1
|
Zhang Y, Li N, Chen L, Sheng X, Wang B, Zhang J, Ping Q, Shi Y. Effect of bamboo biochar preparation conditions on immobilization of laccase and its application. Int J Biol Macromol 2025; 306:141618. [PMID: 40032117 DOI: 10.1016/j.ijbiomac.2025.141618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/10/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
In this paper, bamboo biochar was prepared and used for laccase immobilization. Biochar was prepared under different conditions (pyrolysis temperature, heating rate and dwell time) to understand biochar characteristics impacts on enzyme activity. The results showed that the preparation conditions had an important effect on the content of carboxyl groups on biochar. And the specific surface area is not the key factor affecting laccase immobilization in this study, which is a little different than before. The highest immobilized laccase activity (1404.17 U/g) was obtained when the biochar was heated to 300 °C at the rate of 15 °C/min and stayed for 1.5 h, and the carboxy group concentration was 0.490 mmol/g. Compared with free laccase (FL), the immobilized laccase on bamboo biochar (LBC) showed higher thermo-tolerant performance, more excellent acid-proof ability and reusability. Without any mediators, LBC displayed high degradation efficiency (74.72 %, 85.88 % and 94.53 %, respectively) for bisphenol A (BPA), malachite green (MG) and methyl orange (MO) in water. Our research demonstrates that the content of carboxyl group in biochar plays a decisive role in the immobilization of laccase and LBC has excellent performance in the effective removal of toxicant in water, which makes it a promising candidate for environmental recovery.
Collapse
Affiliation(s)
- Yuying Zhang
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian l16034, China
| | - Na Li
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian l16034, China.
| | - Lianmei Chen
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian l16034, China
| | - Xueru Sheng
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian l16034, China
| | - Bing Wang
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian l16034, China
| | - Jian Zhang
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian l16034, China
| | - Qingwei Ping
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian l16034, China
| | - Yan Shi
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China.
| |
Collapse
|
2
|
Guo E, Zhao L, Li Z, Chen L, Li J, Lu F, Wang F, Lu K, Liu Y. Biodegradation of bisphenol A by a Pichia pastoris whole-cell biocatalyst with overexpression of laccase from Bacillus pumilus and investigation of its potential degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134779. [PMID: 38850935 DOI: 10.1016/j.jhazmat.2024.134779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Bisphenol A (BPA), an endocrine disrupter with estrogen activity, can infiltrate animal and human bodies through the food chain. Enzymatic degradation of BPA holds promise as an environmentally friendly approach while it is limited due to lower stability and recycling challenges. In this study, laccase from Bacillus pumilus TCCC 11568 was expressed in Pichia pastoris (fLAC). The optimal catalytic conditions for fLAC were at pH 6.0 and 80 °C, with a half-life T1/2 of 120 min at 70 °C. fLAC achieved a 46 % degradation rate of BPA, and possible degradation pathways were proposed based on identified products and reported intermediates of BPA degradation. To improve its stability and degradation capacity, a whole-cell biocatalyst (WCB) was developed by displaying LAC (dLAC) on the surface of P. pastoris GS115. The functionally displayed LAC demonstrated enhanced thermostability and pH stability along with an improved BPA degradation ability, achieving a 91 % degradation rate. Additionally, dLAC maintained a degradation rate of over 50 % after the fourth successive cycles. This work provides a powerful catalyst for degrading BPA, which might decontaminate endocrine disruptor-contaminated water through nine possible pathways.
Collapse
Affiliation(s)
- Enping Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lei Zhao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ziyuan Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lei Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jingwen Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fenghua Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Kui Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
3
|
Gama Cavalcante AL, Dari DN, Izaias da Silva Aires F, Carlos de Castro E, Moreira Dos Santos K, Sousa Dos Santos JC. Advancements in enzyme immobilization on magnetic nanomaterials: toward sustainable industrial applications. RSC Adv 2024; 14:17946-17988. [PMID: 38841394 PMCID: PMC11151160 DOI: 10.1039/d4ra02939a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
Enzymes are widely used in biofuels, food, and pharmaceuticals. The immobilization of enzymes on solid supports, particularly magnetic nanomaterials, enhances their stability and catalytic activity. Magnetic nanomaterials are chosen for their versatility, large surface area, and superparamagnetic properties, which allow for easy separation and reuse in industrial processes. Researchers focus on the synthesis of appropriate nanomaterials tailored for specific purposes. Immobilization protocols are predefined and adapted to both enzymes and support requirements for optimal efficiency. This review provides a detailed exploration of the application of magnetic nanomaterials in enzyme immobilization protocols. It covers methods, challenges, advantages, and future perspectives, starting with general aspects of magnetic nanomaterials, their synthesis, and applications as matrices for solid enzyme stabilization. The discussion then delves into existing enzymatic immobilization methods on magnetic nanomaterials, highlighting advantages, challenges, and potential applications. Further sections explore the industrial use of various enzymes immobilized on these materials, the development of enzyme-based bioreactors, and prospects for these biocatalysts. In summary, this review provides a concise comparison of the use of magnetic nanomaterials for enzyme stabilization, highlighting potential industrial applications and contributing to manufacturing optimization.
Collapse
Affiliation(s)
- Antônio Luthierre Gama Cavalcante
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
| | - Dayana Nascimento Dari
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - Francisco Izaias da Silva Aires
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - Erico Carlos de Castro
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
| | - Kaiany Moreira Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - José Cleiton Sousa Dos Santos
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará Campus do Pici, Bloco 940 Fortaleza CEP 60455760 CE Brazil
| |
Collapse
|
4
|
Ariaeenejad S, Barani M, Sarani M, Lohrasbi-Nejad A, Mohammadi-Nejad G, Salekdeh GH. Green synthesis of NiO NPs for metagenome-derived laccase stabilization: Detoxifying pollutants and wastes. Int J Biol Macromol 2024; 266:130986. [PMID: 38508564 DOI: 10.1016/j.ijbiomac.2024.130986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Laccases play a crucial role in neutralizing environmental pollutants, including antibiotics and phenolic compounds, by converting them into less harmful substances via a unique oxidation process. This study introduces an environmentally sustainable remediation technique, utilizing NiO nanoparticles (NPs) synthesized through green chemistry to immobilize a metagenome-derived laccase, PersiLac1, enhancing its application in pollutant detoxification. Salvadora persica leaf extract was used for the synthesis of NiO nanoparticles, utilizing its phytochemical constituents as reducing and capping agents, followed by characterization through different analyses. Characterization of NiO nanoparticles revealed distinctive FTIR absorption peaks indicating the nanoparticulate structure, while FESEM showed structured NiO with robust interconnections and dimensionality of about 50nm, confirmed by EDX analysis to have a consistent distribution of Ni and O. The immobilized PersiLac1 demonstrated enhanced thermal stability, with 85.55 % activity at 80 °C and reduced enzyme leaching, retaining 67.93 % activity across 15 biocatalytic cycles. It efficiently reduced rice straw (RS) phenol by 67.97 % within 210 min and degraded 70-78 % of tetracycline (TC) across a wide pH range (4.0-8.0), showing superior performance over the free enzyme. Immobilized laccase achieved up to 71 % TC removal at 40-80 °C, significantly outperforming the free enzyme. Notably, 54 % efficiency was achieved at 500 mg/L TC by immobilized laccase at 120 min. This research showed the potential of green-synthesized NiO nanoparticles to effectively immobilize laccase, presenting an eco-friendly approach to purify pollutants such as phenols and antibiotics. The durability and reusability of the immobilized enzyme, coupled with its ability to reduce pollutants, indicates a viable method for cleaning the environment. Nonetheless, the production costs and scalability of NiO nanoparticles for widespread industrial applications pose significant challenges. Future studies should focus on implementation at an industrial level and examine a wider range of pollutants to fully leverage the environmental clean-up capabilities of this innovative technology.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran.
| | - Mina Sarani
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Azadeh Lohrasbi-Nejad
- Department of Agricultural Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran; Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ghasem Mohammadi-Nejad
- Department of Agronomy and Plant Breeding, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran; Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran
| | | |
Collapse
|
5
|
Yang J, Yang Y, Chang Z, Huang Y, Yuan H, Zhao Y, Liu X, Ni C. Pyrite-assisted degradation of methoxychlor by laccase immobilized on Fe 3S 4/earthworm-like mesoporous SiO 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25202-25215. [PMID: 38466381 DOI: 10.1007/s11356-024-32420-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024]
Abstract
Laccase immobilized and cross-linked on Fe3S4/earthworm-like mesoporous SiO2 (Fe3S4/EW-mSiO2) was used to degrade methoxychlor (MXC) in aqueous environments. The effects of various parameters on the degradation of MXC were determined using free and immobilized laccase. Immobilization improved the thermal stability and reuse of laccase significantly. Under the conditions of pH 4.5, temperature 40 °C, and reaction time 8 h, the degradation rate of MXC by immobilized laccase reached a maximum value of 40.99% and remained at 1/3 of the original after six cycles. The excellent degradation performance of Fe3S4/EW-mSiO2 was attributable to the pyrite (FeS2) impurity in Fe3S4, which could act as an electron donor in reductive dehalogenation. Sulfide groups and Fe2+ reduced the activation energy of the system resulting in pyrite-assisted degradation of MXC. The degradation mechanism of MXC in aqueous environments by laccase immobilized on Fe3S4/EW-mSiO2 was determined via mass spectroscopy of the degradation products. This study is a new attempt to use pyrite to support immobilized laccase degradation.
