1
|
Ayers J, Milner RJ, Cortés-Hinojosa G, Riva A, Bechtel S, Sahay B, Cascio M, Lejeune A, Shiomitsu K, Souza C, Hernandez O, Salute M. Novel application of single-cell next-generation sequencing for determination of intratumoral heterogeneity of canine osteosarcoma cell lines. J Vet Diagn Invest 2021; 33:261-278. [PMID: 33446089 PMCID: PMC7944434 DOI: 10.1177/1040638720985242] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma (OSA) is a highly aggressive and metastatic neoplasm of both the canine and human patient and is the leading form of osseous neoplasia in both species worldwide. To gain deeper insight into the heterogeneous and genetically chaotic nature of OSA, we applied single-cell transcriptome (scRNA-seq) analysis to 4 canine OSA cell lines. This novel application of scRNA-seq technology to the canine genome required uploading the CanFam3.1 reference genome into an analysis pipeline (10X Genomics Cell Ranger); this methodology has not been reported previously in the canine species, to our knowledge. The scRNA-seq outputs were validated by comparing them to cDNA expression from reverse-transcription PCR (RT-PCR) and Sanger sequencing bulk analysis of 4 canine OSA cell lines (COS31, DOUG, POS, and HMPOS) for 11 genes implicated in the pathogenesis of canine OSA. The scRNA-seq outputs revealed the significant heterogeneity of gene transcription expression patterns within the cell lines investigated (COS31 and DOUG). The scRNA-seq data showed 10 distinct clusters of similarly shared transcriptomic expression patterns in COS31; 12 clusters were identified in DOUG. In addition, cRNA-seq analysis provided data for integration into the Qiagen Ingenuity Pathway Analysis software for canonical pathway analysis. Of the 81 distinct pathways identified within the clusters, 33 had been implicated in the pathogenesis of OSA, of which 18 had not been reported previously in canine OSA.
Collapse
Affiliation(s)
- Jordan Ayers
- Departments of Small Animal Clinical Sciences, College of Veterinary Medicine
| | - Rowan J Milner
- Departments of Small Animal Clinical Sciences, College of Veterinary Medicine
| | | | - Alberto Riva
- ICBR Bioinformatics Core, University of Florida, Gainesville, FL
| | - Sandra Bechtel
- Departments of Small Animal Clinical Sciences, College of Veterinary Medicine
| | - Bikash Sahay
- Infectious Diseases and Immunology, College of Veterinary Medicine
| | - Matthew Cascio
- Pediatric Hematology-Oncology, Department of Pediatrics, College of Medicine
| | - Amandine Lejeune
- Departments of Small Animal Clinical Sciences, College of Veterinary Medicine
| | - Keijiro Shiomitsu
- Departments of Small Animal Clinical Sciences, College of Veterinary Medicine
| | - Carlos Souza
- Departments of Small Animal Clinical Sciences, College of Veterinary Medicine
| | - Oscar Hernandez
- Departments of Small Animal Clinical Sciences, College of Veterinary Medicine
| | - Marc Salute
- Departments of Small Animal Clinical Sciences, College of Veterinary Medicine
| |
Collapse
|
2
|
Phosphoinositide-specific phospholipase C isoforms are conveyed by osteosarcoma-derived extracellular vesicles. J Cell Commun Signal 2020; 14:417-426. [PMID: 32583269 DOI: 10.1007/s12079-020-00571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/14/2020] [Indexed: 10/24/2022] Open
Abstract
Cancer cells are able to release high amounts of extracellular vesicles, thereby conditioning the normal cells in the surrounding tissue and/or in distant target organs. In the context of bone cancers, previous studies suggested that osteosarcoma cancer cells produce transforming extracellular vesicles able to induce a tumour-like phenotype in normal recipient cells. Indeed, phosphoinositide-specific phospholipase C (PI-PLC) enzymes are differentially expressed in osteosarcoma cell lines with increasing aggressiveness, thus providing helpful insights to better define their role and functions in this bone tumour. By confocal microscopy analysis, we demonstrated that osteosarcoma-derived extracellular vesicles convey all the assessed PI-PLC isoforms, and that they localize into cell membrane bubble-like structures, resembling extracellular vesicles about to be released, as conveyed and/or membrane protein. Cytofluorimetric analysis confirmed the presence of PI-PLC isoforms in the extracellular vesicles collected from conditioned media of osteosarcoma cells. These findings suggest the feasibility to use circulating extracellular vesicles as biomarkers of osteosarcoma progression and/or the monitoring of this distressing disease.
