1
|
Singh B, Kumar N, Yadav A, Rohan, Bhandari K. Harnessing the Power of Bacteriocins: A Comprehensive Review on Sources, Mechanisms, and Applications in Food Preservation and Safety. Curr Microbiol 2025; 82:174. [PMID: 40053112 DOI: 10.1007/s00284-025-04155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
The Sustainable Development Goals (SDGs) emphasize the importance of food safety, prolonged shelf life, and reduced food waste, all of which rely on effective food preservation methods. Bacteriocins, natural antimicrobial substances produced by lactic acid bacteria (LAB), have potential applications in food preservation. This review highlights the role of LAB-derived bacteriocins in preserving food. Bacteriocins are highly effective against foodborne infections because they target cell membranes, break down enzymes, and interfere with cellular activities. The following study used molecular docking to understand the interaction of bacteriocins and their mode of action. With their natural origin and specific action, bacteriocins offer a promising strategy for preventing foodborne diseases and extending shelf life without impacting sensory characteristics. However, challenges such as stable manufacturing, regulatory hurdles, and cost effectiveness hinder the wide adoption of bacteriocins. Nevertheless, LAB-derived bacteriocins offer a safe and efficient approach to improving food preservation, enhancing food safety, and reducing reliance on artificial preservatives. Moreover, immobilized bacteriocins have the potential to be integrated into antimicrobial packaging films, providing a targeted way to reduce the risk of foodborne pathogen contamination and improve food safety. Exploring novel bacteriocins presents exciting opportunities for advancing food preservation and safety. The present study also highlights recent advancements in food preservation through bacteriocins.
Collapse
Affiliation(s)
- Bharmjeet Singh
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Nishant Kumar
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Aman Yadav
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Rohan
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Kriti Bhandari
- Department of Biotechnology, Delhi Technological University, New Delhi, India.
| |
Collapse
|
2
|
Kurnianto MA, Adesina PA, Rini DM. Potential and application of tandem mass spectrometry (MS/MS) in the analysis and identification of novel bacteriocins: a review. Int J Food Sci Technol 2024; 59:8943-8960. [DOI: 10.1111/ijfs.17601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 08/28/2024] [Indexed: 01/21/2025]
Abstract
Abstract
Bacteriocins are antimicrobial peptides synthesised ribosomally by Gram-positive or Gram-negative bacteria to gain a competitive advantage. The majority of bacteriocins are derived from Gram-positive bacteria, with lactic acid bacteria being the most common source. Because they are considered ‘natural’, there is currently significant development of bacteriocins for application as food preservative agents. As a preservative agent, bacteriocin activity is highly dependent on purity, down to the amino acid profile and sequence. Therefore, bacteriocin identification is important. Currently, MS is a cutting-edge tool in bacteriocin identification. This method has high selectivity, sensitivity and resolution. To the best of our knowledge, systematic reviews focusing on the application of MS for bacteriocin identification are currently limited. In light of this, the objective of this study is to provide a comprehensive review and summary of MS technologies in bacteriocin research, with a particular focus on the discovery and characterisation of novel sources of bacteriocin. Additionally, studies related to the discovery of bacteriocins from various sources, their role as antimicrobial agents, and their synthesis are emphasised. Thus, this study presents a comprehensive analysis of the advantages, limitations, and future perspectives of the methods employed.