Collapse
Affiliation(s)
- Jiaqi Yang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yuxiang Yang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China.
| | - Ziling Chang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yan Huang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Hongming Yuan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Yi Zhao
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Xiangnong Liu
- Analysis Test Center, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Chaoying Ni
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
6
|
Zayed MEM, Obaid AY, Almulaiky YQ, El-Shishtawy RM. Enhancing the sustainable immobilization of laccase by amino-functionalized PMMA-reinforced graphene nanomaterial. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119503. [PMID: 38043312 DOI: 10.1016/j.jenvman.2023.119503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023]
Abstract
Human health and the environment are negatively affected by endocrine-disrupting chemicals (EDCs), such as bisphenol A. Therefore, developing appropriate remediation methods is essential for efficiently removing phenolic compounds from aqueous solutions. Enzymatic biodegradation is a potential biotechnological approach for responsibly addressing water pollution. With its high catalytic efficiency and few by-products, laccase is an eco-friendly biocatalyst with significant promise for biodegradation. Herein, two novel supporting materials (NH2-PMMA and NH2-PMMA-Gr) were fabricated via the functionalization of poly(methylmethacrylate) (PMMA) polymer using ethylenediamine and reinforced with graphene followed by glutaraldehyde activation. NH2-PMMA and NH2-PMMA-Gr were utilized for laccase immobilization with an immobilization yield (IY%) of 78.3% and 82.5% and an activity yield (AY%) of 81.2% and 85.9%, respectively. Scanning electron microscope (SEM) and Fourier-transform infrared (FTIR) were used to study the characteristics of fabricated material supports. NH2-PMMA-Gr@laccase exhibited an optimal pH profile from 4.5 to 5.0, while NH2-PMMA@laccase exhibited optimum pH at 5.0 compared to a value of 4.0 for free form. A wider temperature ranges of 40-50 °C was noted for both immobilized laccases compared to a value of 40 °C for the free form. Additionally, it was reported that immobilized laccase outperformed free laccase in terms of substrate affinity and storage stability. NH2-PMMA@laccase and NH2-PMMA-Gr@laccase improved stability by up to 3.9 and 4.6-fold when stored for 30 days at 4 °C and preserved up to 80.5% and 86.7% of relative activity after ten cycles of reuse. Finally, the degradation of BPA was achieved using NH2-PMMA@laccase and NH2-PMMA-Gr@laccase. After five cycles, NH2-PMMA@laccase and NH2-PMMA-Gr@laccase showed that the residual degradation of BPA was 77% and 84.5% using 50 μm of BPA. This study introduces a novel, high-performance material for organic pollution remediation in wastewater that would inspire further progress.
Collapse
Affiliation(s)
- Mohie E M Zayed
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah Y Obaid
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Yaaser Q Almulaiky
- Department of Chemistry, College of Science and Arts at Khulis, University of Jeddah, Jeddah, 21921, Saudi Arabia
| | - Reda M El-Shishtawy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
7
|
Wang J, Bai H, Zhang R, Ding G, Cai X, Wang W, Zhu G, Zhou P, Zhang Y. Effect of a Bacterial Laccase on the Quality and Micro-Structure of Whole Wheat Bread. J Microbiol Biotechnol 2023; 33:1671-1680. [PMID: 37915231 PMCID: PMC10772560 DOI: 10.4014/jmb.2305.05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/18/2023] [Accepted: 07/18/2023] [Indexed: 11/03/2023]
Abstract
The gluten protein content in whole-wheat flour is low, which affects the elasticity and viscosity of the dough. Enzymatic modification of the protein may result in a network that mimics gluten, which plays an important role in the processing of whole-wheat foods. In this study, the effects of Halomonas alkaliantartica laccase (LacHa) on the quality parameters of whole-wheat bread were investigated. The optimum dosage of LacHa was 4 U/100 g of whole-wheat flour. At this dosage, whole-wheat bread exhibited the best specific volume and optimum texture parameters. Laccase also extended the storage duration of whole-wheat bread. We analyzed the micro-structure of the dough to determine its gluten-free protein extractable rate and free sulfhydryl group content, and verify that LacHa mediates cross-linking of gluten-free proteins. The results demonstrated that the cross-linking of gluten-free protein by LacHa improves the texture of whole-wheat bread. As a flour improver, LacHa has great developmental and application potential in baked-food production.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
- Department of Life Science, Anhui University, Hefei 230061, P.R. China
| | - Han Bai
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
| | - Ran Zhang
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
- Department of Life Science, Anhui University, Hefei 230061, P.R. China
| | - Guoao Ding
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
- Department of Life Science, Anhui University, Hefei 230061, P.R. China
| | - Xuran Cai
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
| | - Wei Wang
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
| | - Guilan Zhu
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
| | - Peng Zhou
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
| | - Yan Zhang
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
- Department of Life Science, Anhui University, Hefei 230061, P.R. China
| |
Collapse
|
8
|
Han Y, Dai H, Rong X, Jiang H, Xue Y. Research Progress of Methods for Degradation of Bisphenol A. Molecules 2023; 28:8028. [PMID: 38138518 PMCID: PMC10745807 DOI: 10.3390/molecules28248028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Bisphenol A (BPA), an endocrine disruptor widely used in industrial production, is found in various environmental sources. Despite numerous reports on BPA degradation and removal, the details remain unclear. This paper aims to address this gap by providing a comprehensive review of BPA degradation methods, focusing on biological, physical, and chemical treatments and the factors that affect the degradation of BPA. Firstly, the paper uses VOSviewer software (version 1.6.15) to map out the literature on BPA degradation published in the past 20 years, which reveals the trends and research focus in this field. Next, the advantages and limitations of different BPA degradation methods are discussed. Overall, this review highlights the importance of BPA degradation to protect the environment and human health. The paper provides significant insights for researchers and policymakers to develop better approaches for BPA degradation and removal.
Collapse
Affiliation(s)
- Ying Han
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (H.D.); (X.R.); (H.J.)
| | | | | | | | - Yingang Xue
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (H.D.); (X.R.); (H.J.)
