1
|
Muttiah B, Ng SL, Lokanathan Y, Ng MH, Law JX. Extracellular Vesicles in Breast Cancer: From Intercellular Communication to Therapeutic Opportunities. Pharmaceutics 2024; 16:654. [PMID: 38794316 PMCID: PMC11125876 DOI: 10.3390/pharmaceutics16050654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Breast cancer, a multifaceted and heterogeneous disease, poses significant challenges in terms of understanding its intricate resistance mechanisms and devising effective therapeutic strategies. This review provides a comprehensive overview of the intricate landscape of extracellular vesicles (EVs) in the context of breast cancer, highlighting their diverse subtypes, biogenesis, and roles in intercellular communication within the tumour microenvironment (TME). The discussion spans various aspects, from EVs and stromal cells in breast cancer to their influence on angiogenesis, immune response, and chemoresistance. The impact of EV production in different culture systems, including two dimensional (2D), three dimensional (3D), and organoid models, is explored. Furthermore, this review delves into the therapeutic potential of EVs in breast cancer, presenting emerging strategies such as engineered EVs for gene delivery, nanoplatforms for targeted chemotherapy, and disrupting tumour derived EVs as a treatment approach. Understanding these complex interactions of EV within the breast cancer milieu is crucial for identifying resistance mechanisms and developing new therapeutic targets.
Collapse
Affiliation(s)
- Barathan Muttiah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| |
Collapse
|
2
|
Mlinarić M, Lučić I, Milković L, da Silva IV, Tartaro Bujak I, Musani V, Soveral G, Čipak Gašparović A. AQP3-Dependent PI3K/Akt Modulation in Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24098133. [PMID: 37175840 PMCID: PMC10179317 DOI: 10.3390/ijms24098133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Aquaporin 3 (AQP3) is a peroxiporin, a membrane protein that channels hydrogen peroxide in addition to water and glycerol. AQP3 expression also correlates with tumor progression and malignancy and is, therefore, a potential target in breast cancer therapy. In addition, epithelial growth factor receptor (EGFR) plays an important role in breast cancer. Therefore, we investigated whether disruption of the lipid raft harboring EGFR could affect AQP3 expression, and conversely, whether AQP3 silencing would affect the EGFR/phosphoinositide-3-kinase (PI3K)/Protein kinase B (PKB or Akt) signaling pathway in breast cancer cell lines with different malignant capacities. We evaluated H2O2 uptake, cell migratory capacity, and expression of PI3K, pAkt/Akt in three breast cancer cell lines, MCF7, SkBr3, and SUM159PT, and in the nontumorigenic breast epithelial cell line MCF10A. Our results show different responses between the tested cell lines, especially when compared to the nontumorigenic cell line. Neither lipid raft disruption nor EGF stimuli had an effect on PI3K/Akt pathway in MCF10A cell line. AQP3-silencing in SkBr3 and SUM159PT showed that AQP3 can modulate PI3K/Akt activation in these cells. Interestingly, SUM159PT cells increase nuclear factor-E2-related factor 2 (NRF2) in response to lipid raft disruption and EGF stimuli, suggesting an oxidative-dependent response to these treatments. These results suggest that in breast cancer cell lines, AQP3 is not directly related to PI3K/Akt pathway but rather in a cell-line-dependent manner.
Collapse
Affiliation(s)
- Monika Mlinarić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ivan Lučić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Lidija Milković
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Inês V da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Ivana Tartaro Bujak
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Vesna Musani
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | | |
Collapse
|
3
|
Loric S, Denis JA, Desbene C, Sabbah M, Conti M. Extracellular Vesicles in Breast Cancer: From Biology and Function to Clinical Diagnosis and Therapeutic Management. Int J Mol Sci 2023; 24:7208. [PMID: 37108371 PMCID: PMC10139222 DOI: 10.3390/ijms24087208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer (BC) is the first worldwide most frequent cancer in both sexes and the most commonly diagnosed in females. Although BC mortality has been thoroughly declining over the past decades, there are still considerable differences between women diagnosed with early BC and when metastatic BC is diagnosed. BC treatment choice is widely dependent on precise histological and molecular characterization. However, recurrence or distant metastasis still occurs even with the most recent efficient therapies. Thus, a better understanding of the different factors underlying tumor escape is mainly mandatory. Among the leading candidates is the continuous interplay between tumor cells and their microenvironment, where extracellular vesicles play a significant role. Among extracellular vesicles, smaller ones, also called exosomes, can carry biomolecules, such as lipids, proteins, and nucleic acids, and generate signal transmission through an intercellular transfer of their content. This mechanism allows tumor cells to recruit and modify the adjacent and systemic microenvironment to support further invasion and dissemination. By reciprocity, stromal cells can also use exosomes to profoundly modify tumor cell behavior. This review intends to cover the most recent literature on the role of extracellular vesicle production in normal and cancerous breast tissues. Specific attention is paid to the use of extracellular vesicles for early BC diagnosis, follow-up, and prognosis because exosomes are actually under the spotlight of researchers as a high-potential source of liquid biopsies. Extracellular vesicles in BC treatment as new targets for therapy or efficient nanovectors to drive drug delivery are also summarized.