Collapse
Affiliation(s)
- Muhammad Alfid Kurnianto
- Department of Food Technology, Faculty of Engineering, Universitas Pembangunan Nasional Veteran Jawa Timur , Surabaya, 60294 ,
- Innovation Center of Appropriate Food Technology for Lowland and Coastal Area, Universitas Pembangunan Nasional Veteran Jawa Timur , Surabaya, 60294 ,
| | - Precious Adedayo Adesina
- National Center for Advancing Translational Sciences, Division for Pre-Clinical Innovation, National Institutes of Health , Bethesda, Maryland, 20892-4874 ,
| | - Dina Mustika Rini
- Department of Food Technology, Faculty of Engineering, Universitas Pembangunan Nasional Veteran Jawa Timur , Surabaya, 60294 ,
- Innovation Center of Appropriate Food Technology for Lowland and Coastal Area, Universitas Pembangunan Nasional Veteran Jawa Timur , Surabaya, 60294 ,
| |
Collapse
|
3
|
Todorov SD, Wachsman M, Tomé E, Vaz-Velho M, Ivanova IV. Plasmid-Associated Bacteriocin Produced by Pediococcus pentosaceus Isolated from Smoked Salmon: Partial Characterization and Some Aspects of his Mode of Action. Probiotics Antimicrob Proteins 2024; 16:394-412. [PMID: 36928486 DOI: 10.1007/s12602-023-10059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
Strain ST3Ha, isolated from commercially available smoked salmon, was identified as Pediococcus pentosaceus based on biochemical and physiological tests and 16S rRNA sequencing. Strain ST3Ha produces a class IIa bacteriocin active against lactic acid bacteria, Listeria monocytogenes and Enterococcus faecalis. The antimicrobial peptide was inactivated by proteolytic enzymes, confirming his proteinaceous nature, but was not affected when treated with α-amylase, SDS, Tween 20, Tween 80, urea, and EDTA. No change in activity was recorded after 2 h at pH values between 2.0 and 9.0 and after treatment at 100 °C for 120 min or 121 °C for 15 min. The mode of action against Listeria ivanovii subsp. ivanovii ATCC 19119 and E. faecalis ATCC 19443 was bactericidal, resulting in cell lyses and enzyme leakage. The highest level of activity (1.6 × 106 AU/mL) was recorded when cells were grown at 37 °C or 30 °C in MRS broth (pH 6.5). Antimicrobial peptide ST3Ha adsorbs at high levels to the sensitive test organisms on strain-specific manner and depending on incubation temperature, environmental pH, and presence of supplemented chemicals. Based on PCR analysis, P. pentosaceus ST3Ha harbor a 1044-bp plasmid-associated fragment corresponding in size to that recorded for pediocin PA-1. Sequencing of the fragment revealed a gene identical to pedB, reported for pediocin PA-1. The combined application of the low levels (below MIC) of ciprofloxacin and bacteriocin ST3Ha results in the synergetic effect in the inhibition of L. ivanovii subsp. ivanovii ATCC 19119. Expressed by P. pentosaceus ST3Ha, bacteriocin was characterized as low cytotoxic, a characteristic relevant for its application in food industry and/or in human and veterinary medical practices.
Collapse
Affiliation(s)
- Svetoslav Dimitrov Todorov
- ProBacLab, Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea.
- ProBacLab, Laboratório de Microbiologia de Alimentos, Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Nutrição Experimental, Universidade de São Paulo, SP, São Paulo, Brazil.
- CISAS-Center for Research and Development in Agrifood Systems and Sustainability, Escola Superior de Tecnologia E Gestão, Instituto Politécnico de Viana Do Castelo, Viana Do Castelo, Portugal.
- Faculty of Biology, Department of General and Applied Microbiology, Sofia University St. Kliment Ohridski, 8 Dragan Tzankov Blvd, 1164, Sofia, Bulgaria.
| | - Monica Wachsman
- Laboratorio de Virología, Facultad de Ciencias Exactas Y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 2, Piso 4, C1428EGA, Buenos Aires, Argentina
| | - Elisabetta Tomé
- Tecnologia de Alimentos, Universidad Metropolitana, Caracas, Venezuela
| | - Manuela Vaz-Velho
- CISAS-Center for Research and Development in Agrifood Systems and Sustainability, Escola Superior de Tecnologia E Gestão, Instituto Politécnico de Viana Do Castelo, Viana Do Castelo, Portugal
| | - Iskra Vitanova Ivanova
- Faculty of Biology, Department of General and Applied Microbiology, Sofia University St. Kliment Ohridski, 8 Dragan Tzankov Blvd, 1164, Sofia, Bulgaria
| |
Collapse
|
4
|
Sengkhui S, Klubthawee N, Aunpad R. A novel designed membrane-active peptide for the control of foodborne Salmonella enterica serovar Typhimurium. Sci Rep 2023; 13:3507. [PMID: 36864083 PMCID: PMC9981719 DOI: 10.1038/s41598-023-30427-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
The main cause of non-typhoidal Salmonella (NTS) infection in humans is ingestion of contaminated animal-derived foods such as eggs, poultry and dairy products. These infections highlight the need to develop new preservatives to increase food safety. Antimicrobial peptides (AMPs) have the potential to be further developed as food preservative agents and join nisin, the only AMP currently approved, for use as a preservative in food. Acidocin J1132β, a bacteriocin produced by probiotic Lactobacillus acidophilus, displays no toxicity to humans, however it exhibits only low and narrow-spectrum antimicrobial activity. Accordingly, four peptide derivatives (A5, A6, A9, and A11) were modified from acidocin J1132β by truncation and amino acid substitution. Among them, A11 showed the most antimicrobial activity, especially against S. Typhimurium, as well as a favorable safety profile. It tended to form an α-helix structure upon encountering negatively charged-mimicking environments. A11 caused transient membrane permeabilization and killed bacterial cells through membrane depolarization and/or intracellular interactions with bacterial DNA. A11 maintained most of its inhibitory effects when heated, even when exposed to temperatures up to 100 °C. Notably, it inhibited drug-resistant S. Typhimurium and its monophasic variant strains. Furthermore, the combination of A11 and nisin was synergistic against drug-resistant strains in vitro. Taken together, this study indicated that a novel antimicrobial peptide derivative (A11), modified from acidocin J1132β, has the potential to be a bio-preservative to control S. Typhimurium contamination in the food industry.