| |
Collapse
|
9
|
Rohilla P, Chhikara A, Dahiya P. Biogenic synthesis of AuNPs using Solanum virginianum L. and their antibacterial, antioxidant and catalytic applications. Indian J Microbiol 2023; 63:562-574. [PMID: 38031596 PMCID: PMC10682358 DOI: 10.1007/s12088-023-01114-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Biogenic synthesis of nanoparticles is gaining popularity worldwide because of being ecofriendly as well as economical, with minimal production of hazardous by-products. The present study was targeted to determine the antibacterial, free radical scavenging and catalytic activity of gold nanoparticles synthesized from Solanum virginianum L. (Sv-AuNPs). After addition of auric chloride, the color of aqueous plant extract changed from light yellow to purple-red, indicating the formation of nanoparticles. A strong peak at 536 nm affirmed synthesis of Sv-AuNPs, and negative zeta potential (- 30.7) indicated their being wrapped in anions. They exhibited face-centered cubic and crystalline nature as revealed by X-ray diffraction. Elemental composition of Sv-AuNPs was ascertained by energy-dispersive X-ray spectroscopy, and a sharp peak at 2.2 keV confirmed the presence of gold. The shape of Sv-AuNPs synthesized was spherical with size ranging from 29.1 ± 1 nm to 51.2 ± 0.7 nm. Antibacterial potential was evaluated against E. coli, C. violaceum, K. pneumoniae, P. aeruginosa, B. subtilis, M. smegmatis, and S. aureus and was found to be greater than aqueous plant extract. Sv-AuNPs exhibited antioxidant potential comparable to ascorbic acid, demonstrating their vital role in the prevention of reactive oxygen species related diseases. Apart from their pharmaceutical potential, these nanoparticles also exhibited promising catalytic efficacy. They degraded harmful dyes i.e. 4-nitro phenol (4-NP) and congo red (CR) at a very low concentration of 50 µg/ml. This is the first report on the antibacterial, antioxidant, and catalytic properties of Sv-AuNPs and we hope it will lead the way for nanoparticles multifunctionality. Graphical abstract
Collapse
Affiliation(s)
- Preety Rohilla
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Ashmita Chhikara
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Pushpa Dahiya
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
10
|
Laxmi V, Singhvi N, Ahmad N, Sinha S, Negi T, Gupta V, Mubashshir M, Ahmad A, Sharma S. Emerging Field of Nanotechnology in Environment. Indian J Microbiol 2023; 63:244-252. [PMID: 37781004 PMCID: PMC10533467 DOI: 10.1007/s12088-023-01092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/10/2023] [Indexed: 10/03/2023] Open
Abstract
The art of utilizing and manipulating micro materials have been dated back to antient era. With the advancement in technologies, the state-of-art methods of nano technologies and nano sciences has been employed in various sectors including environment, product designing, food industry, pharmaceuticals industries to way out solve standard problem of mankind. Due to rapid industrialization and the alarming levels of pollution there has been an urgent need to address the environmental and energy issues. Environmental sustainability concerns the global climate change and pollution including air, water, soil. The field of nanotechnology has proven to be a promising field where sensing and remediation, have been dramatically advanced by the use of nanomaterials. This emergent science of surface to mass ratio is the principle theorem for manipulating structure at molecular levels. The review sums up all the advancements in the field of nanotechnology and their recent application in the environment. New opportunities and challenges have also been discussed in detail to understand the use of nanotechnology as problem-to-solution ratio. Graphical abstract Image depicting the application of nanotechnology in environmental concerns. The combinations of technologies like bioremediations, bioaugmentations with state-of-the-art nanotechnology like carbon nanotubes and Nano capsules to answer the environmental challenges of soil quality, and plant productivity.
Collapse
Affiliation(s)
- Vijya Laxmi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand 248007 India
| | - Nirjara Singhvi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand 248007 India
| | - Nabeel Ahmad
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand 248007 India
| | - Shruti Sinha
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand 248007 India
| | - Tripti Negi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand 248007 India
| | - Vipin Gupta
- Ministry of Environment, Forest and Climate Change, Integrated Regional Office, Dehradun, Uttarakhand 248001 India
| | - Muhammad Mubashshir
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand 248007 India
- Faculty of Basic and Applied Sciences, Vivekananda Global University, Jaipur, India
| | - Adnan Ahmad
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh 226026 India
| | - Sandeep Sharma
- School of Engineering and Computing, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand 248007 India
- Omkarr Tech Solutions, Dehradun, Uttarakhand 248001 India
| |
Collapse
|
11
|
Rather MA, Bhuyan S, Chowdhury R, Sarma R, Roy S, Neog PR. Nanoremediation strategies to address environmental problems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163998. [PMID: 37172832 DOI: 10.1016/j.scitotenv.2023.163998] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
A rapid rise in population, extensive anthropogenic activities including agricultural practices, up-scaled industrialization, massive deforestation, etc. are the leading causes of environmental degradation. Such uncontrolled and unabated practices have affected the quality of environment (water, soil, and air) synergistically by accumulating huge quantities of organic and inorganic pollutants in it. Environmental contamination is posing a threat to the existing life on the Earth, therefore, demands the development of sustainable environmental remediation approaches. The conventional physiochemical remediation approaches are laborious, expensive, and time-consuming. In this regard, nanoremediation has emerged as an innovative, rapid, economical, sustainable, and reliable approach to remediate various environmental pollutants and minimize or attenuate the risks associated with them. Owing to their unique properties such as high surface area to volume ratio, enhanced reactivity, tunable physical parameters, versatility, etc. nanoscale objects have gained attention in environmental clean-up practices. The current review highlights the role of nanoscale objects in the remediation of environmental contaminants to minimize their impact on human, plant, and animal health; and air, water, and soil quality. The aim of the review is to provide information about the applications of nanoscale objects in dye degradation, wastewater management, heavy metal and crude oil remediation, and mitigation of gaseous pollutants including greenhouse gases.
Collapse
Affiliation(s)
- Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India.
| | - Shuvam Bhuyan
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Ratan Chowdhury
- Department of Botany, Rangapara College, Rangapara 784505, Assam, India
| | - Rahul Sarma
- Department of Energy, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Subham Roy
- Department of Botany, Rangapara College, Rangapara 784505, Assam, India
| | - Panchi Rani Neog
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| |
Collapse
|
12
|
Navarro-López DE, Bautista-Ayala AR, Rosales-De la Cruz MF, Martínez-Beltrán S, Rojas-Torres DE, Sanchez-Martinez A, Ceballos-Sanchez O, Jáuregui-Jáuregui J, Lozano LM, Sepúlveda-Villegas M, Tiwari N, López-Mena ER. Nanocatalytic performance of pectinase immobilized over in situ prepared magnetic nanoparticles. Heliyon 2023; 9:e19021. [PMID: 37600413 PMCID: PMC10432700 DOI: 10.1016/j.heliyon.2023.e19021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
Immobilization of enzymes is one of the protein engineering methods used to improve their thermal and long-term stabilities. Immobilized pectinase has become an essential biocatalyst for optimization in the food processing industry. Herein, nanostructured magnetic nanoparticles were prepared in situ for use as supports to immobilize pectinase. The structural, morphological, optical and magnetic features and the chemical compositions of the nanoparticles were characterized. Nanoparticle agglomeration and low porosity were observed due to the synthetic conditions. These nanoparticles exhibited superparamagnetic behavior, which is desirable for biotechnological applications. The maximum retention rate for the enzyme was observed at pH 4.5 with a value of 1179.3 U/mgNP (units per milligram of nanoparticle), which was equivalent to a 65.6% efficiency. The free and immobilized pectinase were affected by the pH and temperature. The long-term instability caused 40% and 32% decreases in the specific activities of the free and immobilized pectinase, respectively. The effects of immobilization were analyzed with kinetic and thermodynamic studies. These results indicated a significant affinity for the substrate, a decreased reaction rate, and improved thermal stability of the immobilized pectinase. The reusability of the immobilized pectinase was preserved effectively during cycling, with only a 21.2% decrease in activity observed from the first to the last use. Therefore, alternative magnetic nanoparticles are presented for immobilizing and maintaining the thermostability of pectinase.