Collapse
Affiliation(s)
- Sylvain Loric
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | | | - Cédric Desbene
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Michèle Sabbah
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Marc Conti
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
- INTEGRACELL SAS, 91160 Longjumeau, France
| |
Collapse
|
4
|
Leal-Orta E, Ramirez-Ricardo J, Garcia-Hernandez A, Cortes-Reynosa P, Salazar EP. Extracellular vesicles from MDA-MB-231 breast cancer cells stimulated with insulin-like growth factor 1 mediate an epithelial-mesenchymal transition process in MCF10A mammary epithelial cells. J Cell Commun Signal 2022; 16:531-546. [PMID: 34309795 PMCID: PMC9733745 DOI: 10.1007/s12079-021-00638-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) plays an important role in function and development of the mammary gland. However, high levels of IGF-1 has been associated with an increased risk of breast cancer development. Epithelial-mesenchymal transition (EMT) is a process where epithelial cells lose their epithelial characteristics and acquire a mesenchymal phenotype, which is considered one of the most important mechanisms in cancer initiation and promotion of metastasis. Extracellular vesicles (EVs) are released into the extracellular space by different cell types, which mediate intercellular communication and play an important role in different physiological and pathological processes, such as cancer. In this study, we demonstrate that EVs from MDA-MB-231 breast cancer cells stimulated with IGF-1 (IGF-1 EVs) decrease the levels of E-cadherin, increase the expression of vimentin and N-cadherin and stimulate the secretion of metalloproteinase-9 in mammary non-tumorigenic epithelial cells MCF10A. IGF-1 EVs also induce the expression of Snail1, Twist1 and Sip1, which are transcription factors involved in EMT. Moreover, IGF-1 EVs induce activation of ERK1/2, Akt1 and Akt2, migration and invasion. In summary, we demonstrate, for the first time, that IGF-1 EVs induce an EMT process in mammary non-tumorigenic epithelial cells MCF10A.
Collapse
Affiliation(s)
- Elizabeth Leal-Orta
- grid.512574.0Departamento de Biologia Celular, Cinvestav-IPN, 07360 Mexico City, Mexico
| | | | | | - Pedro Cortes-Reynosa
- grid.512574.0Departamento de Biologia Celular, Cinvestav-IPN, 07360 Mexico City, Mexico
| | - Eduardo Perez Salazar
- grid.512574.0Departamento de Biologia Celular, Cinvestav-IPN, 07360 Mexico City, Mexico
| |
Collapse
|
5
|
Xavier CPR, Belisario DC, Rebelo R, Assaraf YG, Giovannetti E, Kopecka J, Vasconcelos MH. The role of extracellular vesicles in the transfer of drug resistance competences to cancer cells. Drug Resist Updat 2022; 62:100833. [PMID: 35429792 DOI: 10.1016/j.drup.2022.100833] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/20/2022] [Accepted: 03/13/2022] [Indexed: 02/07/2023]
Abstract
Drug resistance remains a major hurdle to successful cancer treatment, being accountable for approximately 90% of cancer-related deaths. In the past years, increasing attention has been given to the role of extracellular vesicles (EVs) in the horizontal transfer of drug resistance in cancer. Indeed, many studies have described the dissemination of therapy resistance traits mediated by EVs, which may be transferred from drug resistant tumor cells to their drug sensitive counterparts. Importantly, different key players of drug resistance have been identified in the cargo of those EVs, such as drug efflux pumps, oncoproteins, antiapoptotic proteins, or microRNAs, among others. Interestingly, the EVs-mediated crosstalk between cells from the tumor microenvironment (TME) and tumor cells has emerged as another important mechanism that leads to cancer cells drug resistance. Recently, the cargo of the TME-derived EVs responsible for the transfer of drug resistance traits has also become a focus of attention. In addition, the possible mechanisms involved in drug sequestration by EVs, likely to contribute to cancer drug resistance, are also described and discussed herein. Despite the latest scientific advances in the field of EVs, this is still a challenging area of research, particularly in the clinical setting. Therefore, further investigation is needed to assess the relevance of EVs to the failure of cancer patients to drug treatment, to identify biomarkers of drug resistance in the EV's cargo, and to develop effective therapeutic strategies to surmount drug resistance. This up-to-date review summarizes relevant literature on the role of EVs in the transfer of drug resistance competences to cancer cells, and the relevance of tumor cells and of TME cells in this process. Finally, this knowledge is integrated with a discussion of possible future clinical applications of EVs as biomarkers of drug resistance.