Collapse
Affiliation(s)
- Siriwan Sengkhui
- grid.412434.40000 0004 1937 1127Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand
| | - Natthaporn Klubthawee
- grid.444093.e0000 0004 0398 9950Department of Medical Technology, Faculty of Allied Health Sciences, Pathumthani University, Pathum Thani, Thailand
| | - Ratchaneewan Aunpad
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand.
| |
Collapse
|
5
|
Biki SP, Mahmud S, Akhter S, Rahman MH, Ahmed M. Bacteriocin production by
Lactococcus lactis
LL‐HSTU‐FPP
strain isolated from fermented rice and evaluation of the biopreservation potentiality of bacteriocin on shrimp. J Food Saf 2023. [DOI: 10.1111/jfs.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Suchi Parvin Biki
- Department of Food Processing and Preservation Hajee Mohammad Danesh Science & Technology University Dinajpur Bangladesh
| | - Shobuz Mahmud
- Department of Food Processing and Preservation Hajee Mohammad Danesh Science & Technology University Dinajpur Bangladesh
| | - Sumaia Akhter
- Department of Food Processing and Preservation Hajee Mohammad Danesh Science & Technology University Dinajpur Bangladesh
| | - Md. Hassanur Rahman
- Department of Horticulture Hajee Mohammad Danesh Science and Technology University Dinajp Bangladesh
| | - Maruf Ahmed
- Department of Food Processing and Preservation Hajee Mohammad Danesh Science & Technology University Dinajpur Bangladesh
| |
Collapse
|
6
|
Bacteriocin Production by Bacillus Species: Isolation, Characterization, and Application. Probiotics Antimicrob Proteins 2022; 14:1151-1169. [PMID: 35881232 DOI: 10.1007/s12602-022-09966-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 12/25/2022]
Abstract
Antibiotic resistance is a problem that has been increasing lately; therefore, it is important to find new alternatives to treat infections induced by pathogens that cannot be eliminated with available products. Small antimicrobial peptides (AMPs) known as bacteriocin could be an alternative to antibiotics because they have shown to be effective against a great number of multidrug-resistant microbes. In addition to its high specificity against microbial pathogens and its low cytotoxicity against human cells, most bacteriocin present tolerance to enzyme degradation and stability to temperature and pH alterations. Bacteriocins are small peptides with a great diversity of structures and functions; however, their mechanisms of action are still not well understood. In this review, bacteriocin produced by Bacillus species will be described, especially its mechanisms of action, culture conditions used to improve its production and state-of-the-art methodologies applied to identify them. Bacteriocin utilization as food preservatives and as new molecules to treat cancer also will be discussed.
Collapse
|
7
|
Anumudu CK, Omoregbe O, Hart A, Miri T, Eze UA, Onyeaka H. Applications of Bacteriocins of Lactic Acid Bacteria in Biotechnology and Food Preservation: A Bibliometric Review. Open Microbiol J 2022. [DOI: 10.2174/18742858-v16-e2206300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction:
Due to the growing prevalence of antibiotic resistance in microorganisms and the demand for safe food, there is increasing interest in using natural bioproducts such as the antimicrobial peptides bacteriocins to extend the shelf-life of foods. This is because of their spectrum of activity, ease of synthesis and applicability. This study reports on the global trends in lactic acid bacteria (LAB) bacteriocins based research publications in the Web of Science core collections within the last 20 years (2000-2019), with specific focus to their applications in biotechnology and food science.
Methods:
Data analysis was undertaken using VOSviewer and HistCite software to evaluate relationships between articles and visualise research linkages amongst authors, institutions and countries.
Results:
In the 20 years under review, a total of 1741 bacteriocin related articles were published, with the most cited publication examining the anti-infective activity of Lactobacillus salivarius. The highest research output was recorded by the United States, followed by Spain and China. However, Europe as a continent had the highest research output with a higher inter-institution collaboration network and stronger food safety legislations.