Collapse
Affiliation(s)
- Diego E. Navarro-López
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, 45201, Zapopan, Jalisco, Mexico
| | - Alvaro R. Bautista-Ayala
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, 45201, Zapopan, Jalisco, Mexico
| | - Maria Fernanda Rosales-De la Cruz
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, 45201, Zapopan, Jalisco, Mexico
| | - Selina Martínez-Beltrán
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, 45201, Zapopan, Jalisco, Mexico
| | - Diego E. Rojas-Torres
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, 45201, Zapopan, Jalisco, Mexico
| | - A. Sanchez-Martinez
- CONACyT-Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Siglo XXI, Carretera Zacatecas - Guadalajara Km 6, Ejido La Escondida, Zacatecas, 98160, Mexico
| | - O. Ceballos-Sanchez
- Universidad de Guadalajara, Centro Universitario de Ciencias Exactas e Ingenierias (CUCEI), Departamento de Ingenieria de Proyectos, Av. Jose Guadalupe Zuno #48, Industrial Los Belenes, Zapopan, Jalisco, 45157, Mexico
| | - J.A. Jáuregui-Jáuregui
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, 45201, Zapopan, Jalisco, Mexico
| | - Luis Marcelo Lozano
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, 45201, Zapopan, Jalisco, Mexico
| | - M. Sepúlveda-Villegas
- Departamento de Biología Molecular y Genómica, Hospital Civil de Guadalajara, “Fray Antonio Alcalde”, Guadalajara, 44280, Jalisco, Mexico
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44100, Jalisco, Mexico
| | - Naveen Tiwari
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, Rúa Jenaro de La Fuente S/N, 15782, Santiago de Compostela, A Coruna, Spain
| | - Edgar R. López-Mena
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, 45201, Zapopan, Jalisco, Mexico
| |
Collapse
|
13
|
Aman S, Kaur N, Mittal D, Sharma D, Shukla K, Singh B, Sharma A, Siwal SS, Thakur VK, Joshi H, Gupta R, Saini RV, Saini AK. Novel Biocompatible Green Silver Nanoparticles Efficiently Eliminates Multidrug Resistant Nosocomial Pathogens and Mycobacterium Species. Indian J Microbiol 2023; 63:73-83. [PMID: 37188239 PMCID: PMC10172440 DOI: 10.1007/s12088-023-01061-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
Bacterial infection is a major crisis of 21st era and the emergence of multidrug resistant (MDR) pathogens cause significant health problems. We developed, green chemistry-based silver nanoparticles (G-Ag NPs) using Citrus pseudolimon fruit peel extract. G-Ag NPs has a spherical shape in the range of ~ 40 nm with a surface charge of - 31 Mv. This nano-bioagent is an eco-friendly tool to combat menace of MDR. Biochemical tests prove that G-Ag NPs are compatible with human red blood cells and peripheral blood mononuclear cells. There have been many reports on the synthesis of silver nanoparticles, but this study suggests a green technique for making non-cytotoxic, non-hemolytic organometallic silver nanoparticles with a high therapeutic index for possible use in the medical field. On the same line, G-Ag NPs are very effective against Mycobacterium sp. and MDR strains including Escherichia coli, Klebsiella species, Pseudomonas aeruginosa, and Acinetobacter baumannii isolated from patient samples. Based on it, we filed a patent to Indian Patent Office (reference no. 202111048797) which can revolutionize the prevention of biomedical device borne infections in hospital pre/post-operated cases. This work could be further explored in future by in vivo experimentation with mice model to direct its possible clinical utility. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01061-0.
Collapse
Affiliation(s)
- Shahbaz Aman
- Department of Microbiology, MMIMSR, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207 India
| | - Narinder Kaur
- Department of Microbiology, MMIMSR, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207 India
| | - Divya Mittal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207 India
| | - Deepanjali Sharma
- Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| | - Komal Shukla
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 India
| | - Bharat Singh
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207 India
| | - Anchita Sharma
- Division of Biology, Indian Institute of Science Education and Research, Tirupati, Andhra Pradesh 517641 India
| | - Samarjeet Singh Siwal
- Department of Chemistry, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207 India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh, EH9 3JG UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Uttarakhand 248007 Dehradun, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Raju Gupta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 India
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 India
- Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 India
| | - Reena V. Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207 India
| | - Adesh K. Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207 India
| |
Collapse
|
14
|
Bakar B, Birhanlı E, Ulu A, Boran F, Yeşilada Ö, Ateş B. Immobilization of Trametes trogii laccase on polyvinylpyrrolidone-coated magnetic nanoparticles for biocatalytic degradation of textile dyes. BIOCATAL BIOTRANSFOR 2023. [DOI: 10.1080/10242422.2023.2173006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Büşra Bakar
- Department of Chemistry, Faculty of Arts and Science, Biochemistry and Biomaterials Research Laboratory, İnönü University, Malatya, Turkey
| | - Emre Birhanlı
- Department of Biology, Faculty of Arts and Science, Biotechnology Research Laboratory, İnönü University, Malatya, Turkey
| | - Ahmet Ulu
- Department of Chemistry, Faculty of Arts and Science, Biochemistry and Biomaterials Research Laboratory, İnönü University, Malatya, Turkey
| | - Filiz Boran
- Department of Biology, Faculty of Arts and Science, Biotechnology Research Laboratory, İnönü University, Malatya, Turkey
| | - Özfer Yeşilada
- Department of Biology, Faculty of Arts and Science, Biotechnology Research Laboratory, İnönü University, Malatya, Turkey
| | - Burhan Ateş
- Department of Chemistry, Faculty of Arts and Science, Biochemistry and Biomaterials Research Laboratory, İnönü University, Malatya, Turkey
| |
Collapse
|
15
|
Kyomuhimbo HD, Brink HG. Applications and immobilization strategies of the copper-centred laccase enzyme; a review. Heliyon 2023; 9:e13156. [PMID: 36747551 PMCID: PMC9898315 DOI: 10.1016/j.heliyon.2023.e13156] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Laccase is a multi-copper enzyme widely expressed in fungi, higher plants, and bacteria which facilitates the direct reduction of molecular oxygen to water (without hydrogen peroxide production) accompanied by the oxidation of an electron donor. Laccase has attracted attention in biotechnological applications due to its non-specificity and use of molecular oxygen as secondary substrate. This review discusses different applications of laccase in various sectors of food, paper and pulp, waste water treatment, pharmaceuticals, sensors, and fuel cells. Despite the many advantages of laccase, challenges such as high cost due to its non-reusability, instability in harsh environmental conditions, and proteolysis are often encountered in its application. One of the approaches used to minimize these challenges is immobilization. The various methods used to immobilize laccase and the different supports used are further extensively discussed in this review.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| | - Hendrik G. Brink
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| |
Collapse
|
16
|
Patel SKS, Kalia VC, Lee JK. Laccase Immobilization on Copper-Magnetic Nanoparticles for Efficient Bisphenol Degradation. J Microbiol Biotechnol 2023; 33:127-134. [PMID: 36457186 PMCID: PMC9895995 DOI: 10.4014/jmb.2210.10032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 12/03/2022]
Abstract
Laccase activity is influenced by copper (Cu) as an inducer. In this study, laccase was immobilized on Cu and Cu-magnetic (Cu/Fe2O4) nanoparticles (NPs) to improve enzyme stability and potential applications. The Cu/Fe2O4 NPs functionally activated by 3-aminopropyltriethoxysilane and glutaraldehyde exhibited an immobilization yield and relative activity (RA) of 93.1 and 140%, respectively. Under optimized conditions, Cu/Fe2O4 NPs showed high loading of laccase up to 285 mg/g of support and maximum RA of 140% at a pH 5.0 after 24 h of incubation (4°C). Immobilized laccase, as Cu/Fe2O4-laccase, had a higher optimum pH (4.0) and temperature (45°C) than those of a free enzyme. The pH and temperature profiles were significantly improved through immobilization. Cu/Fe2O4-laccase exhibited 25-fold higher thermal stability at 65°C and retained residual activity of 91.8% after 10 cycles of reuse. The degradation of bisphenols was 3.9-fold higher with Cu/Fe2O4-laccase than that with the free enzyme. To the best of our knowledge, Rhus vernicifera laccase immobilization on Cu or Cu/Fe2O4 NPs has not yet been reported. This investigation revealed that laccase immobilization on Cu/Fe2O4 NPs is desirable for efficient enzyme loading and high relative activity, with remarkable bisphenol A degradation potential.
Collapse
Affiliation(s)
- Sanjay K. S. Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Vipin C. Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-450-3505 Fax: +82-2-458-3504 E-mail:
| |
Collapse
|
17
|
Bîtcan I, Petrovici A, Pellis A, Klébert S, Károly Z, Bereczki L, Péter F, Todea A. Enzymatic route for selective glycerol oxidation using covalently immobilized laccases. Enzyme Microb Technol 2022; 163:110168. [DOI: 10.1016/j.enzmictec.2022.110168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
|
18
|
Bhardwaj P, Kaur N, Selvaraj M, Ghramh HA, Al-Shehri BM, Singh G, Arya SK, Bhatt K, Ghotekar S, Mani R, Chang SW, Ravindran B, Awasthi MK. Laccase-assisted degradation of emerging recalcitrant compounds - A review. BIORESOURCE TECHNOLOGY 2022; 364:128031. [PMID: 36167178 DOI: 10.1016/j.biortech.2022.128031] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The main objective of this review is to provide up to date, brief, irrefutable, organized data on the conducted experiments on a range of emerging recalcitrant compounds such as Diclofenac (DCF), Chlorophenols (CPs), tetracycline (TCs), Triclosan (TCS), Bisphenol A (BPA) and Carbamazepine (CBZ). These compounds were selected from the categories of pharmaceutical contaminants (PCs), endocrine disruptors (EDs) and personal care products (PCPs) on the basis of their toxicity and concentration retained in the environment. In this context, detailed mechanism of laccase mediated degradation has been conversed that laccase assisted degradation occurs by one electron oxidation involving redox potential as underlying element of the process. Further, converging towards biotechnology, laccase immobilization increased removal efficiency, storage and reusability through various experimentally conducted studies. Laccase is being considered noteworthy as mediators facilitate laccase in oxidation of non-phenolic compounds and thereby increasing its substrate range which is being discussed in further in the review. The laccase assisted degradation mechanism of each compound has been elucidated but further studies to undercover proper degradation mechanisms needs to be performed.