Collapse
Affiliation(s)
- Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal.
| | | | - Rita Rebelo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200000, Israel.
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Fondazione Pisana per La Scienza, Pisa, Italy.
| | | | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy of the University of Porto, Porto, Portugal.
| |
Collapse
|
6
|
Garcia-Hernandez A, Leal-Orta E, Ramirez-Ricardo J, Cortes-Reynosa P, Thompson-Bonilla R, Salazar EP. Linoleic acid induces secretion of extracellular vesicles from MDA-MB-231 breast cancer cells that mediate cellular processes involved with angiogenesis in HUVECs. Prostaglandins Other Lipid Mediat 2021; 153:106519. [PMID: 33238201 DOI: 10.1016/j.prostaglandins.2020.106519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) are vesicles secreted by normal and malignant cells that are implicated in tumor progression. Linoleic acid (LA) is an essential polyunsaturated fatty acid that induces migration, invasion and an increase in phospholipase D activity in breast cancer cells. In this study, we determined whether stimulation of MDA-MB-231 breast cancer cells with LA induces the secretion of EVs, which can mediate cell processes related with angiogenesis in human umbilical vein endothelial cells (HUVECs). Our findings demonstrate that treatment of MDA-MB-231 cells with 90 μM LA for 48 h induce an increase in the number of EVs released. Moreover, EVs from MDA-MB-231 stimulated with 90 μM LA induce FAK and Src activation and migration via FAK and Src activity, whereas the secretion of these EVs is through FFAR1 and FFAR4 activation in HUVECs. The EVs from MDA-MB-231 cells treated with LA also increase proliferation, invasion, MMP-9 secretion, an increase of MMP-2 secretion and formation of new tubules in HUVECs. In summary, we demonstrate, for the first time, that treatment with LA induces the release of EVs from MDA-MB-231 cells that induce cellular processes involved with angiogenesis in HUVECs.
Collapse
|
7
|
Ramirez-Ricardo J, Leal-Orta E, Garcia-Hernandez A, Diaz-Aragon R, Cortes-Reynosa P, Thompson-Bonilla R, Salazar EP. Role of Src/FAK in migration and invasion mediated by extracellular vesicles from MDA-MB-231 cells stimulated with linoleic acid. Med Oncol 2021; 38:40. [PMID: 33728516 DOI: 10.1007/s12032-021-01485-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/24/2021] [Indexed: 12/24/2022]
Abstract
Linoleic acid (LA) is the most abundant polyunsaturated fatty acid in occidental diets, which mediate a variety of processes in human breast cancer cells, including migration and invasion. Extracellular vesicles (EVs) are vesicles released from endosomes and plasma membrane that are composed of a variety of molecules, including proteins, nucleic acids and lipids. EVs from cancer cells promote processes related with cancer progression. In the present study, we demonstrate that treatment of MDA-MB-231 cells with EVs from MDA-MB-231 cells stimulated with LA (LA EVs) promote migration and invasion via Src activity. LA EVs induce activation of FAK via Src activity and of Src and Akt2. LA EVs also induce the assembly of focal adhesions and MMP-9 secretion. These findings demonstrate that LA EVs mediate an autocrine and/or paracrine Src/FAK signaling pathway to promote migration and invasion.
