1
|
Merda D, Vila-Nova M, Bonis M, Boutigny AL, Brauge T, Cavaiuolo M, Cunty A, Regnier A, Sayeb M, Vingadassalon N, Yvon C, Chesnais V. Unraveling the impact of genome assembly on bacterial typing: a one health perspective. BMC Genomics 2024; 25:1059. [PMID: 39516732 PMCID: PMC11545336 DOI: 10.1186/s12864-024-10982-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND In the context of pathogen surveillance, it is crucial to ensure interoperability and harmonized data. Several surveillance systems are designed to compare bacteria and identify outbreak clusters based on core genome MultiLocus Sequence Typing (cgMLST). Among the different approaches available to generate bacterial cgMLST, our research used an assembly-based approach (chewBBACA tool). METHODS Simulations of short-read sequencing were conducted for 5 genomes of 27 pathogens of interest in animal, plant, and human health to evaluate the repeatability and reproducibility of cgMLST. Various quality parameters, such as read quality and depth of sequencing were applied, and several read simulations and genome assemblies were repeated using three tools: SPAdes, Unicycler and Shovill. In vitro sequencing were also used to evaluate assembly impact on cgMLST results, for six bacterial species: Bacillus thuringiensis, Listeria monocytogenes, Salmonella enterica, Staphylococcus aureus, Vibrio parahaemolyticus and Xylella fastidiosa. RESULTS The results highlighted variability in cgMLST, which not only related to the assembly tools, but also induced by the intrinsic composition of the genomes themselves. This variability observed in simulated sequencing was further validated with real data for six of the bacterial pathogens studied. CONCLUSION This highlights that the intrinsic genome composition affects assembly and resulting cgMLST profiles, and that variability in bioinformatics tools can induce a bias in cgMLST profiles. In conclusion, we propose that the completeness of cgMLST schemes should be considered when clustering strains.
Collapse
Affiliation(s)
- Déborah Merda
- Université Paris Est, ANSES, Laboratory for Food Safety, SPAAD unit, Maisons-Alfort, F-94701, France.
| | - Meryl Vila-Nova
- Université Paris Est, ANSES, Laboratory for Food Safety, SPAAD unit, Maisons-Alfort, F-94701, France
| | - Mathilde Bonis
- Université Paris Est, ANSES, Laboratory for Food Safety, SBCL unit, Maisons-Alfort, F-94701, France
| | - Anne-Laure Boutigny
- ANSES, Plant Health Laboratory, Bacteriology Virology GMO Unit, 7 rue Jean Dixméras, Angers cedex 01, 49044, France
| | - Thomas Brauge
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit (B3PA), Boulevard du Bassin Napoléon, Boulogne-sur-Mer, France
| | - Marina Cavaiuolo
- Université Paris Est, ANSES, Laboratory for Food Safety, SBCL unit, Maisons-Alfort, F-94701, France
| | - Amandine Cunty
- ANSES, Plant Health Laboratory, Bacteriology Virology GMO Unit, 7 rue Jean Dixméras, Angers cedex 01, 49044, France
| | - Antoine Regnier
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit (B3PA), Boulevard du Bassin Napoléon, Boulogne-sur-Mer, France
| | - Maroua Sayeb
- Université Paris Est, ANSES, Laboratory for Food Safety, SEL unit, Maisons-Alfort, F-94701, France
| | - Noémie Vingadassalon
- Université Paris Est, ANSES, Laboratory for Food Safety, SBCL unit, Maisons-Alfort, F-94701, France
| | - Claire Yvon
- Université Paris Est, ANSES, Laboratory for Food Safety, SEL unit, Maisons-Alfort, F-94701, France
| | - Virginie Chesnais
- Université Paris Est, ANSES, Laboratory for Food Safety, SPAAD unit, Maisons-Alfort, F-94701, France
| |
Collapse
|
2
|
Middlebrook EA, Katani R, Fair JM. OrthoPhyl-streamlining large-scale, orthology-based phylogenomic studies of bacteria at broad evolutionary scales. G3 (BETHESDA, MD.) 2024; 14:jkae119. [PMID: 38839049 PMCID: PMC11304591 DOI: 10.1093/g3journal/jkae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