Collapse
Affiliation(s)
- Priyanka Bhardwaj
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road3# Shaanxi, Yangling 712100, China; Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Naviljyot Kaur
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hamed A Ghramh
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Badria M Al-Shehri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Kalpana Bhatt
- Department of Botany and Microbiology, Gurukul Kangri University, Haridwar 249404, Uttarakhand, India
| | - Suresh Ghotekar
- Department of Chemistry, Smt. Devkiba Mohansinhji Chauhan College of Commerce and Science, University of Mumbai, Silvassa 396 230, Dadra and Nagar Haveli (UT), India
| | - Ravi Mani
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road3# Shaanxi, Yangling 712100, China.
| |
Collapse
|
19
|
Chen Z, Oh WD, Yap PS. Recent advances in the utilization of immobilized laccase for the degradation of phenolic compounds in aqueous solutions: A review. CHEMOSPHERE 2022; 307:135824. [PMID: 35944673 DOI: 10.1016/j.chemosphere.2022.135824] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Phenolic compounds such as phenol, bisphenol A, 2,4-dichlorophenol, 2,4-dinitrophenol, 4-chlorophenol and 4-nitrophenol are well known to be highly detrimental to both human and living beings. Thus, it is of critical importance that suitable remediation technologies are developed to effectively remove phenolic compounds from aqueous solutions. Biodegradation utilizing enzymatic technologies is a promising biotechnological solution to sustainably address the pollution in the aquatic environment as caused by phenolic compounds under a defined environmentally optimized strategy and thus should be investigated in great detail. This review aims to present the latest developments in the employment of immobilized laccase for the degradation of phenolic compounds in water. The review first succinctly delineates the fundamentals of biological enzyme degradation along with a critical discussion on the myriad types of laccase immobilization techniques, which include physical adsorption, ionic adsorption, covalent binding, entrapment, and self-immobilization. Then, this review presents the major properties of immobilized laccase, namely pH stability, thermal stability, reusability, and storage stability, as well as the degradation efficiencies and associated kinetic parameters. In addition, the optimization of the immobilized enzyme, specifically on laccase immobilization methods and multi-enzyme system are critically discussed. Finally, pertinent future perspectives are elucidated in order to significantly advance the developments of this research field to a higher level.
Collapse
Affiliation(s)
- Zhonghao Chen
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| |
Collapse
|
20
|
Basri RS, Rahman RNZRA, Kamarudin NHA, Latip W, Ali MSM. Characterization of Carboxylic Acid Reductase from Mycobacterium phlei Immobilized onto Seplite LX120. Polymers (Basel) 2022; 14:polym14204375. [PMID: 36297953 PMCID: PMC9609965 DOI: 10.3390/polym14204375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
A multi-domain oxidoreductase, carboxylic acid reductase (CAR), can catalyze the one-step reduction of carboxylic acid to aldehyde. This study aimed to immobilize bacterial CAR from a moderate thermophile Mycobacterium phlei (MpCAR). It was the first work reported on immobilizing bacterial CAR onto a polymeric support, Seplite LX120, via simple adsorption. Immobilization time and protein load were optimized for MpCAR immobilization. The immobilized MpCAR showed optimal activity at 60 °C and pH 9. It was stable over a wide range of temperatures (10 to 100 °C) and pHs (4–11), retaining more than 50% of its activity. The immobilized MpCAR also showed stability in polar solvents. The adsorption of MpCAR onto the support was confirmed by Scanning Electron Microscopy (SEM), Fourier-Transform Infrared (FTIR) spectroscopy, and Brunauer–Emmett–Teller (BET) analysis. The immobilized MpCAR could be stored for up to 6 weeks at 4 °C and 3 weeks at 25 °C. Immobilized MpCAR showed great operational stability, as 59.68% of its activity was preserved after 10 assay cycles. The immobilized MpCAR could also convert approximately 2.6 mM of benzoic acid to benzaldehyde at 60 °C. The successfully immobilized MpCAR on Seplite LX120 exhibited improved properties that benefit green industrial processes.
Collapse
Affiliation(s)
- Rose Syuhada Basri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd. Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Wahhida Latip
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
21
|
Sah D, Rai JPN, Ghosh A, Chakraborty M. A review on biosurfactant producing bacteria for remediation of petroleum contaminated soils. 3 Biotech 2022; 12:218. [PMID: 35965658 PMCID: PMC9365905 DOI: 10.1007/s13205-022-03277-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/21/2022] [Indexed: 11/01/2022] Open
Abstract
The discharge of potentially toxic petroleum hydrocarbons into the environment has been a matter of concern, as these organic pollutants accumulate in many ecosystems due to their hydrophobicity and low bioavailability. Petroleum hydrocarbons are neurotoxic and carcinogenic organic pollutants, extremely harmful to human and environmental health. Traditional treatment methods for removing hydrocarbons from polluted areas, including various mechanical and chemical strategies, are ineffective and costly. However, many indigenous microorganisms in soil and water can utilise hydrocarbon compounds as sources of carbon and energy and hence, can be employed to degrade hydrocarbon contaminants. Therefore, bioremediation using bacteria that degrade petroleum hydrocarbons is commonly viewed as an environmentally acceptable and effective method. The efficacy of bioremediation can be boosted further by using potential biosurfactant-producing microorganisms, as biosurfactants reduce surface tension, promote emulsification and micelle formation, making hydrocarbons bio-available for microbial breakdown. Further, introducing nanoparticles can improve the solubility of hydrophobic hydrocarbons as well as microbial synthesis of biosurfactants, hence establishing a favourable environment for microbial breakdown of these chemicals. The review provides insights into the role of microbes in the bioremediation of soils contaminated with petroleum hydrocarbons and emphasises the significance of biosurfactants and potential biosurfactant-producing bacteria. The review partly focusses on how nanotechnology is being employed in different critical bioremediation processes.
Collapse
Affiliation(s)
- Diksha Sah
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - J. P. N. Rai
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Ankita Ghosh
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Moumita Chakraborty
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| |
Collapse
|
22
|
Sharma P, Kumari R, Yadav M, Lal R. Evaluation of TiO 2 Nanoparticles Physicochemical Parameters Associated with their Antimicrobial Applications. Indian J Microbiol 2022; 62:338-350. [PMID: 35974921 PMCID: PMC9375816 DOI: 10.1007/s12088-022-01018-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2NPs) usage is increasing in everyday consumer products, hence, assessing their toxic impacts on living organisms and environment is essential. Various studies have revealed the significant role of TiO2NPs physicochemical properties on their toxicity. However, TiO2NPs are still poorly characterized with respect to their physicochemical properties, and environmental factors influencing their toxicity are either ignored or are too complex to be assessed under laboratory conditions. The outcomes of these studies are diverse and inconsistent due to lack of standard protocols. TiO2NPs toxicity also differs for in vivo and in vitro systems, which must also be considered during standardization of protocols to maintain uniformity and reproducibility of results. This review critically evaluates impact of different physicochemical parameters of TiO2NPs and other experimental conditions, employed in different laboratories in determining their toxicity towards bacteria. These important observations may be helpful in evaluation of environmental risks posed by these nanoparticles and this can further assist regulatory bodies in policymaking.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Zoology, Gargi College, University of Delhi, New Delhi, 110049 India
| | - Rekha Kumari
- Molecular Microbiology and Bioinformatics Laboratory, Department of Zoology, University of Delhi, Miranda House, Delhi, 110007 India
| | - Meena Yadav
- Department of Zoology, Maitreyi College, University of Delhi, New Delhi, India
| | - Rup Lal
- The Energy and Resources Institute, IHC Complex, Lodhi Road, New Delhi, 110003 India
| |
Collapse
|
23
|
Singh R, Jha D, Dhawan U, Gautam HK, Kumar P. Therapeutic Applications of Self-assembled Indole-3-butanoyl-polyethylenimine Nanostructures. Indian J Microbiol 2022; 62:411-418. [PMID: 35974923 PMCID: PMC9375784 DOI: 10.1007/s12088-022-01015-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/06/2022] [Indexed: 12/24/2022] Open
Abstract
This study demonstrates the therapeutic potential of indole-3-butanoyl-polyethylenimine (IBP) nanostructures formed via self-assembly in aqueous system. Dynamic light scattering (DLS) analysis confirmed the formation of the nanostructures in the size range of ~ 194-331 nm. These nanostructures showed commendable antimicrobial activity against wide range of microbes including multi-drug resistant bacteria. Besides, appreciable antioxidant and anti-inflammatory activities were also observed. Results of cytotoxicity studies, performed on normal transformed human embryonic kidney (HEK 293) cells and human red blood cells (hRBCs), revealed almost non-toxic behavior of these nanostructures, however, remarkable toxicity on human breast cancer cells (MCF-7), human osteosarcoma cells (Mg63) and human liver cancer cells (HepG2) was observed. The pre-apoptotic and anti-proliferative activity of IBP nanostructures were confirmed by acridine orange/propidium iodide dual staining assay followed by confocal microscopy and scratch assay on Mg63 cells. Taken together, these results advocate the promising potential of the synthesized IBP nanostructures in the therapeutic applications. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-022-01015-y.