Collapse
Affiliation(s)
- Javier Ramirez-Ricardo
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Elizabeth Leal-Orta
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | | | - Ricardo Diaz-Aragon
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | | | - Eduardo Perez Salazar
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico.
| |
Collapse
|
8
|
Liu L, Yan J, Cao Y, Yan Y, Shen X, Yu B, Tao L, Wang S. Proliferation, migration and invasion of triple negative breast cancer cells are suppressed by berbamine via the PI3K/Akt/MDM2/p53 and PI3K/Akt/mTOR signaling pathways. Oncol Lett 2020; 21:70. [PMID: 33365081 PMCID: PMC7716707 DOI: 10.3892/ol.2020.12331] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the second most common cause of cancer-associated mortality among women worldwide, and triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Berbamine (BBM) is a traditional Chinese medicine used for the treatment of leukopenia without any obvious side effects. Recent reports found that BBM has anti-cancer effects. The present study aimed to investigate the effects of BBM on TNBC cell lines and the underlying molecular mechanism. MDA-MB-231 cells and MCF-7 cells, two TNBC cell lines, were treated with various concentrations of BBM. A series of bioassays including MTT, colony formation, EdU staining, apoptosis, trypan blue dye, wound healing, transwell, ELISA and western blotting assays were performed. The results showed that BBM significantly inhibited cell proliferation of MDA-MB-231 cells (P<0.05; IC50=22.72 µM) and MCF-7 cells (P<0.05; IC50=20.92 µM). BBM (20 µM) decreased the apoptosis ratio (percentage of absorbance compared with the control group) by 28.4±3.3% (P<0.05) in MDA-MB-231 cells, and 62.4±24.6% (P<0.05) in MCF-7 cells. In addition, BBM inhibited cell migration and invasion of TNBC cells. Furthermore, the expression levels of PI3K, phosphorylated-Akt/Akt, COX-2, LOX, MDM2 and mTOR were downregulated by BBM, and the expression of p53 was upregulated by BBM. These results indicated that BBM may suppress the development of TNBC via regulation of the PI3K/Akt/MDM2/p53 and PI3K/Akt/mTOR signal pathways. Therefore, BBM might be used as a drug candidate for the treatment of TNBC in the future.
Collapse
Affiliation(s)
- Lili Liu
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Jiadong Yan
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Ying Cao
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Yan Yan
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Xiang Shen
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Binbin Yu
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Li Tao
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Shusheng Wang
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| |
Collapse
|
9
|
Wang L, He M, Fu L, Jin Y. Exosomal release of microRNA-454 by breast cancer cells sustains biological properties of cancer stem cells via the PRRT2/Wnt axis in ovarian cancer. Life Sci 2020; 257:118024. [PMID: 32598931 DOI: 10.1016/j.lfs.2020.118024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022]
Abstract
AIMS Cancer-derived exosomes carrying tumor-derived molecules such as miRNAs and proteins related to various phenotypes have been detected in both the bloodstream and other biofluids of patients with different cancers. Thus, our main purpose here was to determine the role of the exosomal microRNA-454 (miR-454) derived by MDA-MB-231 in self-renewal of cancer stem cells (CSCs) in ovarian cancer (OC). MATERIALS AND METHODS Extraction of MDA-MB-231 cells-derived exosomes (231-derived exosomes) was conducted to treat CD44+/CD133+ SKOV3 and CoC1 cells to observe cell growth and stemness. Next, the differentially expressed miRNAs in SKOV3 cells after exosome treatment were filtered using microarray analysis. Subsequently, the cell viability was detected after reducing the exosomal miR-454 and the addition of a Wnt pathway inhibitor C59. Finally, the pro-tumorigenic function of exosomes on OC cells in vivo was investigated. KEY FINDINGS After co-culture with 231-derived exosomes, the stemness of CSCs were promoted. Subsequently, the reduction of exosomal miR-454 weakened the roles of exosomes on cell stemness. Proline-rich transmembrane protein 2 (PRRT2) was substantiated as a target gene of miR-454 in SKOV3 and CoC1 cells. C59 reversed the repressive role of exosomes in stemness of CSCs. When being evaluated in a mouse model, exosomal miR-454 led to an efficacious effect in suppressing the tumor weight and volume in vivo. SIGNIFICANCE Altogether, 231-derived exosomes carrying miR-454 disrupted the Wnt pathway by targeting PRRT2, thereby promoting CSC stemness in vitro and OC cell growth in vivo.