Discussion:
The bibliometric analysis gave insights into the research areas, cooperation network of authors, co-citation maps and co-occurrence of keywords utilized in the research field and indicates that bacteriocin-based research is highly multidisciplinary with a global reach.
Conclusion:
Key focus is on the control of foodborne disease pathogens, search for new producer organisms and approaches to improve bacteriocin yield and application. This class of antimicrobial peptides has the potential to replace chemical food preservatives in the future.
Collapse
|
8
|
Farizano JV, Díaz Vergara LI, Masias E, Baillo AA, Torino MI, Fadda S, Vanden Braber NL, Montenegro MA, Saavedra L, Minahk C. Biotechnological use of dairy by-products for the production and microencapsulation of the food preservative enterocin CRL35. FEMS Microbiol Lett 2022; 369:6553820. [PMID: 35325116 DOI: 10.1093/femsle/fnac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/22/2022] [Accepted: 03/21/2022] [Indexed: 11/15/2022] Open
Abstract
Bacteriocins from Gram-positive bacteria have been proposed as natural food preservative and there is a need for large-scale production for commercial purposes. The aim of the present work is to evaluate whey, a cheese industrial by-product, for the production and microencapsulation of enterocin CRL35. Whey proved to be a promising basal medium for bacterial growth although the bacteriocin production was quite low. However, it could be much favored with the addition of yeast extract at concentrations as low as 0.5%. Besides improving bacteriocin production, this peptide was successfully microencapsulated by spray drying using whey protein concentrate and a chitosan derivative as wall materials. Microcapsules averaging 10 ± 5 μm diameter were obtained, with good structural integrity and high antimicrobial activity with a stability of at least 12 weeks at 4°C. In summary, sustainable bacteriocin production and microencapsulation was achieved recycling whey or its derivatives. In addition, the formulation owns high antimicrobial activity with a long shelf life. The development of a food preservative may represent a green solution for handling whey.
Collapse
Affiliation(s)
- Juan V Farizano
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI - San Miguel de Tucumán, Argentina
| | - Ladislao I Díaz Vergara
- Centro de Investigaciones y Transferencia de Villa María (CITVM-CONICET), Universidad Nacional de Villa María, Campus Universitario, Arturo Jauretche 1555, Villa María, Córdoba, Argentina
| | - Emilse Masias
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI - San Miguel de Tucumán, Argentina
| | - Ayelén A Baillo
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145. San Miguel de Tucumán, Argentina
| | - María I Torino
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145. San Miguel de Tucumán, Argentina
| | - Silvina Fadda
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145. San Miguel de Tucumán, Argentina
| | - Noelia L Vanden Braber
- Centro de Investigaciones y Transferencia de Villa María (CITVM-CONICET), Universidad Nacional de Villa María, Campus Universitario, Arturo Jauretche 1555, Villa María, Córdoba, Argentina
| | - Mariana A Montenegro
- Centro de Investigaciones y Transferencia de Villa María (CITVM-CONICET), Universidad Nacional de Villa María, Campus Universitario, Arturo Jauretche 1555, Villa María, Córdoba, Argentina
| | - Lucila Saavedra
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145. San Miguel de Tucumán, Argentina
| | - Carlos Minahk
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI - San Miguel de Tucumán, Argentina
| |
Collapse
|
9
|
Isolation and identification of new source of bacteriocin-producing Lactobacillus plantarum C010 and growth kinetics of its batch fermentation. World J Microbiol Biotechnol 2022; 38:67. [PMID: 35246726 DOI: 10.1007/s11274-022-03244-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/07/2022] [Indexed: 12/28/2022]
Abstract
The control of food-borne pathogens and spoilage organisms in meat and related products is urgently needed. Bacteriocins produced by lactic acid bacteria (LAB) are promising natural food preservatives. In this study, six bacteriocin-producing bacteria were screened from soil and fresh cow dung. Pseudomonas koreensis PS1, a specific spoilage organism from spoiled chilled pork, was used as the indicator bacteria. From the analyses, the strain C010 was selected due to its high yield, broad spectrum, and subculture stability. Through morphological, biochemical, and 16S rDNA gene sequence analysis, this strain was identified as Lactobacillus plantarum. Crude bacteriocin extracted from the cell-free supernatant (CFS) of L. plantarum C010 was stable under high temperature, ultraviolet radiation, and protease attack (pepsin, trypsin, and proteinase K). The kinetics of bacterial growth and bacteriocin production by L. plantarum C010 were analyzed during batch fermentation. Bacteriocin was produced throughout the logarithmic growth phase, and the Leudeking-Piret model characterized the synthesis of bacteriocins. The present study indicates that this novel bacteriocin produced by bacteria is a promising option for reducing spoilage microorganisms and can be widely used as a bio-preservative in meat and other foods.
