1
|
Wang H, Xiang Z. Structural insights into type III polyketide synthase CylI from cylindrocyclophane biosynthesis. Protein Sci 2024; 33:e5130. [PMID: 39302095 PMCID: PMC11413912 DOI: 10.1002/pro.5130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/06/2024] [Accepted: 07/14/2024] [Indexed: 09/22/2024]
Abstract
Type III polyketide synthases (PKSs) catalyze the formation of a variety of polyketide natural products with remarkable structural diversity and biological activities. Despite significant progress in structural and mechanistic studies of type III PKSs in bacteria, fungi, and plants, research on type III PKSs in cyanobacteria is lacking. Here, we report structural and mechanistic insights into CylI, a type III PKS that catalyzes the formation of the alkylresorcinol intermediate in cylindrocyclophane biosynthesis. The crystal structure of apo-CylI reveals a distinct arrangement of structural elements that are proximal to the active site. We further solved the crystal structures of CylI in complexes with two substrate analogues at resolutions of 1.9 Å. The complex structures indicate that N259 is the key residue that determines the substrate preference of CylI. We also solved the crystal structure of CylI complexed with the alkylresorcinol product at a resolution of 2.0 Å. Structural analysis and mutagenesis experiments suggested that S170 functions as a key residue that determines cyclization specificity. On the basis of this result, a double mutant was engineered to completely switch the cyclization of CylI from aldol condensation to lactonization. This work elucidates the molecular basis of type III PKS in cyanobacteria and lays the foundation for engineering CylI-like enzymes to generate new products.
Collapse
Affiliation(s)
- Hua‐Qi Wang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenPR China
| | - Zheng Xiang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenPR China
- Institute of Chemical Biology, Shenzhen Bay LaboratoryGaoke Innovation CenterShenzhenPR China
| |
Collapse
|
2
|
Berman P, de Haro LA, Jozwiak A, Panda S, Pinkas Z, Dong Y, Cveticanin J, Barbole R, Livne R, Scherf T, Shimoni E, Levin-Zaidman S, Dezorella N, Petrovich-Kopitman E, Meir S, Rogachev I, Sonawane PD, Aharoni A. Parallel evolution of cannabinoid biosynthesis. NATURE PLANTS 2023; 9:817-831. [PMID: 37127748 DOI: 10.1038/s41477-023-01402-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Modulation of the endocannabinoid system is projected to have therapeutic potential in almost all human diseases. Accordingly, the high demand for novel cannabinoids stimulates the discovery of untapped sources and efficient manufacturing technologies. Here we explored Helichrysum umbraculigerum, an Asteraceae species unrelated to Cannabis sativa that produces Cannabis-type cannabinoids (for example, 4.3% cannabigerolic acid). In contrast to Cannabis, cannabinoids in H. umbraculigerum accumulate in leaves' glandular trichomes rather than in flowers. The integration of de novo whole-genome sequencing data with unambiguous chemical structure annotation, enzymatic assays and pathway reconstitution in Nicotiana benthamiana and in Saccharomyces cerevisiae has uncovered the molecular and chemical features of this plant. Apart from core biosynthetic enzymes, we reveal tailoring ones producing previously unknown cannabinoid metabolites. Orthology analyses demonstrate that cannabinoid synthesis evolved in parallel in H. umbraculigerum and Cannabis. Our discovery provides a currently unexploited source of cannabinoids and tools for engineering in heterologous hosts.
Collapse
Affiliation(s)
- Paula Berman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Luis Alejandro de Haro
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Adam Jozwiak
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Zoe Pinkas
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Younghui Dong
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jelena Cveticanin
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ranjit Barbole
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rotem Livne
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Scherf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Smadar Levin-Zaidman
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Nili Dezorella
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | | | - Sagit Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Prashant D Sonawane
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
- Department of Natural Product Biosynthesis, Max-Planck Institute for Chemical Ecology, Jena, Germany.
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Turchetti B, Buzzini P, Baeza M. A genomic approach to analyze the cold adaptation of yeasts isolated from Italian Alps. Front Microbiol 2022; 13:1026102. [DOI: 10.3389/fmicb.2022.1026102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
Microorganisms including yeasts are responsible for mineralization of organic matter in cold regions, and their characterization is critical to elucidate the ecology of such environments on Earth. Strategies developed by yeasts to survive in cold environments have been increasingly studied in the last years and applied to different biotechnological applications, but their knowledge is still limited. Microbial adaptations to cold include the synthesis of cryoprotective compounds, as well as the presence of a high number of genes encoding the synthesis of proteins/enzymes characterized by a reduced proline content and highly flexible and large catalytic active sites. This study is a comparative genomic study on the adaptations of yeasts isolated from the Italian Alps, considering their growth kinetics. The optimal temperature for growth (OTG), growth rate (Gr), and draft genome sizes considerably varied (OTG, 10°C–20°C; Gr, 0.071–0.0726; genomes, 20.7–21.5 Mpb; %GC, 50.9–61.5). A direct relationship was observed between calculated protein flexibilities and OTG, but not for Gr. Putative genes encoding for cold stress response were found, as well as high numbers of genes encoding for general, oxidative, and osmotic stresses. The cold response genes found in the studied yeasts play roles in cell membrane adaptation, compatible solute accumulation, RNA structure changes, and protein folding, i.e., dihydrolipoamide dehydrogenase, glycogen synthase, omega-6 fatty acid, stearoyl-CoA desaturase, ATP-dependent RNA helicase, and elongation of very-long-chain fatty acids. A redundancy for several putative genes was found, higher for P-loop containing nucleoside triphosphate hydrolase, alpha/beta hydrolase, armadillo repeat-containing proteins, and the major facilitator superfamily protein. Hundreds of thousands of small open reading frames (SmORFs) were found in all studied yeasts, especially in Phenoliferia glacialis. Gene clusters encoding for the synthesis of secondary metabolites such as terpene, non-ribosomal peptide, and type III polyketide were predicted in four, three, and two studied yeasts, respectively.