Collapse
Affiliation(s)
- Ling Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin, PR China
| | - Miao He
- Department of Anesthesia, The Second Hospital of Jilin University, Changchun 130041, Jilin, PR China
| | - Li Fu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin, PR China
| | - Yuemei Jin
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin, PR China.
| |
Collapse
|
10
|
Ma Y, Wang J, Li Q, Cao B. The Effect of Omega-3 Polyunsaturated Fatty Acid Supplementations on anti-Tumor Drugs in Triple Negative Breast Cancer. Nutr Cancer 2020; 73:196-205. [PMID: 32223441 DOI: 10.1080/01635581.2020.1743873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Triple-negative breast cancer (TNBC) comprises about 10-20% of all diagnosed breast cancers. Increasing evidence shows that the omega-3 polyunsaturated fatty acids (ω-3PUFAs), docosahexaenoic acid and eicosapentaenoic acid, can influence the development, progression, and prognosis of TNBC In Vivo and In Vitro; however, clinical evidence supporting the effect of ω-3PUFAs on TNBC is lacking. Research has demonstrated that ω-3PUFAs can induce apoptosis in breast cancer cells by inhibiting the PI3K/AKT signal transduction pathway, and that ω-3PUFAs can improve the effectiveness of chemotherapy drugs. Using ω-3PUFA supplementation in addition to pharmacotherapy in the treatment of breast cancer may result in enhanced anti-tumor effects that will be particularly applicable to difficult to treat phenotypes such as TNBC. The aim of the current review was to summarize the evidence-base supporting the antitumor effects of omega-3 PUFAs in TNBC.
Collapse
Affiliation(s)
- Yingjie Ma
- Department of Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Jing Wang
- Department of Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Qin Li
- Department of Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Bangwei Cao
- Department of Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
11
|
Hinz N, Jücker M. Distinct functions of AKT isoforms in breast cancer: a comprehensive review. Cell Commun Signal 2019; 17:154. [PMID: 31752925 PMCID: PMC6873690 DOI: 10.1186/s12964-019-0450-3] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AKT, also known as protein kinase B, is a key element of the PI3K/AKT signaling pathway. Moreover, AKT regulates the hallmarks of cancer, e.g. tumor growth, survival and invasiveness of tumor cells. After AKT was discovered in the early 1990s, further studies revealed that there are three different AKT isoforms, namely AKT1, AKT2 and AKT3. Despite their high similarity of 80%, the distinct AKT isoforms exert non-redundant, partly even opposing effects under physiological and pathological conditions. Breast cancer as the most common cancer entity in women, frequently shows alterations of the PI3K/AKT signaling. MAIN CONTENT A plethora of studies addressed the impact of AKT isoforms on tumor growth, metastasis and angiogenesis of breast cancer as well as on therapy response and overall survival in patients. Therefore, this review aimed to give a comprehensive overview about the isoform-specific effects of AKT in breast cancer and to summarize known downstream and upstream mechanisms. Taking account of conflicting findings among the studies, the majority of the studies reported a tumor initiating role of AKT1, whereas AKT2 is mainly responsible for tumor progression and metastasis. In detail, AKT1 increases cell proliferation through cell cycle proteins like p21, p27 and cyclin D1 and impairs apoptosis e.g. via p53. On the downside AKT1 decreases migration of breast cancer cells, for instance by regulating TSC2, palladin and EMT-proteins. However, AKT2 promotes migration and invasion most notably through regulation of β-integrins, EMT-proteins and F-actin. Whilst AKT3 is associated with a negative ER-status, findings about the role of AKT3 in regulation of the key properties of breast cancer are sparse. Accordingly, AKT1 is mutated and AKT2 is amplified in some cases of breast cancer and AKT isoforms are associated with overall survival and therapy response in an isoform-specific manner. CONCLUSIONS Although there are several discussed hypotheses how isoform specificity is achieved, the mechanisms behind the isoform-specific effects remain mostly unrevealed. As a consequence, further effort is necessary to achieve deeper insights into an isoform-specific AKT signaling in breast cancer and the mechanism behind it.
Collapse
Affiliation(s)
- Nico Hinz
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|