1
|
Ramasamy A, Mohan C. Molecular and Cellular Mediators of Renal Fibrosis in Lupus Nephritis. Int J Mol Sci 2025; 26:2621. [PMID: 40141260 PMCID: PMC11942537 DOI: 10.3390/ijms26062621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Lupus nephritis (LN), a significant complication of systemic lupus erythematosus (SLE), represents a challenging manifestation of the disease. One of the prominent pathophysiologic mechanisms targeting the renal parenchyma is fibrosis, a terminal process resulting in irreversible tissue damage that eventually leads to a decline in renal function and/or end-stage kidney disease (ESKD). Both glomerulosclerosis and interstitial fibrosis emerge as reliable prognostic indicators of renal outcomes. This article reviews the hallmarks of renal fibrosis in lupus nephritis, including the known and putative drivers of fibrogenesis. A better understanding of the cellular and molecular processes driving fibrosis in LN may help inform the development of therapeutic strategies for this disease, as well as the identification of individuals at higher risk of developing ESKD.
Collapse
Affiliation(s)
| | - Chandra Mohan
- Biomedical Engineering Department, University of Houston, 3517 Cullen Blvd, Room 2027, Houston, TX 77204, USA;
| |
Collapse
|
2
|
Qiao X, Shah W, Gao X, Gong Y, Li Y, Gao Y, Li J. Understanding how the immune system environment is controlled in high myopia cases. Int Immunopharmacol 2024; 143:113138. [PMID: 39362012 DOI: 10.1016/j.intimp.2024.113138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 10/05/2024]
Abstract
High myopia (HM) is characterized by a significant extension of the eye axis; it has emerged as a serious global public health issue recently. In addition to causing severe visual impairment, HM is associated with several problems that may compromise an individual's vision. Although genetic and environmental factors in HM have been extensively investigated, increasing evidence implicates the immune system and its microenvironment in its pathogenesis. In this review, we explore the complex interactions between cytokines, immune cells, and the eye environment to elucidate the complex processes controlling the immune response in HM. Furthermore, we investigated treatments modulating the immune response and alleviating the progression of HM and its complications. Through a review of the current relevant studies, we highlight the critical functions of the immune system in the multifactorial development of HM. With the evolving understanding of the immune system's involvement in HM, this review provides a valuable resource to clinicians and researchers to develop targeted interventions and personalized treatments for individuals with this vision-threatening condition.
Collapse
Affiliation(s)
- Xin Qiao
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan 030002, China
| | - Wahid Shah
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan 030002, China; Translational Medicine Research Center, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoqin Gao
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan 030002, China
| | - Yuxing Gong
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan 030001, China
| | - Yanan Li
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan 030001, China
| | - Yuan Gao
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan 030002, China; Translational Medicine Research Center, Shanxi Medical University, Taiyuan 030001, China.
| | - Junhong Li
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan 030002, China.