Collapse
|
10
|
To HTA, Chhetri V, Settachaimongkon S, Prakitchaiwattana C. Stress tolerance-Bacillus with a wide spectrum bacteriocin as an alternative approach for food bio-protective culture production. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Sharma H, Ozogul F, Bartkiene E, Rocha JM. Impact of lactic acid bacteria and their metabolites on the techno-functional properties and health benefits of fermented dairy products. Crit Rev Food Sci Nutr 2021:1-23. [PMID: 34845955 DOI: 10.1080/10408398.2021.2007844] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
After conversion of lactose to lactic acid, several biochemical changes occur such as enhanced protein digestibility, fatty acids release, and production of bioactive compounds etc. during the fermentation process that brings nutritional and quality improvement in the fermented dairy products (FDP). A diverse range of lactic acid bacteria (LAB) is being utilized for the development of FDP with specific desirable techno-functional attributes. This review contributes to the knowledge of basic pathways and changes during fermentation process and the current research on techniques used for identification and quantification of metabolites. The focus of this article is mainly on the metabolites responsible for maintaining the desired attributes and health benefits of FDP as well as their characterization from raw milk. LAB genera including Lactobacillus, Streptococcus, Leuconostoc, Pediococcus and Lactococcus are involved in the fermentation of milk and milk products. LAB species accrue these benefits and desirable properties of FDP producing the bioactive compounds and metabolites using homo-fermentative and heterofermentative pathways. Generation of metabolites vary with incubation and other processing conditions and are analyzed and quantified using highly advanced and sophisticated instrumentation including nuclear magnetic resonance, mass-spectrometry based techniques. Health benefits of FDP are mainly possible due to the biological roles of such metabolites that also cause technological improvements desired by dairy manufacturers and consumers.
Collapse
Affiliation(s)
- Heena Sharma
- Food Technology Lab, Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Adana, Turkey
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - João Miguel Rocha
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Chemical Engineering (DEQ), Faculty of Engineering, University of Porto FEUP), Porto, Portugal
| |
Collapse
|
12
|
Yadav M, Chauhan NS. Microbiome therapeutics: exploring the present scenario and challenges. Gastroenterol Rep (Oxf) 2021; 10:goab046. [PMID: 35382166 PMCID: PMC8972995 DOI: 10.1093/gastro/goab046] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/11/2022] Open
Abstract
Human gut-microbiome explorations have enriched our understanding of microbial colonization, maturation, and dysbiosis in health-and-disease subsets. The enormous metabolic potential of gut microbes and their role in the maintenance of human health is emerging, with new avenues to use them as therapeutic agents to overcome human disorders. Microbiome therapeutics are aimed at engineering the gut microbiome using additive, subtractive, or modulatory therapy with an application of native or engineered microbes, antibiotics, bacteriophages, and bacteriocins. This approach could overcome the limitation of conventional therapeutics by providing personalized, harmonized, reliable, and sustainable treatment. Its huge economic potential has been shown in the global therapeutics market. Despite the therapeutic and economical potential, microbiome therapeutics is still in the developing stage and is facing various technical and administrative issues that require research attention. This review aims to address the current knowledge and landscape of microbiome therapeutics, provides an overview of existing health-and-disease applications, and discusses the potential future directions of microbiome modulations.
Collapse
Affiliation(s)
- Monika Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
13
|
Selvam D, Thangarasu A, Shyu DJH, Neelamegam R, Muthukalingan K, Nagarajan K. Antimicrobial Substance Produced by Pseudomonas aeruginosa Isolated from Slaughterhouse Sediment: Physicochemical Characterization, Purification, and Identification. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10135-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Zangeneh M, Khorrami S, Khaleghi M. Bacteriostatic activity and partial characterization of the bacteriocin produced by L. plantarum sp. isolated from traditional sourdough. Food Sci Nutr 2020; 8:6023-6030. [PMID: 33282254 PMCID: PMC7684595 DOI: 10.1002/fsn3.1890] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/26/2022] Open
Abstract
This study was aimed to isolate and partially characterizes the bacteriocin produced by an L. plantarum sp. isolated from traditional sourdough. The bacteriocin was partially purified, and after treating it with different harsh conditions, its antibacterial activity was evaluated against L. monocytogenes as an indicator. Also, the growth phase during which the bacteriocin is produced, and its mode of action, was examined. Finally, the molecular weight of this compound was evaluated by using SDS-PAGE analysis. According to the results, this bacteriocin had a molecular weight well lower than 10 kDa that was mainly produced at the early stationary phase and reached its highest activity (3,200 AU/ml) at the same stage. It was tolerant toward a wide range of pH (2-10), temperatures (-20 to 120°C), and high concentrations of NaCl. Notably, the bacteriocin-producing strain had proteolytic activity, while the bacteriocin produced by that showed resistance to proteolytic enzymes (pepsin, trypsin, and proteinase K). Also, it was revealed that the bacteriocin activity is mostly bacteriostatic so that it considerably inhibits pathogens' growth, particularly S. aureus, E. coli, and L. monocytogenes. These characteristics prove that strain and its bacteriocin can be considered as one of the most promising agents to use in the food industry.