Collapse
|
3
|
Fais P, Leopizzi M, Di Maio V, Longo L, Della Rocca C, Tagliaro F, Bortolotti F, Lo Vasco VR. Phosphoinositide-specific phospholipase C in normal human liver and in alcohol abuse. J Cell Biochem 2019; 120:7907-7917. [PMID: 30426534 DOI: 10.1002/jcb.28067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
The phosphoinositide (PI) signal transduction pathway participates in liver metabolism. Abnormal activity or expression of PI-specific phospholipase C (PLC) enzymes has been described in different liver diseases. We resume the role of the PI metabolism in liver and PLC abnormalities in different liver diseases. Moreover, we present the results of PLC analyses in a normal human liver and an alcohol-damaged liver. PLC enzymes and the expression of the corresponding genes in liver biopsies from individuals deceased for complications of the alcoholic liver disease (ALD) at different stages compared with normal controls (deceased individuals with histologically normal livers without alcohol addiction anamnesis) were analyzed by using immunohistochemistry and molecular biology techniques. The expression panel of PLCs was described in normal and alcohol abuse liver. Our observations suggest that the regulation of PLC expression might be due to posttranscriptional events and that alcohol affects the epigenetic control of PLC expression belonging to PI signaling. We also describe the alternate expression of PLCB1 and PLCH1 genes in liver. Our results corroborate literature data suggesting that PLC enzymes are differently expressed in normal versus pathological liver, playing a role in the histopathogenesis of liver tissue damage. The expression and/or localization of selected PLC isoforms is especially affected in alcohol-related liver tissue histopathology. Our present observations confirm that the modulation of protein synthesis plays a role in the regulation of PLC enzymes. We also suggest that this modulation might act at the transcription level. Further studies are required to investigate related epigenetic mechanisms.
Collapse
Affiliation(s)
- Paolo Fais
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy
| | - Martina Leopizzi
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy
| | - Valeria Di Maio
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy
| | - Lucia Longo
- Department of Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Carlo Della Rocca
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy
| | - Franco Tagliaro
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy.,Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy.,Department of Sensory Organs, Sapienza University of Rome, Rome, Italy.,Department of Diagnostics and Public Health, Unit of Forensic Medicine, University of Verona, Verona, Italy
| | - Federica Bortolotti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy.,Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy.,Department of Sensory Organs, Sapienza University of Rome, Rome, Italy.,Department of Diagnostics and Public Health, Unit of Forensic Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
4
|
Lo Vasco VR, Leopizzi M, Scotto d’Abusco A, Rocca CD. Different Expression and Localization of Phosphoinositide Specific Phospholipases C in Human Osteoblasts, Osteosarcoma Cell Lines, Ewing Sarcoma and Synovial Sarcoma. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2017. [DOI: 10.15171/ajmb.2017.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Bone hardness and strength depends on mineralization, which involves a complex process in which calcium phosphate, produced by bone-forming cells, was shed around the fibrous matrix. This process is strictly regulated, and a number of signal transduction systems were interested in calcium metabolism, such as the phosphoinositide (PI) pathway and related phospholipase C (PLC) enzymes. Objectives: Our aim was to search for common patterns of expression in osteoblasts, as well as in ES and SS. Methods: We analysed the PLC enzymes in human osteoblasts and osteosarcoma cell lines MG-63 and SaOS-2. We compared the obtained results to the expression of PLCs in samples of patients affected with Ewing sarcoma (ES) and synovial sarcoma (SS). Results: In osteoblasts, MG-63 cells and SaOS-2 significant differences were identified in the expression of PLC δ4 and PLC η subfamily isoforms. Differences were also identified regarding the expression of PLCs in ES and SS. Most ES and SS did not express PLCB1, which was expressed in most osteoblasts, MG-63 and SaOS-2 cells. Conversely, PLCB2, unexpressed in the cell lines, was expressed in some ES and SS. However, PLCH1 was expressed in SaOS-2 and inconstantly expressed in osteoblasts, while it was expressed in ES and unexpressed in SS. The most relevant difference observed in ES compared to SS regarded PLC ε and PLC η isoforms. Conclusion: MG-63 and SaOS-2 osteosarcoma cell lines might represent an inappropriate experimental model for studies about the analysis of signal transduction in osteoblasts
