation. Molecular docking was adopted to investigate the interaction between important target proteins and active components. Eighty-seven active components of XCHD and 155 anti-HB targets were selected for further analysis. The GO enrichment and similarity analysis results indicated that XCHD might perform similar or the same GO functions. Glycyrrhizae Radix (GR), one of the seven XCHD herbs, likely exerts some unique GO functions such as the regulation of interleukin-12 production, positive regulation of interleukin-1 beta secretion, and regulation of the I-kappaB/NF-kappaB complex. The PPI network and KEGG pathway analysis results showed that XCHD affects HB mainly through modulating pathways related to viral infection, immunity, cancer, signal transduction, and metabolism. Additionally, molecular docking verified that the active compounds (quercetin, chrysin, and capsaicin) could bind with the key targets. This work systematically explored the anti-HB mechanism of XCHD and provides a novel perspective for future pharmacological research.
Collapse
|
9
|
Clinical efficacy and safety of TCM prescriptions combined with nucleoside (acid) analogues in treating chronic hepatitis B: a meta-analysis. DIGITAL CHINESE MEDICINE 2021. [DOI: 10.1016/j.dcmed.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
10
|
Cao X, Zao X, Xue B, Chen H, Zhang J, Li S, Li X, Zhu S, Guo R, Li X, Ye Y. The mechanism of TiaoGanYiPi formula for treating chronic hepatitis B by network pharmacology and molecular docking verification. Sci Rep 2021; 11:8402. [PMID: 33863948 PMCID: PMC8052433 DOI: 10.1038/s41598-021-87812-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
The Chinese herbal formula TiaoGanYiPi (TGYP) showed effective against chronic hepatitis B (CHB) caused by hepatitis B virus (HBV) infection. Hence, we aimed to clarify the mechanisms and potential targets between TGYP and CHB. The active compounds and related putative targets of TGYP, and disease targets of CHB were obtained from the public databases. The key targets between TGYP and CHB were identified through the network construction and module analysis. The expression of the key targets was detected in Gene Expression Omnibus (GEO) dataset and normal hepatocyte cell line LO2. We first obtained 11 key targets which were predominantly enriched in the Cancer, Cell cycle and HBV-related pathways. And the expression of the key targets was related to HBV infection and liver inflammation verified in GSE83148 database. Furthermore, the results of real-time quantitative PCR and CCK-8 assay indicated that TGYP could regulate the expression of key targets including CCNA2, ABL1, CDK4, CDKN1A, IGFR and MAP2K1, and promote proliferation of LO2 cells. In coclusion, we identified the active compounds and key targets btween TGYP and CHB, and found that the TGYP might exhibite curative effect on CHB via promoting hepatocyte proliferation and inhibiting the liver inflammatory processes.
Collapse
Affiliation(s)
- Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.,Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Baiquan Xue
- The First People's Hospital of Jinzhou District, Dalian, 116100, China
| | - Hening Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.,Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Jiaxin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.,Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Shuo Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.,Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Xiaobin Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.,Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Shun Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.,Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Rui Guo
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China. .,Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yong'an Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China. .,Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|