Collapse
Affiliation(s)
- Mina Zangeneh
- Department of BiologyFaculty of SciencesShahid Bahonar University of KermanKermanIran
| | - Sadegh Khorrami
- Department of BiologyFaculty of SciencesShahid Bahonar University of KermanKermanIran
| | - Moj Khaleghi
- Department of BiologyFaculty of SciencesShahid Bahonar University of KermanKermanIran
| |
Collapse
|
15
|
Improvement of Lactobacillus plantarum for the enhanced production of bacteriocin like inhibitory substance using combinatorial approach. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Chhetri V, Prakitchaiwattana C, Settachaimongkon S. A potential protective culture; halophilic Bacillus isolates with bacteriocin encoding gene against Staphylococcus aureus in salt added foods. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J. Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Front Microbiol 2019; 10:302. [PMID: 30873135 PMCID: PMC6401651 DOI: 10.3389/fmicb.2019.00302] [Citation(s) in RCA: 350] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/05/2019] [Indexed: 12/19/2022] Open
Abstract
Over the last seven decades, applications using members of the Bacillus subtilis group have emerged in both food processes and crop protection industries. Their ability to form survival endospores and the plethora of antimicrobial compounds they produce has generated an increased industrial interest as food preservatives, therapeutic agents and biopesticides. In the growing context of food biopreservation and biological crop protection, this review suggests a comprehensive way to visualize the antimicrobial spectrum described within the B. subtilis group, including volatile compounds. This classification distinguishes the bioactive metabolites based on their biosynthetic pathways and chemical nature: i.e., ribosomal peptides (RPs), volatile compounds, polyketides (PKs), non-ribosomal peptides (NRPs), and hybrids between PKs and NRPs. For each clade, the chemical structure, biosynthesis and antimicrobial activity are described and exemplified. This review aims at constituting a convenient and updated classification of antimicrobial metabolites from the B. subtilis group, whose complex phylogeny is prone to further development.
Collapse
Affiliation(s)
- Simon Caulier
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Laboratory of Phytopathology-Applied Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Catherine Nannan
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Florent Licciardi
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Claude Bragard
- Laboratory of Phytopathology-Applied Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
18
|
Preservation of Meat Products with Bacteriocins Produced by Lactic Acid Bacteria Isolated from Meat. J FOOD QUALITY 2019. [DOI: 10.1155/2019/4726510] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacteriocins are ribosomal-synthesized antimicrobial peptides that inhibit the growing of pathogenic and/or deteriorating bacteria. The most studied bacteriocin-producing microorganisms are lactic acid bacteria (LAB), as they have great potential application in food biopreservation, since the majority have GRAS (Generally Recognized as Safe) status. The LAB-producing bacteriocins and/or bacteriocins produced by these bacteria have been widely studied, with the emphasis on those derived from milk and dairy products. On the other hand, isolates from meat and meat products are less studied. The objective of this review is to address the main characteristics, classification, and mechanism of action of bacteriocins and their use in food, to highlight studies on the isolation of LAB with bacteriocinogenic potential from meat and meat products and also to characterize, purify, and apply these bacteriocins in meat products. In summary, most of the microorganisms studied areLactococcus,Enterococcus,Pediococcus, andLactobacillus, which produce bacteriocins such as nisin, enterocin, pediocin, pentocin, and sakacin, many with the potential for use in food biopreservation.