| |
Collapse
|
3
|
Fu Z, Geng X, Liu C, Shen W, Dong Z, Sun G, Cai G, Chen X, Hong Q. Identification of common and specific fibrosis-related genes in three common chronic kidney diseases. Ren Fail 2024; 46:2295431. [PMID: 38174742 PMCID: PMC10769532 DOI: 10.1080/0886022x.2023.2295431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Kidney fibrosis is the common final pathway of virtually all advanced forms of chronic kidney disease (CKD) including diabetic nephropathy (DN), IgA nephropathy (IgAN) and membranous nephropathy (MN), with complex mechanism. Comparative gene expression analysis among these types of CKD may shed light on its pathogenesis. Therefore, we conducted this study aiming at exploring the common and specific fibrosis-related genes involved in different types of CKD. METHODS Kidney biopsy specimens from patients with different types of CKD and normal control subjects were analyzed using the NanoString nCounter® Human Fibrosis V2 Panel. Genes differentially expressed in all fibrotic DN, IgAN and MN tissues compared to the normal controls were regarded as the common fibrosis-related genes in CKD, whereas genes exclusively differentially expressed in fibrotic DN, IgAN or MN samples were considered to be the specific genes related to fibrosis in DN, IgAN and MN respectively. Quantitative real-time PCR (qRT-PCR) was performed to validate the expression of the selected genes. RESULTS Protein tyrosine phosphatase receptor type C (PTPRC), intercellular cell adhesion molecule-1 (ICAM1), vascular cell adhesion molecule-1 (VCAM1), interleukin 10 receptor alpha (IL10RA) and CC chemokine receptor 2 (CCR2) were identified as the potential common genes for kidney fibrosis in different types of CKD, while peroxisome proliferator-activated receptor alpha (PPARA), lactate oxidase (LOX), secreted phosphoprotein 1 (SPP1) were identified as the specific fibrosis-associated genes for DN, IgAN and MN respectively. qRT-PCR demonstrated that the expression levels of these selected genes were consistent with the NanoString analysis. CONCLUSIONS There were both commonalities and differences in the mechanisms of fibrosis in different types of CKD, the commonalities might be used as the common therapeutic targets for kidney fibrosis in CKD, while the differences might be used as the diagnostic markers for DN, IgAN and MN respectively. Inflammation was highly relevant to the pathogenesis of fibrosis. This study provides further insight into the pathophysiology and treatment of fibrotic kidney disease.
Collapse
Affiliation(s)
- Zhangning Fu
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiaodong Geng
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chao Liu
- Department of Critical Care Medicine, First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Wanjun Shen
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Zheyi Dong
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Guannan Sun
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
4
|
Ma K, Luo L, Yang M, Meng Y. The suppression of sepsis-induced kidney injury via the knockout of T lymphocytes. Heliyon 2024; 10:e23311. [PMID: 38283245 PMCID: PMC10818183 DOI: 10.1016/j.heliyon.2023.e23311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024] Open
Abstract
Patients with sepsis always have a high mortality rate, and acute kidney injury (AKI) is the main cause of death. It seems obvious that the immune response is involved in this process, but the specific mechanism is unknown, especially the pathogenic role of T cells and B cells needs to be further clarified. Acute kidney injury models induced by lipopolysaccharide were established using T-cell, B-cell, and T&B cell knockout mice to elucidate the role of immune cells in sepsis. Flow cytometry was used to validate the mouse models, and the pathology can confirm renal tubular injury. LPS-induced sepsis caused significant renal pathological damage, Second-generation gene sequencing showed T cells-associated pathway was enriched in sepsis. The renal tubular injury was significantly reduced in T cell and T&B cell knockout mice (BALB/c-nu, Rag1-/-), especially in BALB/c-nu mice, with a decrease in the secretion of inflammatory cytokines in the renal tissue after LPS injection. LPS injection did not produce the same effect after the knockout of B cells. We found that blocking T cells could alleviate inflammation and renal injury caused by sepsis, providing a promising strategy for controlling renal injury.
Collapse
Affiliation(s)
- Ke Ma
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Liang Luo
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control (Jinan University), Guangzhou Key Laboratory for Germ-free Animals and Microbiota Application, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Meixiang Yang
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control (Jinan University), Guangzhou Key Laboratory for Germ-free Animals and Microbiota Application, School of Medicine, Jinan University, Guangzhou, 510632, China
- The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Yu Meng
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
- Department of Nephrology, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Heyuan, 517000, China
| |
Collapse
|
5
|
Szczepan M, Llorián-Salvador M, Chen M, Xu H. Immune Cells in Subretinal Wound Healing and Fibrosis. Front Cell Neurosci 2022; 16:916719. [PMID: 35755781 PMCID: PMC9226489 DOI: 10.3389/fncel.2022.916719] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
The subretinal space is devoid of any immune cells under normal conditions and is an immune privileged site. When photoreceptors and/or retinal pigment epithelial cells suffer from an injury, a wound healing process will be initiated. Retinal microglia and the complement system, as the first line of retinal defense, are activated to participate in the wound healing process. If the injury is severe or persists for a prolonged period, they may fail to heal the damage and circulating immune cells will be summoned leading to chronic inflammation and abnormal wound healing, i.e., subretinal or intraretinal fibrosis, a sight-threatening condition frequently observed in rhematogenous retinal detachment, age-related macular degeneration and recurrent uveoretinitis. Here, we discussed the principles of subretinal wound healing with a strong focus on the conditions whereby the damage is beyond the healing capacity of the retinal defense system and highlighted the roles of circulating immune cells in subretinal wound healing and fibrosis.