Collapse
|
4
|
Baeza M, Zúñiga S, Peragallo V, Barahona S, Alcaino J, Cifuentes V. Identification of Stress-Related Genes and a Comparative Analysis of the Amino Acid Compositions of Translated Coding Sequences Based on Draft Genome Sequences of Antarctic Yeasts. Front Microbiol 2021; 12:623171. [PMID: 33633709 PMCID: PMC7902016 DOI: 10.3389/fmicb.2021.623171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
Microorganisms inhabiting cold environments have evolved strategies to tolerate and thrive in those extreme conditions, mainly the low temperature that slow down reaction rates. Among described molecular and metabolic adaptations to enable functioning in the cold, there is the synthesis of cold-active proteins/enzymes. In bacterial cold-active proteins, reduced proline content and highly flexible and larger catalytic active sites than mesophylls counterparts have been described. However, beyond the low temperature, microorganisms' physiological requirements may differ according to their growth velocities, influencing their global protein compositions. This hypothesis was tested in this work using eight cold-adapted yeasts isolated from Antarctica, for which their growth parameters were measured and their draft genomes determined and bioinformatically analyzed. The optimal temperature for yeasts' growth ranged from 10 to 22°C, and yeasts having similar or same optimal temperature for growth displayed significative different growth rates. The sizes of the draft genomes ranged from 10.7 (Tetracladium sp.) to 30.7 Mb (Leucosporidium creatinivorum), and the GC contents from 37 (Candida sake) to 60% (L. creatinivorum). Putative genes related to various kinds of stress were identified and were especially numerous for oxidative and cold stress responses. The putative proteins were classified according to predicted cellular function and subcellular localization. The amino acid composition was compared among yeasts considering their optimal temperature for growth and growth rates. In several groups of predicted proteins, correlations were observed between their contents of flexible amino acids and both the yeasts' optimal temperatures for growth and their growth rates. In general, the contents of flexible amino acids were higher in yeasts growing more rapidly as their optimal temperature for growth was lower. The contents of flexible amino acids became lower among yeasts with higher optimal temperatures for growth as their growth rates increased.
Collapse
Affiliation(s)
- Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Sergio Zúñiga
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Vicente Peragallo
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Salvador Barahona
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Jennifer Alcaino
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Martinelli L, Redou V, Cochereau B, Delage L, Hymery N, Poirier E, Le Meur C, Le Foch G, Cladiere L, Mehiri M, Demont-Caulet N, Meslet-Cladiere L. Identification and Characterization of a New Type III Polyketide Synthase from a Marine Yeast, Naganishia uzbekistanensis. Mar Drugs 2020; 18:E637. [PMID: 33322429 PMCID: PMC7763939 DOI: 10.3390/md18120637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 01/22/2023] Open
Abstract
A putative Type III Polyketide synthase (PKSIII) encoding gene was identified from a marine yeast, Naganishia uzbekistanensis strain Mo29 (UBOCC-A-208024) (formerly named as Cryptococcus sp.) isolated from deep-sea hydrothermal vents. This gene is part of a distinct phylogenetic branch compared to all known terrestrial fungal sequences. This new gene encodes a C-terminus extension of 74 amino acids compared to other known PKSIII proteins like Neurospora crassa. Full-length and reduced versions of this PKSIII were successfully cloned and overexpressed in a bacterial host, Escherichia coli BL21 (DE3). Both proteins showed the same activity, suggesting that additional amino acid residues at the C-terminus are probably not required for biochemical functions. We demonstrated by LC-ESI-MS/MS that these two recombinant PKSIII proteins could only produce tri- and tetraketide pyrones and alkylresorcinols using only long fatty acid chain from C8 to C16 acyl-CoAs as starter units, in presence of malonyl-CoA. In addition, we showed that some of these molecules exhibit cytotoxic activities against several cancer cell lines.
Collapse
Affiliation(s)
- Laure Martinelli
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Vanessa Redou
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Bastien Cochereau
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Ludovic Delage
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR),CNRS, UMR8227, Sorbonne Université, 29680 Roscoff, France; (L.D.); (L.C.)
| | - Nolwenn Hymery
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Elisabeth Poirier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Christophe Le Meur
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Gaetan Le Foch
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Lionel Cladiere
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR),CNRS, UMR8227, Sorbonne Université, 29680 Roscoff, France; (L.D.); (L.C.)
| | - Mohamed Mehiri
- Marine Natural Products Team, CNRS, UMR 7272, Institut de Chimie de Nice, Université Côte d’Azur, 06108 Nice, France;
| | - Nathalie Demont-Caulet
- UMR ECOSYS, INRAE, INRAE, University of Paris, 78026 Versailles, France;
- AgroParisTech, Université Paris-Saclay, 78026 Versailles, France
| | - Laurence Meslet-Cladiere
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| |
Collapse
|