Collapse
|
19
|
Feichtmayer J, Deng L, Griebler C. Antagonistic Microbial Interactions: Contributions and Potential Applications for Controlling Pathogens in the Aquatic Systems. Front Microbiol 2017; 8:2192. [PMID: 29184541 PMCID: PMC5694486 DOI: 10.3389/fmicb.2017.02192] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022] Open
Abstract
Despite the active and intense treatment of wastewater, pathogenic microorganisms and viruses are frequently introduced into the aquatic environment. For most human pathogens, however, this is a rather hostile place, where starvation, continuous inactivation, and decay generally occur, rather than successful reproduction. Nevertheless, a great diversity of the pathogenic microorganisms can be detected, in particular, in the surface waters receiving wastewater. Pathogen survival depends majorly on abiotic factors such as irradiation, changes in water ionic strength, temperature, and redox state. In addition, inactivation is enhanced by the biotic interactions in the environment. Although knowledge of the antagonistic biotic interactions has been available since a long time, certain underlying processes and mechanisms still remain unclear. Others are well-appreciated and increasingly are applied to the present research. Our review compiles and discusses the presently known biotic interactions between autochthonous microbes and pathogens introduced into the aquatic environment, including protozoan grazing, virus-induced bacterial cell lysis, antimicrobial substances, and predatory bacteria. An overview is provided on the present knowledge, as well as on the obvious research gaps. Individual processes that appear promising for future applications in the aquatic environment are presented and discussed.
Collapse
Affiliation(s)
- Judith Feichtmayer
- Institute of Groundwater Ecology, Helmholtz Zentrum München GmbH, Neuherberg, Germany
| | - Li Deng
- Institute of Groundwater Ecology, Helmholtz Zentrum München GmbH, Neuherberg, Germany
- Institute of Virology, Helmholtz Zentrum München GmbH, Neuherberg, Germany
| | - Christian Griebler
- Institute of Groundwater Ecology, Helmholtz Zentrum München GmbH, Neuherberg, Germany
| |
Collapse
|
20
|
Fahimirad S, Abtahi H, Razavi SH, Alizadeh H, Ghorbanpour M. Production of Recombinant Antimicrobial Polymeric Protein Beta Casein-E 50-52 and Its Antimicrobial Synergistic Effects Assessment with Thymol. Molecules 2017; 22:molecules22060822. [PMID: 28561787 PMCID: PMC6152712 DOI: 10.3390/molecules22060822] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 01/18/2023] Open
Abstract
Accelerating emergence of antimicrobial resistance among food pathogens and consumers’ increasing demands for preservative-free foods are two contemporary challenging aspects within the food industry. Antimicrobial packaging and the use of natural preservatives are promising solutions. In the present study, we used beta-casein—one of the primary self-assembly proteins in milk with a high polymeric film production capability—as a fusion partner for the recombinant expression of E 50-52 antimicrobial peptide in Escherichia coli. The pET21a-BCN-E 50-52 construct was transformed to E. coli BL21 (DE3), and protein expression was induced under optimized conditions. Purified protein obtained from nickel affinity chromatography was refolded under optimized dialysis circumstances and concentrated to 1600 µg/mL fusion protein by ultrafiltration. Antimicrobial activities of recombinant BCN-E 50-52 performed against Escherichia coli, Salmonella typhimurium, Listeria monocytogenes, Staphylococcus aureus, Aspergillus flavus, and Candida albicans. Subsequently, the synergistic effects of BCN-E 50-52 and thymol were assayed. Results of checkerboard tests showed strong synergistic activity between two compounds. Time–kill and growth kinetic studies indicated a sharp reduction of cell viability during the first period of exposure, and SEM (scanning electron microscope) results validated the severe destructive effects of BCN E 50-52 and thymol in combination on bacterial cells.
Collapse
Affiliation(s)
- Shohreh Fahimirad
- Agriculture and Natural Resources Biotechnology Department, University of Tehran, Karaj 31587-11167, Iran; (S.F.); (S.H.R.); (H.A.)
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak 38181-76941, Iran
- Correspondence: ; Tel.: +98-913-114-6154
| | - Seyed Hadi Razavi
- Agriculture and Natural Resources Biotechnology Department, University of Tehran, Karaj 31587-11167, Iran; (S.F.); (S.H.R.); (H.A.)
| | - Houshang Alizadeh
- Agriculture and Natural Resources Biotechnology Department, University of Tehran, Karaj 31587-11167, Iran; (S.F.); (S.H.R.); (H.A.)
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 3815688349, Iran;
| |
Collapse
|
21
|
Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria. Appl Microbiol Biotechnol 2017; 101:1323-1335. [DOI: 10.1007/s00253-017-8088-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 12/30/2022]
|
22
|
Inhibition of Staphylococcus aureus in vitro by bacteriocinogenic Lactococcus lactis KTH0-1S isolated from Thai fermented shrimp (Kung-som) and safety evaluation. Arch Microbiol 2017; 199:551-562. [DOI: 10.1007/s00203-016-1324-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/17/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022]
|
23
|
Abbasiliasi S, Tan JS, Tengku Ibrahim TA, Bashokouh F, Ramakrishnan NR, Mustafa S, Ariff AB. Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: a review. RSC Adv 2017. [DOI: 10.1039/c6ra24579j] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lactic acid bacteria (LAB) are the major interest in food industry primarily by virtue of their biopreservative properties.