Collapse
Affiliation(s)
| | - Martina Leopizzi
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino –Sapienza University, Latina, Rome, Italy
| | - Anna Scotto d’Abusco
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Carlo Della Rocca
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino –Sapienza University, Latina, Rome, Italy
| |
Collapse
|
5
|
Lo Vasco VR, Leopizzi M, Scotto d'abusco A, Della Rocca C. Comparison of Phosphoinositide-Specific Phospholipase C Expression Panels of Human Osteoblasts Versus MG-63 and Saos Osteoblast-Like Cells. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2016. [DOI: 10.17795/ajmb-34104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
6
|
Lo Vasco VR, Leopizzi M, Di Maio V, Della Rocca C. U-73122 reduces the cell growth in cultured MG-63 ostesarcoma cell line involving Phosphoinositide-specific Phospholipases C. SPRINGERPLUS 2016; 5:156. [PMID: 27026853 PMCID: PMC4766154 DOI: 10.1186/s40064-016-1768-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/12/2016] [Indexed: 11/24/2022]
Abstract
The definition of the number and nature of the signal transduction pathways involved in the pathogenesis and the identification of the molecules promoting metastasis spread might improve the knowledge of the natural history of osteosarcoma, also allowing refine the prognosis and opening the way to novel therapeutic strategies. Phosphatydil inositol (4,5) bisphosphate (PIP2), belonging to the Phosphoinositide (PI) signal transduction pathway, was related to the regulation of ezrin, an ezrin-radixin-moesin protein involved in metastatic osteosarcoma spread. The levels of PIP2 are regulated by means of the PI-specific Phospholipase C (PLC) enzymes. Recent literature data suggested that in osteosarcoma the panel of expression of PLC isoforms varies in a complex and unclear manner and is related to ezrin, probably networking with Ras GTPases, such as RhoA and Rac1. We analyzed the expression and the subcellular localization of PLC enzymes in cultured human osteosarcoma MG-63 cells, commonly used as an experimental model for human osteoblasts, using U-73122 PLC inhibitor, U-73343 inactive analogue, and by silencing ezrin. The treatment with U-73122 significantly reduces the number of MG-63 viable cells and contemporarily modifies the expression and the subcellular localization of selected PLC isoforms. U-73122 reduces the cell growth in cultured MG-63 ostesarcoma cell line involving PI-specific Phospholipases C.
Collapse
Affiliation(s)
- Vincenza Rita Lo Vasco
- />Sensory Organs Department, Policlinico Umberto I, Faculty of Medicine and Dentistry, Sapienza University of Rome, viale dell’Università, 33, 00157 Rome, Italy
| | - Martina Leopizzi
- />Medico-Surgical Sciences and Biotechnology Department, Polo Pontino- Sapienza University of Rome, 04100 Latina, Italy
| | - Valeria Di Maio
- />Medico-Surgical Sciences and Biotechnology Department, Polo Pontino- Sapienza University of Rome, 04100 Latina, Italy
| | - Carlo Della Rocca
- />Medico-Surgical Sciences and Biotechnology Department, Polo Pontino- Sapienza University of Rome, 04100 Latina, Italy
| |
Collapse
|
7
|
Charge Shielding of PIP2 by Cations Regulates Enzyme Activity of Phospholipase C. PLoS One 2015; 10:e0144432. [PMID: 26658739 PMCID: PMC4676720 DOI: 10.1371/journal.pone.0144432] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/18/2015] [Indexed: 11/19/2022] Open
Abstract
Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) of the plasma membrane by phospholipase C (PLC) generates two critical second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. For the enzymatic reaction, PIP2 binds to positively charged amino acids in the pleckstrin homology domain of PLC. Here we tested the hypothesis that positively charged divalent and multivalent cations accumulate around the negatively charged PIP2, a process called electrostatic charge shielding, and therefore inhibit electrostatic PIP2-PLC interaction. This charge shielding of PIP2 was measured quantitatively with an in vitro enzyme assay using WH-15, a PIP2 analog, and various recombinant PLC proteins (β1, γ1, and δ1). Reduction of PLC activity by divalent cations, polyamines, and neomycin was well described by a theoretical model considering accumulation of cations around PIP2 via their electrostatic interaction and chemical binding. Finally, the charge shielding of PIP2 was also observed in live cells. Perfusion of the cations into cells via patch clamp pipette reduced PIP2 hydrolysis by PLC as triggered by M1 muscarinic receptors with a potency order of Mg2+ < spermine4+ < neomycin6+. Accumulation of divalent cations into cells through divalent-permeable TRPM7 channel had the same effect. Altogether our results suggest that Mg2+ and polyamines modulate the activity of PLCs by controlling the amount of free PIP2 available for the enzymes and that highly charged biomolecules can be inactivated by counterions electrostatically.