Collapse
Affiliation(s)
- Reena Singh
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Diksha Jha
- Immunology and Infectious Disease Biology Laboratory, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi, 110025 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, Dwarka, New Delhi, 110075 India
| | - Hemant K. Gautam
- Immunology and Infectious Disease Biology Laboratory, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi, 110025 India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India
| |
Collapse
|
24
|
Enzyme immobilization: Implementation of nanoparticles and an insight into polystyrene as the contemporary immobilization matrix. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Ainiwaer A, Liang Y, Ye X, Gao R. Characterization of a Novel Fe 2+ Activated Non-Blue Laccase from Methylobacterium extorquens. Int J Mol Sci 2022; 23:ijms23179804. [PMID: 36077196 PMCID: PMC9456135 DOI: 10.3390/ijms23179804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Herein, a novel laccase gene, Melac13220, was amplified from Methylobacterium extorquens and successfully expressed in Escherichia coli with a molecular weight of approximately 50 kDa. The purified Melac13220 had no absorption peak at 610 nm and remained silent within electron paramagnetic resonance spectra, suggesting that Melac13220 belongs to the non-blue laccase group. Both inductively coupled plasma spectroscopy/optical emission spectrometry (ICP-OES) and isothermal titration calorimetry (ITC) indicated that one molecule of Melac13220 can interact with two iron ions. Furthermore, the optimal temperature of Melac13220 was 65 °C. It also showed a high thermolability, and its half-life at 65 °C was 80 min. Melac13220 showed a very good acid environment tolerance; its optimal pH was 1.5. Cu2+ and Co2+ can slightly increase enzyme activity, whereas Fe2+ could increase Melac13220′s activity five-fold. Differential scanning calorimetry (DSC) indicated that Fe2+ could also stabilize Melac13220. Unlike most laccases, Melac13220 can efficiently decolorize Congo Red and Indigo Carmine dyes even in the absence of a redox mediator. Thus, the non-blue laccase from Methylobacterium extorquens shows potential application value and may be valuable for environmental protection, especially in the degradation of dyes at low pH.
Collapse
Affiliation(s)
| | | | | | - Renjun Gao
- Correspondence: ; Tel.: +86-431-18604313058; Fax: +86-431-85155200
| |
Collapse
|
26
|
Deng J, Wang H, Zhan H, Wu C, Huang Y, Yang B, Mosa A, Ling W. Catalyzed degradation of polycyclic aromatic hydrocarbons by recoverable magnetic chitosan immobilized laccase from Trametes versicolor. CHEMOSPHERE 2022; 301:134753. [PMID: 35490752 DOI: 10.1016/j.chemosphere.2022.134753] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
The capability of laccase to oxidate a broad range of polyphenols and aromatic substrates in vitro offers a new technological option for the remediation of polycyclic aromatic hydrocarbon (PAH) pollution with high cytotoxicity. However, laccase application in the remediation of PAH-contaminated sites mainly suffers from a low oxidation rate and high cost because of the difficulty in its recovery. In this study, laccases were immobilized on magnetic Fe3O4 particles coated with chitosan (Fe3O4@SiO2-chitosan) to improve the operational stability and reusability in the treatment of PAH pollution. The enzyme fixation capacity reached 158 mg g-1, and 79.1% of free laccase activities were reserved under the optimum immobilized condition of 4% glutaraldehyde, 1.0 mg mL-1 laccase, 2 h covalent bonding time, and 6 h fixation time. The degradation efficiencies of anthracene (ANT) and benzo[a]pyrene (B(a)P) by Fe3O4@SiO2-chitosan immobilized laccase in 48 h were 81.9% and 69.2%, respectively. Furthermore, it is very easy to magnetically recover the immobilized laccase from reaction systems and reuse it in a new batch. The relative activities of immobilized laccase were over 50% for the degradation of ANT and B(a)P in three catalytic runs, reaching the goal of substantially reducing cost in practice. According to the results from quantum calculations and mass spectrum analyses, the degradation products of ANT and B(a)P by laccase were anthraquinone and B(a)P-dione, respectively. The findings from this study provide valuable insight in promoting the application of immobilized laccase technology in the remediation of PAH contamination.
Collapse
Affiliation(s)
- Jibao Deng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hefei Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Haisheng Zhan
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chenxi Wu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yi Huang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
27
|
Enhancing laccase stability and activity for dyes decolorization using ZIF-8@MWCNT nanocomposite. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Pooalai R, Khongfak S, Leungtongkam U, Thummeepak R, Kunthalert D, Sitthisak S. Genomic analysis uncovers laccase-coding genes and biosynthetic gene clusters encoding antimicrobial compounds in laccase-producing Acinetobacter baumannii. Sci Rep 2022; 12:11932. [PMID: 35831359 PMCID: PMC9279374 DOI: 10.1038/s41598-022-16122-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/05/2022] [Indexed: 11/15/2022] Open
Abstract
Laccases are multicopper oxidase family enzymes that can oxidize various substrates. In this study, we isolated laccase-producing Acinetobacter spp. from the environment, and one isolate of laccase-producing Acinetobacter baumannii, designated NI-65, was identified. The NI-65 strain exhibited constitutive production of extracellular laccase in a crude extract using 2,6-dimethoxyphenol as a substrate when supplemented with 2 mM CuSO4. Whole-genome sequencing of the NI-65 strain revealed a genome size of 3.6 Mb with 3,471 protein-coding sequences. The phylogenetic analysis showed high similarity to the genome of A. baumannii NCIMB8209. Three laccase proteins, PcoA and CopA, that belong to bacterial CopA superfamilies, and LAC-AB, that belongs to the I-bacterial bilirubin oxidase superfamily, were identified. These proteins were encoded by three laccase-coding genes (pcoA, copA, and lac-AB). The lac-AB gene showed a sequence similar to that of polyphenol oxidase (PPO). Gene clusters encoding the catabolized compounds involved in the utilization of plant substances and secondary metabolite biosynthesis gene clusters encoding antimicrobial compounds were identified. This is the first report of whole-genome sequencing of laccase-producing A. baumannii, and the data from this study help to elucidate the genome of A. baumannii to facilitate its application in synthetic biology for enzyme production.