There are a staggering number of publicly available bacterial genome sequences (at writing, 2.0 million assemblies in NCBI's GenBank alone), and the deposition rate continues to increase. This wealth of data begs for phylogenetic analyses to place these sequences within an evolutionary context. A phylogenetic placement not only aids in taxonomic classification but informs the evolution of novel phenotypes, targets of selection, and horizontal gene transfer. Building trees from multi-gene codon alignments is a laborious task that requires bioinformatic expertise, rigorous curation of orthologs, and heavy computation. Compounding the problem is the lack of tools that can streamline these processes for building trees from large-scale genomic data. Here we present OrthoPhyl, which takes bacterial genome assemblies and reconstructs trees from whole genome codon alignments. The analysis pipeline can analyze an arbitrarily large number of input genomes (>1200 tested here) by identifying a diversity-spanning subset of assemblies and using these genomes to build gene models to infer orthologs in the full dataset. To illustrate the versatility of OrthoPhyl, we show three use cases: E. coli/Shigella, Brucella/Ochrobactrum and the order Rickettsiales. We compare trees generated with OrthoPhyl to trees generated with kSNP3 and GToTree along with published trees using alternative methods. We show that OrthoPhyl trees are consistent with other methods while incorporating more data, allowing for greater numbers of input genomes, and more flexibility of analysis.
Collapse
Affiliation(s)
- Earl A Middlebrook
- Genomics and Bioanalytics Group, Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA
| | - Robab Katani
- 401 Huck Life Sciences Building, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Jeanne M Fair
- Genomics and Bioanalytics Group, Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA
| |
Collapse
|
3
|
Aljanazreh B, Shamseye AA, Abuawad A, Ashhab Y. Genomic distribution of the insertion sequence IS711 reveal a potential role in Brucella genome plasticity and host preference. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023:105457. [PMID: 37257801 DOI: 10.1016/j.meegid.2023.105457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/10/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
The Insertion Sequence 711 (IS711) is linked to the Brucella genus. Mapping the genomic distribution of IS711 can help understand this insertion element's biological and evolutionary role. This work aimed to delineate the genomic distribution of the IS711 element and to study its association with Brucella evolution. A total of 124 genomes representing 9 Brucella species were searched using BLASTn sequence alignment tool to identify complete and truncated copies of IS711. Based on the genomic context, each IS711 locus was assigned a code using the initial letters of its neighboring genes. Various tools were used to annotate the neighboring genes and determine the shared synteny around orthologous IS711 loci. The tool Islandviewer 4 was used to scan for genomic islands. The Codon Tree method was used to build phylogenetic trees of B. melitensis, B. abortus, and B. suis genomes. The phylogenetic trees of the three species were analyzed, taking into account the genomic distribution patterns of IS711. The result of IS711 frequency analysis showed a relatively conserved number of copies/genome for the different species and for some biovars. The analysis showed that Brucella species with a relatively low IS711 copy number (4-8 copies/genome) are linked to domestic animals as primary hosts and have potential for zoonotic transmission. However, species with a relatively higher copy number (12-30 copies/genome) are less zoonotic and tend to be linked with wild animals as primary hosts. Analyzing the genomic distribution map of IS711 loci showed several unique patterns of IS711 distribution that are correlated with the evolution of Brucella species and biovars. The results also showed that 46.2% of the conserved IS711 elements are located within genomic islands. Based on our results and previous data, we postulate a model explaining the IS711 role in Brucella evolution. We assume that during the transition from a free-living to an intracellular lifestyle, a descendant of the Brucella genus had acquired a progenitor sequence of the IS711. Subsequently, a burst in IS711 transposition occurred. This parasitic expansion can be deleterious and has to be counteracted by evolutionary forces to prevent lineage extension and to promote adaptation to host. Similar to other plasmid-free pathogenic α-Proteobacteria bacteria, the balance of expansion and reduction of insertion elements could be one of the mechanisms to control genome reduction and streamlining. We hypothesize that the IS711-mediated genomic changes and other small sequence nucleotide changes in specific orthologous genes could significantly contribute to Brucella's evolution and adaptation to different animal hosts.