Collapse
|
8
|
Lo Vasco VR, Leopizzi M, Della Rocca C. Ezrin-related Phosphoinositide pathway modifies RhoA and Rac1 in human osteosarcoma cell lines. J Cell Commun Signal 2015; 9:55-62. [PMID: 25618778 PMCID: PMC4414842 DOI: 10.1007/s12079-015-0265-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 01/16/2015] [Indexed: 11/24/2022] Open
Abstract
Selected Phosphoinositide-specific Phospholipase C (PI-PLC) enzymes occupy the convergence point of the broad range of pathways that promote Rho and Ras GTPase mediated signalling, which also regulate the activation of ezrin, a member of the ezrin-radixin-moesin (ERM) proteins family involved in the metastatic osteosarcoma spread. Previous studies described that in distinct human osteosarcoma cell lines ezrin networks the PI-PLC with complex interplay controlling the expression of the PLC genes, which codify for PI-PLC enzymes. In the present study, we analyzed the expression and the sub-cellular distribution of RhoA and Rac1 respectively after ezrin silencing and after PI-PLC ε silencing, in order to investigate whether ezrin-RhoGTPAses signalling might involve one or more specific PI-PLC isoforms in cultured 143B and Hs888 human osteosarcoma cell lines. In the present experiments, both ezrin and PLCE gene silencing had different effects upon RhoA and Rac1 expression and sub-cellular localization. Displacements of Ezrin and of RhoA localization were observed, probably playing functional roles.
Collapse
Affiliation(s)
- V R Lo Vasco
- Organi di Senso Department, Policlinico Umberto I, Faculty of Medicine and Dentistry, Sapienza University, viale del Policlinico 155, 00185, Rome, Italy,
| | | | | |
Collapse
|
9
|
Lo Vasco VR, Leopizzi M, Puggioni C, Della Rocca C, Businaro R. Neuropeptide Y reduces the expression of PLCB2, PLCD1 and selected PLC genes in cultured human endothelial cells. Mol Cell Biochem 2014; 394:43-52. [PMID: 24903829 DOI: 10.1007/s11010-014-2079-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/03/2014] [Indexed: 12/11/2022]
Abstract
Endothelial cells (EC) are the first elements exposed to mediators circulating in the bloodstream, and react to stimulation with finely tuned responses mediated by different signal transduction pathways, leading the endothelium to adapt. Neuropeptide Y (NPY), the most abundant peptide in heart and brain, is mainly involved in the neuroendocrine regulation of the stress response. The regulatory roles of NPY depend on many factors, including its enzymatic processing, receptor subtypes and related signal transduction systems, including the phosphoinositide (PI) pathway and related phospholipase C (PI-PLC) family of enzymes. The panel of expression of PI-PLC enzymes differs comparing quiescent versus differently stimulated human EC. Growing evidences indicate that the regulation of the expression of PLC genes, which codify for PI-PLC enzymes, might act as an additional mechanism of control of the PI signal transduction pathway. NPY was described to potentiate the activation of PI-PLC enzymes in different cell types, including EC. In the present experiments, we stimulated human umbilical vein EC using different doses of NPY in order to investigate a possible role upon the expression PLC genes. NPY reduced the overall transcription of PLC genes, excepting for PLCE. The most significant effects were observed for PLCB2 and PLCD1, both isoforms recruited by means of G-proteins and G-protein-coupled receptors. NPY behavior was comparable with other PI-PLC interacting molecules that, beside the stimulation of phospholipase activity, also affect the upcoming enzymes' production acting upon gene expression. That might represent a mode to regulate the activity of PI-PLC enzymes after activation.