Collapse
Affiliation(s)
- Renuka Pooalai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Supat Khongfak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Udomluk Leungtongkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Rapee Thummeepak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Duangkamol Kunthalert
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sutthirat Sitthisak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand. .,Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| |
Collapse
|
29
|
Awais M, Kamal S, Ijaz F, Rafique M, Rehman S. Improved Catalytic Performance of Aspergillus flavus Laccase Immobilized on the Zinc Ferrite Nanoparticles. Catal Letters 2022. [DOI: 10.1007/s10562-022-04067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Pandey D, Daverey A, Dutta K, Arunachalam K. Bioremoval of toxic malachite green from water through simultaneous decolorization and degradation using laccase immobilized biochar. CHEMOSPHERE 2022; 297:134126. [PMID: 35247449 DOI: 10.1016/j.chemosphere.2022.134126] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/02/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
In this study, decolorization and degradation of malachite green dye was studied using the laccase immobilized pine needle biochar. Successful immobilization of biochar was achieved by adsorption and confirmed through scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX), Fourier transform infrared spectroscopy (FTIR). High laccase binding of 64.4 U/g and high immobilization yield of 78.1% was achieved using 4U of enzyme at pH3 and temperature 30 °C. The immobilized laccase retained >50% relative activity in the pH range 2-7, >45% relative activity at 65 °C and >55% relative activity at 4 °C for 4 weeks. The re-usability of immobilized enzyme was checked with 2, 2'-azino-bis 3-ethylbenzothiazoline-6-sulphonic acid (ABTS) substrate and enzyme retained 53% of its activity after 6 cycles. Immobilized laccase was used for the degradation and decolorization of azo dye malachite green in aqueous solution. More than 85% removal of malachite green dye (50 mg/L) was observed within 5 h. FTIR and high performance liquid chromatography (HPLC) analysis clearly indicated the breakdown of dye and presence of metabolites (leuco malachite green, methanone, [4-(dimethyl amino)pheny]phenyl and 3-dimethyl-phenyl amine) in gas chromatography-mass spectrometry (GC-MS) analysis confirmed the dye degradation. Phytotoxicity analysis indicated that the enzymatic degradation resulted in lesser toxic metabolites than the original dye. Thus, laccase immobilized biochar can be used as an efficient biocatalytic agent to remove dye from water.
Collapse
Affiliation(s)
- Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun, Uttarakhand, 248012, India
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, Uttarakhand, 248012, India; School of Biological Sciences, Doon University, Dehradun, Uttarakhand, 248012, India
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India.
| | - Kusum Arunachalam
- School of Environment and Natural Resources, Doon University, Dehradun, Uttarakhand, 248012, India.
| |
Collapse
|
31
|
Martínková L, Křístková B, Křen V. Laccases and Tyrosinases in Organic Synthesis. Int J Mol Sci 2022; 23:3462. [PMID: 35408822 PMCID: PMC8998183 DOI: 10.3390/ijms23073462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Laccases (Lac) and tyrosinases (TYR) are mild oxidants with a great potential in research and industry. In this work, we review recent advances in their use in organic synthesis. We summarize recent examples of Lac-catalyzed oxidation, homocoupling and heterocoupling, and TYR-catalyzed ortho-hydroxylation of phenols. We highlight the combination of Lac and TYR with other enzymes or chemical catalysts. We also point out the biological and pharmaceutical potential of the products, such as dimers of piceid, lignols, isorhamnetin, rutin, caffeic acid, 4-hydroxychalcones, thiols, hybrid antibiotics, benzimidazoles, benzothiazoles, pyrimidine derivatives, hydroxytyrosols, alkylcatechols, halocatechols, or dihydrocaffeoyl esters, etc. These products include radical scavengers; antibacterial, antiviral, and antitumor compounds; and building blocks for bioactive compounds and drugs. We summarize the available enzyme sources and discuss the scalability of their use in organic synthesis. In conclusion, we assume that the intensive use of laccases and tyrosinases in organic synthesis will yield new bioactive compounds and, in the long-term, reduce the environmental impact of industrial organic chemistry.
Collapse
Affiliation(s)
- Ludmila Martínková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic; (B.K.); (V.K.)
| | - Barbora Křístková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic; (B.K.); (V.K.)
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic; (B.K.); (V.K.)
| |
Collapse
|
32
|
Tarafdar A, Sirohi R, Balakumaran PA, Reshmy R, Madhavan A, Sindhu R, Binod P, Kumar Y, Kumar D, Sim SJ. The hazardous threat of Bisphenol A: Toxicity, detection and remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127097. [PMID: 34488101 DOI: 10.1016/j.jhazmat.2021.127097] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (or BPA) is a toxic endocrine disrupting chemical that is released into the environment through modern manufacturing practices. BPA can disrupt the production, function and activity of endogenous hormones causing irregularity in the hypothalamus-pituitary-gonadal glands and also the pituitary-adrenal function. BPA has immuno-suppression activity and can downregulate T cells and antioxidant genes. The genotoxicity and cytotoxicity of BPA is paramount and therefore, there is an immediate need to properly detect and remediate its influence. In this review, we discuss the toxic effects of BPA on different metabolic systems in the human body, followed by its mechanism of action. Various novel detection techniques (LC-MS, GC-MS, capillary electrophoresis, immunoassay and sensors) involving a pretreatment step (liquid-liquid microextraction and molecularly imprinted solid-phase extraction) have also been detailed. Mechanisms of various remediation strategies, including biodegradation using native enzymes, membrane separation processes, photocatalytic oxidation, use of nanosorbents and thermal degradation has been detailed. An overview of the global regulations pertaining to BPA has been presented. More investigations are required on the efficiency of integrated remediation technologies rather than standalone methods for BPA removal. The effect of processing operations on BPA in food matrices is also warranted to restrict its transport into food products.
Collapse
Affiliation(s)
- Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Palanisamy Athiyaman Balakumaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - R Reshmy
- Department of Chemistry, Bishop Moore College, Mavelikkara 690110, Kerela, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, Kerela, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - Yogesh Kumar
- Department of Food Science and Technology, National Institute of Food Technology and Entrepreneurship and Management, Sonipat 131028, Haryana, India
| | - Deepak Kumar
- Department of Food Science and Technology, National Institute of Food Technology and Entrepreneurship and Management, Sonipat 131028, Haryana, India
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
33
|
Nano-Therapeutics to Treat Acne Vulgaris. Indian J Microbiol 2022; 62:167-174. [DOI: 10.1007/s12088-022-01001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 11/05/2022] Open
|
34
|
Patel SKS, Kalia VC, Kim SY, Lee JK, Kim IW. Immobilization of Laccase Through Inorganic-Protein Hybrids Using Various Metal Ions. Indian J Microbiol 2022; 62:312-316. [DOI: 10.1007/s12088-022-01000-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
|
35
|
Patel SKS, Kalia VC. Advancements in the Nanobiotechnological Applications. Indian J Microbiol 2021; 61:401-403. [PMID: 34744195 PMCID: PMC8542030 DOI: 10.1007/s12088-021-00979-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Vipin C Kalia
- Department of Chemical Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
36
|
Kumar N, Chauhan NS. Nano-Biocatalysts: Potential Biotechnological Applications. Indian J Microbiol 2021; 61:441-448. [PMID: 34744199 PMCID: PMC8542021 DOI: 10.1007/s12088-021-00975-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Biocatalysts are a biomolecule of interest for various biotechnological applications. Non-reusability and poor stability of especially enzymes has always limited their applications in large-scale processing units. Nanotechnology paves a way by conjugating the biocatalysts on different matrices. It predominantly enables nanomaterials to overcome the limited efficacy of conventional biocatalysts. Nanomaterial conjugated nanobiocatalyst have enhanced catalytic properties, selectivity, and stability. Nanotechnology extended the flexibility to engineer biocatalysts for various innovative and predictive catalyses. So developed nanobiocatalyst harbors remarkable properties and has potential applications in diverse biotechnological sectors. This article summaries various developments made in the area of nanobiocatalyst towards their applications in biotechnological industries. Novel nanobiocatalyst engineering is an area of critical importance for harnessing the biotechnological potential.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Chemistry, Maharshi Dayanand University Rohtak, Rohtak, Haryana India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University Rohtak, Rohtak, Haryana India
| |
Collapse
|
37
|
Patel SKS, Shanmugam R, Lee JK, Kalia VC, Kim IW. Biomolecules Production from Greenhouse Gases by Methanotrophs. Indian J Microbiol 2021; 61:449-457. [PMID: 34744200 PMCID: PMC8542019 DOI: 10.1007/s12088-021-00986-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022] Open
Abstract
Harmful effects on living organisms and the environment are on the rise due to a significant increase in greenhouse gas (GHG) emissions through human activities. Therefore, various research initiatives have been carried out in several directions in relation to the utilization of GHGs via physicochemical or biological routes. An environmentally friendly approach to reduce the burden of significant emissions and their harmful effects is the bioconversion of GHGs, including methane (CH4) and carbon dioxide (CO2), into value-added products. Methanotrophs have enormous potential for the efficient biotransformation of CH4 to various bioactive molecules, including biofuels, polyhydroxyalkanoates, and fatty acids. This review highlights the recent developments in methanotroph-based systems for methanol production from GHGs and proposes future perspectives to improve process sustainability via biorefinery approaches.