Collapse
Affiliation(s)
- Manon Szczepan
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - María Llorián-Salvador
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Mei Chen
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Heping Xu
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom,Aier Institute of Optometry and Vision Science, Changsha, China,*Correspondence: Heping Xu,
| |
Collapse
|
6
|
Kyriakides TR, Kim HJ, Zheng C, Harkins L, Tao W, Deschenes E. Foreign body response to synthetic polymer biomaterials and the role of adaptive immunity. Biomed Mater 2022; 17:10.1088/1748-605X/ac5574. [PMID: 35168213 PMCID: PMC9159526 DOI: 10.1088/1748-605x/ac5574] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/15/2022] [Indexed: 02/06/2023]
Abstract
Implanted biomaterials elicit a series of distinct immune and repair-like responses that are collectively known as the foreign body reaction (FBR). These include processes involving innate immune inflammatory cells and wound repair cells that contribute to the encapsulation of biomaterials with a dense collagenous and largely avascular capsule. Numerous studies have shown that the early phase is dominated by macrophages that fuse to form foreign body giant cells that are considered a hallmark of the FBR. With the advent of more precise cell characterization techniques, specific macrophage subsets have been identified and linked to more or less favorable outcomes. Moreover, studies comparing synthetic- and natural-based polymer biomaterials have allowed the identification of macrophage subtypes that distinguish between fibrotic and regenerative responses. More recently, cells associated with adaptive immunity have been shown to participate in the FBR to synthetic polymers. This suggests the existence of cross-talk between innate and adaptive immune cells that depends on the nature of the implants. However, the exact participation of adaptive immune cells, such as T and B cells, remains unclear. In fact, contradictory studies suggest either the independence or dependence of the FBR on these cells. Here, we review the evidence for the involvement of adaptive immunity in the FBR to synthetic polymers with a focus on cellular and molecular components. In addition, we examine the possibility that such biomaterials induce specific antibody responses resulting in the engagement of adaptive immune cells.
Collapse
Affiliation(s)
- Themis R. Kyriakides
- Department of Biomedical Engineering, Yale University. New Haven CT 06405,Department of Pathology, Yale University. New Haven CT 06405,Vascular Biology and Therapeutics Program. Yale University. New Haven CT 06405
| | - Hyun-Je Kim
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Christy Zheng
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Lauren Harkins
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Wanyun Tao
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Emily Deschenes
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| |
Collapse
|
7
|
Characterization of innate and adaptive immune cells involved in the foreign body reaction to polypropylene meshes in the human abdomen. Hernia 2021; 26:309-323. [PMID: 33788008 PMCID: PMC8881270 DOI: 10.1007/s10029-021-02396-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 12/25/2022]
Abstract
Background Polypropylene (PP) mesh is widely used to reinforce tissues. The foreign body reaction (FBR) to the implant is dominated by innate immune cells, especially macrophages. However, considerable numbers of adaptive immune cells, namely T cells, have also been regularly observed, which appear to play a crucial role in the long-term host response. Methods This study investigated the FBR to seven human PP meshes, which were removed from the abdomen for recurrence after a median of one year. Using immunofluorescence microscopy, the FBR was examined for various innate (CD11b+ myeloid, CD68+ macrophages, CD56+ NK) and adaptive immune cells (CD3+ T, CD4+ T-helper, CD8+ cytotoxic, FoxP3+ T-regulatory, CD20+ B) as well as “conventional” immune cells (defined as cells expressing their specific immune cell marker without co-expressing CD68). Results T-helper cells (19%) and regulatory T-cells (25%) were present at comparable rates to macrophages, and clustered significantly toward the mesh fibers. For all cell types the lowest proportions of “conventional” cells (< 60%) were observed at the mesh–tissue interface, but increased considerably at about 50–100 µm, indicating reduced stimulation with rising distance to the mesh fibers. Conclusion Both innate and adaptive immune cells participate in the chronic FBR to PP meshes with T cells and macrophages being the predominant cell types, respectively. In concordance with the previous data, many cells presented a “hybrid” pattern near the mesh fibers. The complexity of the immune reaction seen within the foreign body granuloma may explain why approaches focusing on specific cell types have not been very successful in reducing the chronic FBR. Supplementary Information The online version contains supplementary material available at 10.1007/s10029-021-02396-7.