Collapse
Affiliation(s)
- Sahar Abbasiliasi
- Department of Microbiology
- Faculty of Biotechnology and Biomolecular Sciences
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Joo Shun Tan
- Bioprocess Technology
- School of Industrial Technology
- Universiti Sains Malaysia
- Malaysia
| | | | - Fatemeh Bashokouh
- Pharmacology discipline
- Faculty of medicine
- UiTM
- 47000 Sungai Buloh
- Malaysia
| | | | - Shuhaimi Mustafa
- Department of Microbiology
- Faculty of Biotechnology and Biomolecular Sciences
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Arbakariya B. Ariff
- Bioprocessing and Biomanufacturing Research Centre
- Faculty of Biotechnology and Biomolecular Sciences
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| |
Collapse
|
24
|
López-Cuellar MDR, Rodríguez-Hernández AI, Chavarría-Hernández N. LAB bacteriocin applications in the last decade. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1232605] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Ma. del Rocío López-Cuellar
- Agro-Food Biotechnology Research Group (CABA), Institute of Food and Agricultural Sciences (ICAp), Autonomous University of Hidalgo State (UAEH) , Tulancingo de Bravo, Hidalgo, Mexico
| | - Adriana-Inés Rodríguez-Hernández
- Agro-Food Biotechnology Research Group (CABA), Institute of Food and Agricultural Sciences (ICAp), Autonomous University of Hidalgo State (UAEH) , Tulancingo de Bravo, Hidalgo, Mexico
| | - Norberto Chavarría-Hernández
- Agro-Food Biotechnology Research Group (CABA), Institute of Food and Agricultural Sciences (ICAp), Autonomous University of Hidalgo State (UAEH) , Tulancingo de Bravo, Hidalgo, Mexico
| |
Collapse
|
25
|
|
26
|
Abbasiliasi S, Tan JS, Kadkhodaei S, Nelofer R, Tengku Ibrahim TA, Mustafa S, Ariff AB. Enhancement of BLIS production by Pediococcus acidilactici kp10 in optimized fermentation conditions using an artificial neural network. RSC Adv 2016. [DOI: 10.1039/c5ra22879d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present study was aimed at enhancing the production of BLIS produced byPediococcus acidilacticiKp10 through optimizing the fermentation parameters.
Collapse
Affiliation(s)
- Sahar Abbasiliasi
- Laboratory of Halal Science Research
- Halal Products Research Institute
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Joo Shun Tan
- Bioprocess Technology
- School of Industrial Technology
- Universiti Sains Malaysia
- Malaysia
| | - Saeid Kadkhodaei
- Institute of Tropical Agriculture
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Rubina Nelofer
- Food and Biotechnology Research Centre
- PCSIR
- Laboratories Complex
- 54600 Lahore
- Pakistan
| | | | - Shuhaimi Mustafa
- Laboratory of Halal Science Research
- Halal Products Research Institute
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Arbakariya B. Ariff
- Bioprocessing and Biomanufacturing Research Centre
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| |
Collapse
|
27
|
Du Y, Song L, Feng W, Pei G, Zheng P, Yu Z, Sun J, Qiao J. Draft Genome Sequence of Lactococcus lactis subsp. lactis Strain YF11. GENOME ANNOUNCEMENTS 2013; 1:e00599-13. [PMID: 23929487 PMCID: PMC3738903 DOI: 10.1128/genomea.00599-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 07/11/2013] [Indexed: 12/03/2022]
Abstract
Lactococcus lactis subsp. lactis strain YF11 is a food preservative bacterium with a high capacity to produce nisin. Here, we announce the draft genome sequence of Lactococcus lactis subsp. lactis YF11 (2,527,433 bp with a G+C content of 34.81%).
Collapse
Affiliation(s)
- Yuhui Du
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China
| | - Lifu Song
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wenjing Feng
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China
| | - Guangsheng Pei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhichao Yu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China
| |
Collapse
|
28
|
Isolation and Purification of Two Bacteriocins 3D Produced by Enterococcus faecium with Inhibitory Activity Against Listeria monocytogenes. Curr Microbiol 2010; 62:479-85. [DOI: 10.1007/s00284-010-9732-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 07/13/2010] [Indexed: 11/30/2022]
|