Collapse
Affiliation(s)
- V R Lo Vasco
- Department Organi di Senso, Policlinico Umberto I, Faculty of Medicina e Odontoiatria, Sapienza University of Rome, viale del Policlinico 155, 00185, Rome, Italy,
| | | | | | | | | |
Collapse
|
10
|
Ezrin silencing remodulates the expression of Phosphoinositide-specific Phospholipase C enzymes in human osteosarcoma cell lines. J Cell Commun Signal 2014; 8:219-29. [PMID: 25073508 DOI: 10.1007/s12079-014-0235-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/04/2014] [Indexed: 12/22/2022] Open
Abstract
Ezrin, a protein belonging to the Ezrin, radixin and moesin (ERM) family, was engaged in the metastatic spread of osteosarcoma. The Protein 4.1, Ezrin, radixin, moesin (FERM) domain of Ezrin binds the membrane Phosphatydil inositol (4,5) bisphosphate (PIP2), a crucial molecule belonging to the Phosphoinositide (PI) signal transduction pathway. The cytoskeleton cross-linker function of Ezrin largely depends on membrane PIP2 levels, and thus upon the activity of related enzymes belonging to the PI-specific phospholipase C (PI-PLC) family. Based on the role of Ezrin in tumour progression and metastasis, we silenced the expression of Vil2 (OMIM *123900), the gene which codifies for Ezrin, in cultured human osteosarcoma 143B and Hs888 cell lines. After Ezrin silencing, the growth rate of both cell lines was significantly reduced and morphogical changes were observed. We also observed moderate variations both of selected PI-PLC enzymes within the cell and of expression of the corresponding PLC genes. In 143B cell line the transcription of PLCB1 decreased, of PLCG2 increased and of PLCE differed in a time-dependent manner. In Hs888, the expression of PLCB1 and of PLCD4 significantly increased, of PLCE moderately increased in a time dependent manner; the expression of PLCG2 was up-regulated. These observations indicate that Ezrin silencing affects the transcription of selected PLC genes, suggesting that Ezrin might influence the expression regulation of PI-PLC enzymes.
Collapse
|
11
|
Lo Vasco VR, Leopizzi M, Puggioni C, Della Rocca C, Businaro R. Fibroblast growth factor acts upon the transcription of phospholipase C genes in human umbilical vein endothelial cells. Mol Cell Biochem 2014; 388:51-59. [PMID: 24242047 DOI: 10.1007/s11010-013-1898-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 11/05/2013] [Indexed: 02/02/2023]
Abstract
Besides the control of calcium levels, the phosphoinositide-specific phospholipases C (PI-PLCs), the main players in the phosphoinositide signalling pathway, contribute to a number of cell activities. The expression of PI-PLCs is strictly tissue specific and evidence suggests that it varies under different conditions, such as tumour progression or cell activation. In previous studies, we obtained a complete panel of expression of PI-PLC isoforms in human umbilical vein endothelial cells (HUVEC), a widely used experimental model for endothelial cells (EC), and demonstrated that the expression of the PLC genes varies under inflammatory stimulation. The fibroblast growth factor (FGF) activates the PI-PLC γ1 isoform. In the present study, PI-PLC expression in FGF-treated HUVEC was performed using RT-PCR, observed 24 h after stimulation. The expression of selected genes after stimulation was perturbed, suggesting that FGF affects gene transcription in PI signalling as a possible mechanism of regulation of its activity upon the AkT-PLC pathway. The most efficient effects of FGF were recorded in the 3-6-h interval. To understand the complex events progressing in EC might provide useful insights for potential therapeutic strategies. The opportunity to manipulate the EC might offer a powerful tool of considerable practical and clinical importance.
Collapse
Affiliation(s)
- Vincenza Rita Lo Vasco
- Dipartimento Organi di Senso, Policlinico Umberto I, Facoltà di Medicina e Odontoiatria, Università di Roma "Sapienza", viale del Policlinico 155, 00185, Rome, Italy,
| | | | | | | | | |
Collapse
|