Collapse
|
8
|
Dellepiane S, Leventhal JS, Cravedi P. T Cells and Acute Kidney Injury: A Two-Way Relationship. Front Immunol 2020; 11:1546. [PMID: 32765535 PMCID: PMC7379378 DOI: 10.3389/fimmu.2020.01546] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/11/2020] [Indexed: 12/29/2022] Open
Abstract
Acute Kidney Injury (AKI) complicates up to 10% of hospital admissions substantially increasing patient morbidity and mortality. Experimental evidence supports that AKI initiation and maintenance results from immune-mediated damage. Exogenous injury sources directly damage renal cells which produce pro-inflammatory mediators recruiting immune cells and furthering kidney injury. Many AKI studies focus on activation of innate immunity; major components include complement pathways, neutrophils, and monocytes. Recently, growing evidence emphasizes T lymphocytes role in affecting AKI pathogenesis and magnitude. In particular, T helper 17 lymphocytes enhance tissue injury by recruiting neutrophils and other inflammatory cells, while regulatory T cells conversely reduce renal injury and facilitate repair. Intriguingly, evidence supports local parenchymal-T cell interactions as essential to producing T cell phenotypic changes affecting long-term kidney and patient survival. Herein, we review T cells effects on AKI and patient outcomes and discuss related new therapeutic approaches to improve outcomes of affected individuals.
Collapse
Affiliation(s)
- Sergio Dellepiane
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jeremy S Leventhal
- Division of Nephrology, White Plains Hospital, White Plains, NY, United States
| | - Paolo Cravedi
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
9
|
Karaköse S, Bal AZ, Eser EP, Duranay M. The effect of rituximab on encapsulated peritoneal sclerosis in an experimental rat model. Turk J Med Sci 2020; 50:1123-1130. [PMID: 32151122 PMCID: PMC7379417 DOI: 10.3906/sag-1911-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/08/2020] [Indexed: 11/20/2022] Open
Abstract
Background/aim Peritoneal sclerosis may be observed in varied manifestations. However, the most serious form is the encapsulated peritoneal sclerosis. We researched the effect of rituximab on peritoneal fibrosis in an experimental rat model. Materials and methods Twenty-four Wistar Albino rats were divided into 4 equal groups. During weeks 0–3; group I received isotonic saline (IS) solution, group II, group III, and group IV received chlorhexidine gluconate (CG) via intraperitoneal (i.p.) route. In the next 3 weeks nothing adminestred to both group I and group II but IS solution was adminestred to group III via i.p. route and 375 mg/m2/week rituximab was applied intravenously on days 21, 28, and 35 to group IV. Fibrosis, peritoneal thickness, and inflammation were evaluated. Immunohistochemical methods used for the detection of matrix MMP-2, TGF-β1, and VGEF expressions. Results The rituximab (group IV) had significantly lower fibrosis and peritoneal thickness scores than the group II and III (P < 0.001). TGF-β1 and VEGF expressions were significantly lower in the rituximab group than in the group II and III (P < 0.001).Conclusion: We found that rituximab had a significant effect on the peritoneal thickness, total fibrosis, TGF-β1 and VGEF scores which were induced by CG.