Collapse
Affiliation(s)
- Bessan Aljanazreh
- Palestine-Korea Biotechnology Center, Palestine Polytechnic University, Hebron, Palestine
| | - Assalla Abu Shamseye
- Palestine-Korea Biotechnology Center, Palestine Polytechnic University, Hebron, Palestine
| | - Abdalhalim Abuawad
- Palestine-Korea Biotechnology Center, Palestine Polytechnic University, Hebron, Palestine
| | - Yaqoub Ashhab
- Palestine-Korea Biotechnology Center, Palestine Polytechnic University, Hebron, Palestine.
| |
Collapse
|
4
|
Karthik K, Anbazhagan S, Thomas P, Ananda Chitra M, Senthilkumar TMA, Sridhar R, Dhinakar Raj G. Genome Sequencing and Comparative Genomics of Indian Isolates of Brucella melitensis. Front Microbiol 2021; 12:698069. [PMID: 34489888 PMCID: PMC8417702 DOI: 10.3389/fmicb.2021.698069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
Brucella melitensis causes small ruminant brucellosis and a zoonotic pathogen prevalent worldwide. Whole genome phylogeny of all available B. melitensis genomes (n = 355) revealed that all Indian isolates (n = 16) clustered in the East Mediterranean lineage except the ADMAS-GI strain. Pangenome analysis indicated the presence of limited accessory genomes with few clades showing specific gene presence/absence pattern. A total of 43 virulence genes were predicted in all the Indian strains of B. melitensis except 2007BM-1 (ricA and wbkA are absent). Multilocus sequence typing (MLST) analysis indicated all except one Indian strain (ADMAS-GI) falling into sequence type (ST 8). In comparison with MLST, core genome phylogeny indicated two major clusters (>70% bootstrap support values) among Indian strains. Clusters with <70% bootstrap support values represent strains with diverse evolutionary origins present among animal and human hosts. Genetic relatedness among animal (sheep and goats) and human strains with 100% bootstrap values shows its zoonotic transfer potentiality. SNP-based analysis indicated similar clustering to that of core genome phylogeny. Among the Indian strains, the highest number of unique SNPs (112 SNPs) were shared by a node that involved three strains from Tamil Nadu. The node SNPs involved several peptidase genes like U32, M16 inactive domain protein, clp protease family protein, and M23 family protein and mostly represented non-synonymous (NS) substitutions. Vaccination has been followed in several parts of the world to prevent small ruminant brucellosis but not in India. Comparison of Indian strains with vaccine strains showed that M5 is genetically closer to most of the Indian strains than Rev.1 strain. The presence of most of the virulence genes among all Indian strains and conserved core genome compositions suggest the use of any circulating strain/genotypes for the development of a vaccine candidate for small ruminant brucellosis in India.
Collapse
Affiliation(s)
- Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Subbaiyan Anbazhagan
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute, Bareilly, India
| | - Prasad Thomas
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute, Bareilly, India
| | - Murugesan Ananda Chitra
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | | | - Ramaswamy Sridhar
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Gopal Dhinakar Raj
- Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| |
Collapse
|
5
|
Aleri JW, Gogoi-Tiwari J, Tiwari HK, Fisher AD, Waichigo FW, Robertson ID. Prevalence of failure of passive transfer of immunity in dairy calves in a Mediterranean pasture-based production system of the south-west region of Western Australia. Res Vet Sci 2021; 139:121-126. [PMID: 34298285 DOI: 10.1016/j.rvsc.2021.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/10/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022]
Abstract
The objective of this study was to estimate the prevalence of failure of passive transfer of immunity (FPTI) in dairy calves in the south-west region of Western Australia herds. A cross-sectional study was conducted in 26/140 dairy farms and serum samples were collected from 495 healthy 2-7 day-old calves. A radial immunodiffusion (RID) test was used to determine the concentration of serum IgG and calves were classified as having FPTI if the IgG concentration was less than 10 mg/mL. Estimation of FPTI was also assessed using two indirect methods using serum total protein (STP) and a brix refractometer. The estimated prevalence of FPTI was found to be 8.7% (43 calves out of 495) by RID with the concentration of IgG ranging between 0 and 6.2 mg/ml. The STP was found to vary from 46 to 96 mg/mL and using a cut-off point of 55 mg/mL the calf level prevalence was estimated as 7.1% (33 calves). Using the brix refractometer, the prevalence was found to be 13.1% (65 calves) with the refractometer reading ranging 6-14% of IgG. In the present study there was no association between calf-level factors (age, sex and breed) and FPTI. There was a higher correlation of the RID test results and the STP results compared to the RID and brix refractometer results. It is concluded that the prevalence of FPTI in dairy calves in the south-west region of Western Australia is low (8.7%) and the brix refractometer is not a reliable indirect method for determining passive transfer of immunity to calves.