Collapse
Affiliation(s)
- Süleyman Karaköse
- Department of Nephrology, Konya Training and Research Hospital, Konya, Turkey
| | - Ayşe Zeynep Bal
- Department of Nephrology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Eylem Pinar Eser
- Department of Pathology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Murat Duranay
- Department of Nephrology, Ankara Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
10
|
Wang W, Wang X, Zhang XS, Liang CZ. Cryptotanshinone Attenuates Oxidative Stress and Inflammation through the Regulation of Nrf-2 and NF-κB in Mice with Unilateral Ureteral Obstruction. Basic Clin Pharmacol Toxicol 2018; 123:714-720. [PMID: 29972887 DOI: 10.1111/bcpt.13091] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022]
Abstract
Oxidative stress and inflammatory responses are closely implicated in the progression of renal interstitial fibrosis, thereby leading to chronic kidney disease. Cryptotanshinone (CTS) is a natural compound involved in antioxidant and anti-inflammatory activities. We evaluated the effects of CTS on inflammation and oxidative stress in obstructed kidneys. Mice received gastric gavage of CTS from 7 days before unilateral ureteral obstruction operation to 1 week after surgery. Administration of CTS at 50 and 100 mg/kg/day significantly decreased collagen production, as shown by Masson staining. Immunohistochemistry staining and RT-PCR confirmed that CTS reduced extracellular matrix proteins, such as fibronectin and collagen-1, in the obstructed kidneys in a dose-dependent manner. Furthermore, immunohistochemistry staining indicated that CTS inhibited infiltration of the macrophage (CD68-positive) and lymphocyte (CD3-positive) cells, which were associated with the suppression of the nuclear factor-κB signalling activation. CTS increased superoxide dismutase, catalase and glutathione while decreased malondialdehyde production. More importantly, CTS activated Nrf-2 and HO-1 in the obstructed kidneys for 7 days. CTS could protect renal interstitial fibrosis by ameliorating inflammation and oxidative stress, which might be through the regulation of NF-κB and Nrf-2/HO-1 signalling pathways.
Collapse
Affiliation(s)
- Wei Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Xiao Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Institute of Urology, Anhui Medical University, Hefei, Anhui, China.,Department of Urology, Renmin Hospital of Fuyang City, Yin Zhou District, Fuyang, Anhui, China
| | - Xian-Sheng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Chao-Zhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
11
|
Yoshizaki A. Pathogenic roles of B lymphocytes in systemic sclerosis. Immunol Lett 2018; 195:76-82. [PMID: 29307688 DOI: 10.1016/j.imlet.2018.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 12/31/2022]
Abstract
Systemic sclerosis (SSc) is a collagen disease characterized by autoimmunity and excessive extracellular matrix deposition in the skin and visceral organs. Although the pathogenic relationship between systemic autoimmunity and the clinical manifestations of SSc remains unknown, SSc patients show a variety of abnormal immune activation including the production of disease-specific autoantibodies and cytokine production. Many recent studies have demonstrated that immune cells, including T cells, B cells, and macrophages, have a variety of immunological abnormalities in SSc. So far, several groups and our group reported that B cells play a critical role in systemic autoimmunity and disease expression through various functions, such as cytokine production, lymphoid organogenesis, and induction of other immune cell activation in addition to autoantibody production. Recent studies show that B cells from SSc patients demonstrate an up-regulated CD19 expression, a crucial regulator of B cell activation, which induces chronic hyper-reactivity of memory B cells and SSc-specific autoantibody production and also causes fibrosis of several organs. Furthermore, in SSc-model mice, such as tight-skin mice, bleomycin-induced SSc model mice, and DNA topoisomerase I and complete Freund's adjuvant-induced SSc model mice, have abnormal B cell activation which associates with skin and lung fibrosis. Indeed, B cell depletion therapy using anti-CD20 Ab, Rituximab, is considered to one potential beneficial treatment for patients with SSc. However, there is no direct evidence which can explain how B cells, especially autoantigen-reactive B cells, progress or regulate disease manifestations of SSc. Collectively, B cell abnormalities in SSc is most likely participating in fibrosis and tissue damage of SSc. If the relationship between SSc-specific tissue damage and B cell abnormalities is revealed, these findings lead to novel effective therapy for SSc.
Collapse
Affiliation(s)
- Ayumi Yoshizaki
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, 113-8655, Japan.
| |
Collapse
|