Collapse
Affiliation(s)
- J W Aleri
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch 6150, WA, Australia.
| | - J Gogoi-Tiwari
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch 6150, WA, Australia
| | - H K Tiwari
- Sydney School of Veterinary Science, The University of Sydney, Camden 2570, New South Wales, Australia
| | - A D Fisher
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia; Animal Welfare Science Centre, University of Melbourne, Victoria 3010, Australia
| | - F W Waichigo
- Brunswick Veterinary Services, 27 Ommaney Road, Brunswick Junction, WA 6224, Australia
| | - I D Robertson
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch 6150, WA, Australia; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
6
|
Banerjee R, Chaudhari NM, Lahiri A, Gautam A, Bhowmik D, Dutta C, Chattopadhyay S, Huson DH, Paul S. Interplay of Various Evolutionary Modes in Genome Diversification and Adaptive Evolution of the Family Sulfolobaceae. Front Microbiol 2021; 12:639995. [PMID: 34248865 PMCID: PMC8267890 DOI: 10.3389/fmicb.2021.639995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/06/2021] [Indexed: 11/21/2022] Open
Abstract
Sulfolobaceae family, comprising diverse thermoacidophilic and aerobic sulfur-metabolizing Archaea from various geographical locations, offers an ideal opportunity to infer the evolutionary dynamics across the members of this family. Comparative pan-genomics coupled with evolutionary analyses has revealed asymmetric genome evolution within the Sulfolobaceae family. The trend of genome streamlining followed by periods of differential gene gains resulted in an overall genome expansion in some species of this family, whereas there was reduction in others. Among the core genes, both Sulfolobus islandicus and Saccharolobus solfataricus showed a considerable fraction of positively selected genes and also higher frequencies of gene acquisition. In contrast, Sulfolobus acidocaldarius genomes experienced substantial amount of gene loss and strong purifying selection as manifested by relatively lower genome size and higher genome conservation. Central carbohydrate metabolism and sulfur metabolism coevolved with the genome diversification pattern of this archaeal family. The autotrophic CO2 fixation with three significant positively selected enzymes from S. islandicus and S. solfataricus was found to be more imperative than heterotrophic CO2 fixation for Sulfolobaceae. Overall, our analysis provides an insight into the interplay of various genomic adaptation strategies including gene gain-loss, mutation, and selection influencing genome diversification of Sulfolobaceae at various taxonomic levels and geographical locations.
Collapse
Affiliation(s)
- Rachana Banerjee
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Narendrakumar M. Chaudhari
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Abhishake Lahiri
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Anupam Gautam
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Debaleena Bhowmik
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Chitra Dutta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sujay Chattopadhyay
- JIS Institute of Advanced Studies and Research, JIS University, Kolkata, India
| | - Daniel H. Huson
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- Cluster of Excellence: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Sandip Paul
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| |
Collapse
|
7
|
Dhand NK, Singh J, Josan HS, Singh BB, Jaswal N, Tiwari HK, Kostoulas P, Khatkar MS, Aulakh RS, Kaur M, Gill JPS. The feasibility and acceptability of various bovine brucellosis control strategies in India. Prev Vet Med 2021; 189:105291. [PMID: 33582551 DOI: 10.1016/j.prevetmed.2021.105291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Bovine brucellosis is a neglected zoonotic disease prevalent in several developing countries including India. It has been successfully controlled in many developed countries by using vaccination in conjunction with extensive surveillance and test-and-cull approaches, but some of these approaches do not suit Indian culture and norms. This study was conducted to investigate the feasibility and social acceptability of various bovine brucellosis control strategies in India. Focus group discussions and key-informant interviews were conducted with veterinarians, para-veterinarians, veterinary academics, farmers and other stakeholders. Vaccination with the Brucella strain 19 vaccine was considered feasible, but the participants were concerned about the risk of self-inoculation, the inability to vaccinate pregnant and male animals, the difficulty to differentiate vaccinated from diseased animals and the challenges of maintaining the vaccine cold chain in India. As expected, the test-and-cull approach was not considered feasible as cattle are considered sacred by Hindus and their slaughter is banned in most states. Although the test-and-segregation approach appears reasonable in theory, it would have low acceptability, if implemented without providing any compensation to farmers. Negligible biosecurity was implemented by farmers: almost no biosecurity procedures were performed for visitors entering a farm, and testing of animals was rarely undertaken before introducing them to a farm. However, the participants considered that improving biosecurity would be more acceptable and feasible than both the test-and-cull and the test-and-segregation approaches. Similarly, inadequate personal protection was used by veterinary personnel for handling parturition, retention of placenta and abortion cases; this was considered as another area of possible improvement. Farmers and veterinarians expressed serious concerns about stray cattle as many of them could potentially be infected with brucellosis, and thus could spread the infection between farms. This study recommends using vaccination and biosecurity along with some ancillary strategies to control brucellosis in India. Information from the study could be used to develop an evidence-based disease control program for the disease in the country.
Collapse
Affiliation(s)
- Navneet K Dhand
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia.
| | - Jaswinder Singh
- Department of Veterinary and Animal Husbandry Extension Education, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Harmandeep S Josan
- Department of Veterinary and Animal Husbandry Extension Education, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Balbir B Singh
- School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Nidhi Jaswal
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harish K Tiwari
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - Polychronis Kostoulas
- Laboratory of Epidemiology, Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, Karditsa, GR 43100, Greece
| | - Mehar S Khatkar
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - Rabinder S Aulakh
- School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Manmeet Kaur
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jatinder P S Gill
- School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
8
|
Identification of genetic variants of Brucella spp. through genome-wide association studies. INFECTION GENETICS AND EVOLUTION 2017; 56:92-98. [PMID: 29154929 DOI: 10.1016/j.meegid.2017.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 12/25/2022]
Abstract
Brucellosis is an important zoonotic disease caused by Brucella spp. We present a phylogeny of 552 strains based on genome-wide single nucleotide polymorphisms (SNPs) determined by an alignment-free k-mer approach. A total of 138,029 SNPs were identified from 552 Brucella genomes. Of these, 31,152 and 106,877 were core and non-core SNPs, respectively. Based on pan-genome analysis 11,937 and 972 genes were identified as pan and core genome, respectively. The pan-genome-wide analysis studies (Pan-GWAS) could not identify the group-specific variants in Brucella spp. Therefore, we focused on SNP based genome-wide association studies (SNP-GWAS) to identify the species-specific genetic determinants in Brucella spp. Phylogenetic tree representing eleven recognized Brucella spp. showed 16 major lineages. We identified 143 species-specific SNPs in Brucella abortus that are conserved in 311 B. abortus genomes. Of these, 141 species-specific SNPs were confined in the positively significant SNPs of B. abortus using SNP-GWAS. Since conserved in all the B. abortus genomes studied, these SNPs might have originated very early during the evolution of B. abortus and might be responsible for the evolution of B. abortus with cattle as the preferred host. Similarly, we identified 383 species-specific SNPs conserved in 132 Brucella melitensis genomes. Of these 379 species-specific SNPs were identified as positively associated using GWAS. Interestingly, >98% of the SNPs that are significantly, positively associated with the traits showed 100% sensitivity and 100% specificity. These identified species-specific core-SNPs identified in Brucella genomes could be responsible for the speciation and their respective host adaptation.
Collapse
|
9
|
Cao P, Guo D, Liu J, Jiang Q, Xu Z, Qu L. Genome-Wide Analyses Reveal Genes Subject to Positive Selection in Pasteurella multocida. Front Microbiol 2017; 8:961. [PMID: 28611758 PMCID: PMC5447721 DOI: 10.3389/fmicb.2017.00961] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/15/2017] [Indexed: 01/02/2023] Open
Abstract
Pasteurella multocida, a Gram-negative opportunistic pathogen, has led to a broad range of diseases in mammals and birds, including fowl cholera in poultry, pneumonia and atrophic rhinitis in swine and rabbit, hemorrhagic septicemia in cattle, and bite infections in humans. In order to better interpret the genetic diversity and adaptation evolution of this pathogen, seven genomes of P. multocida strains isolated from fowls, rabbit and pigs were determined by using high-throughput sequencing approach. Together with publicly available P. multocida genomes, evolutionary features were systematically analyzed in this study. Clustering of 70,565 protein-coding genes showed that the pangenome of 33 P. multocida strains was composed of 1,602 core genes, 1,364 dispensable genes, and 1,070 strain-specific genes. Of these, we identified a full spectrum of genes related to virulence factors and revealed genetic diversity of these potential virulence markers across P. multocida strains, e.g., bcbAB, fcbC, lipA, bexDCA, ctrCD, lgtA, lgtC, lic2A involved in biogenesis of surface polysaccharides, hsf encoding autotransporter adhesin, and fhaB encoding filamentous haemagglutinin. Furthermore, based on genome-wide positive selection scanning, a total of 35 genes were subject to strong selection pressure. Extensive analyses of protein subcellular location indicated that membrane-associated genes were highly abundant among all positively selected genes. The detected amino acid sites undergoing adaptive selection were preferably located in extracellular space, perhaps associated with bacterial evasion of host immune responses. Our findings shed more light on conservation and distribution of virulence-associated genes across P. multocida strains. Meanwhile, this study provides a genetic context for future researches on the mechanism of adaptive evolution in P. multocida.
Collapse
Affiliation(s)
- Peili Cao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Dongchun Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Jiasen Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Qian Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Zhuofei Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Liandong Qu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| |
Collapse
|
10
|
Vishnu US, Sankarasubramanian J, Gunasekaran P, Rajendhran J. Identification of OtpR regulated sRNAs in Brucella melitensis expressed under acidic stress and their roles in pathogenesis and metabolism. Comp Immunol Microbiol Infect Dis 2016; 50:40-47. [PMID: 28131377 DOI: 10.1016/j.cimid.2016.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/14/2016] [Indexed: 11/25/2022]
Abstract
Small RNAs (sRNAs) are the small regulatory molecules that regulate various biological processes in bacteria. Though the functions of sRNAs are well documented, very little information is available on the sRNAs of Brucella spp. The otpR is the response regulator of a two-component regulatory system, which plays a significant role in Brucella virulence. In this study, we identified the sRNAs expressed in B. melitensis 16M and its otpR mutant under acidic stress from the RNAseq dataset. We identified 94 trans-encoded and 948 cis-encoded sRNAs in B. melitensis 16M. In B. melitensis 16M ΔotpR under acidic stress 99 trans-encoded and 877 cis-encoded sRNAs were identified. Among these, 12 trans-encoded and 43 cis-encoded sRNAs were upregulated in B. melitensis 16M ΔotpR, with an adjusted P-value≤0.05. The mRNA targets of these sRNAs were predicted. Further, the levels of mRNA targets were examined, and the sRNA-mediated regulatory network was predicted. Functional classification and pathway analysis of mRNA targets provided evidence that sRNAs are involved in different metabolic pathways including carbohydrates, amino acids, lipids, nucleotides transport and metabolism, cell membrane biogenesis and intracellular trafficking of Brucella. We also found that eight transcriptional regulators including a quorum sensing regulator, vjbR are down-regulated by sRNAs. These transcriptional regulators might be responsible for the regulation of several other genes in the otpR mutant. The trans-encoded BsnR88 and cis-encoded BsnR980, BsnR998, BsnR881, BsnR1001, BsnR891, BsnR883, BsnR905 are regulating virB operon genes coding for type IV secretion system (T4SS), which is the major virulence factor of Brucella.
Collapse
Affiliation(s)
- Udayakumar S Vishnu
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Jagadesan Sankarasubramanian
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | | | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| |
Collapse
|