Collapse
Affiliation(s)
- Sanjay K. S. Patel
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| | - Ramsamy Shanmugam
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| | - Vipin C. Kalia
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| | - In-Won Kim
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| |
Collapse
|
38
|
Anaerobic Digestion of Agri-Food Wastes for Generating Biofuels. Indian J Microbiol 2021; 61:427-440. [PMID: 34744198 DOI: 10.1007/s12088-021-00977-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022] Open
Abstract
Presently, fossil fuels are extensively employed as major sources of energy, and their uses are considered unsustainable due to emissions of obnoxious gases on the burning of fossil fuels, which can lead to severe environmental complications, including human health. To tackle these issues, various processes are developing to waste as a feed to generate eco-friendly fuels. The biological production of fuels is considered to be more beneficial than physicochemical methods due to their environmentally friendly nature, high rate of conversion at ambient physiological conditions, and less energy-intensive. Among various biofuels, hydrogen (H2) is considered as a wonderful due to high calorific value and generate water molecule as end product on the burning. The H2 production from biowaste is demonstrated, and agri-food waste can be potentially used as a feedstock due to their high biodegradability over lignocellulosic-based biomass. Still, the H2 production is uneconomical from biowaste in fuel competing market because of low yields and increased capital and operational expenses. Anaerobic digestion is widely used for waste management and the generation of value-added products. This article is highlighting the valorization of agri-food waste to biofuels in single (H2) and two-stage bioprocesses of H2 and CH4 production.
Collapse
|
39
|
Kumar N, Mittal A, Yadav M, Sharma S, Kumar T, Chakraborty R, Sengupta S, Chauhan NS. Photocatalytic TiO 2/CdS/ZnS nanocomposite induces Bacillus subtilis cell death by disrupting its metabolism and membrane integrity. Indian J Microbiol 2021; 61:487-496. [PMID: 34744204 DOI: 10.1007/s12088-021-00973-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/08/2021] [Indexed: 12/24/2022] Open
Abstract
Titanium dioxide (TiO2) is widely characterized for its application in clinical diagnostics, therapeutics, cosmetics, nutrition, and environment management. Despite enormous potential, its dependence on ultraviolet (UV) light for photocatalytic activity limits its commercialization. Accordingly in the present study, a photo catalytically superior ternary complex of TiO2 with Cadmium sulfide/Zinc sulfide (CdS/ZnS) has been synthesized, as well as, characterized for photo-induced antimicrobial activity. The band gap of crystalline TiO2/CdS/ZnS nanocomposite has been reduced (2.26 eV) and nanocomposite has shown the optimal photo-activation at 590 nm. TiO2 nanocomposite has significant bactericidal activity in visible light (P < 0.01). Exposure of the TiO2 nanocomposite affected the cellular metabolism by altering the 1681 metabolic features (P < 0.001) culminating in poor cellular survivability. Additionally, photo-induced reactive oxygen species generation through nanocomposite disrupts the microbial cellular structure. The present study synthesized photocatalytic nanocomposite as well as unveiled the holistic cellular effect of theTiO2/CdS/ZnS nanocomposite. Additionally, the present study also indicated the potential application of TiO2/CdS/ZnS nanocomposite for sustainable environment management, therapeutics, and various industries. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-021-00973-z.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Chemistry, Maharshi Dayanand University, Rohtak, Haryana India
| | - Anuj Mittal
- Department of Chemistry, Maharshi Dayanand University, Rohtak, Haryana India
| | - Monika Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana India
| | - Shankar Sharma
- Department of Chemistry, Maharshi Dayanand University, Rohtak, Haryana India
| | - Tarun Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana India
| | - Rahul Chakraborty
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shantanu Sengupta
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana India
| |
Collapse
|
40
|
Antimicrobial and Antioxidant Potential of Vernonia Cinerea Extract Coated AuNPs. Indian J Microbiol 2021; 61:506-518. [PMID: 34744206 DOI: 10.1007/s12088-021-00976-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022] Open
Abstract
Abstract Green synthesis of nanoparticles is an important tool to reduce the harmful effects associated with traditional methods. In the present investigation, we have synthesised gold nanoparticles (AuNPs) using aqueous extract prepared from fresh aerial parts (leaf and stem) of Vernonia cinerea as bioreducing agent. The visual indication of change in colour from pale yellow to brown to ruby-red indicated the successful formation of the AuNPs. Characterization of nanoparticles was carried out by UV-visible spectroscopy, X-ray crystallography (XRD), Transmission electron microscopy (TEM) and Energy dispersive X-ray analysis (EDX). UV-Vis spectra showed a specific peak at 546 nm which was the initial confirmation of the biosynthesized AuNPs. TEM images showed spherical and triangular shape of AuNPs with an average size of 25 nm. From FTIR spectrum, different functional groups were identified that could be responsible for the formation, stabilization, and capping of biosynthesized AuNPs. Aqueous plant extract and biosynthesised AuNPs were separately tested for their antimicrobial activity against six bacterial strains and four fungal strains. Biosynthesised AuNPs (2 mg/ml) showed significantly high zone of inhibition against the selected bacterial strains as compared to the aqueous plant extract. Maximum zone of inhibition (18.2 mm) was observed with AuNPs against Streptococcus pyogenes whereas comparatively less value (12.5 mm) was recorded with the plant extract. Interestingly, the inhibitory activity observed against bacterial strains was even better than ampicillin. Antifungal activity recorded with AuNPs (5 mg/ml) was maximum (17.4 mm) against R. oryzae and it was higher than positive control (17.00 mm) and plant extract (13.2 mm).The present study clearly showed that AuNPs coated with Vernonia cinerea extract were as good as positive control in inhibiting bacterial and fungal growth. In addition, these AuNPs also showed good antioxidant potential which was comparable to ascorbic acid. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12088-021-00976-w.
Collapse
|
41
|
Liu S, Bilal M, Rizwan K, Gul I, Rasheed T, Iqbal HMN. Smart chemistry of enzyme immobilization using various support matrices - A review. Int J Biol Macromol 2021; 190:396-408. [PMID: 34506857 DOI: 10.1016/j.ijbiomac.2021.09.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
The surface chemistry, pendent functional entities, and ease in tunability of various materials play a central role in properly coordinating with enzymes for immobilization purposes. Due to the interplay between the new wave of support matrices and enzymes, the development of robust biocatalytic constructs via protein engineering expands the practical scope and tunable catalysis functions. The concept of stabilization via functional entities manipulation, the surface that comprises functional groups, such as thiol, aldehyde, carboxylic, amine, and epoxy have been the important driving force for immobilizing purposes. Enzyme immobilization using multi-functional supports has become a powerful norm and presents noteworthy characteristics, such as selectivity, specificity, stability, resistivity, induce activity, reaction efficacy, multi-usability, high catalytic turnover, optimal yield, ease in recovery, and cost-effectiveness. There is a plethora of literature on traditional immobilization approaches, e.g., intramolecular chemical (covalent) attachment, adsorption, encapsulation, entrapment, and cross-linking. However, the existing literature is lacking state-of-the-art smart chemistry of immobilization. This review is a focused attempt to cover the literature gap of surface functional entities that interplay between support materials at large and enzyme of interest, in particular, to tailor robust biocatalysts to fulfill the growing and contemporary needs of several industrial sectors.
Collapse
Affiliation(s)
- Shuai Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Ijaz Gul
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Guangdong Province 518055, China
| | - Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
42
|
Mao G, Wang K, Wang F, Li H, Zhang H, Xie H, Wang Z, Wang F, Song A. An Engineered Thermostable Laccase with Great Ability to Decolorize and Detoxify Malachite Green. Int J Mol Sci 2021; 22:11755. [PMID: 34769185 PMCID: PMC8583942 DOI: 10.3390/ijms222111755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/28/2022] Open
Abstract
Laccases can catalyze the remediation of hazardous synthetic dyes in an eco-friendly manner, and thermostable laccases are advantageous to treat high-temperature dyeing wastewater. A novel laccase from Geothermobacter hydrogeniphilus (Ghlac) was cloned and expressed in Escherichia coli. Ghlac containing 263 residues was characterized as a functional laccase of the DUF152 family. By structural and biochemical analyses, the conserved residues H78, C119, and H136 were identified to bind with one copper atom to fulfill the laccase activity. In order to make it more suitable for industrial use, Ghlac variant Mut2 with enhanced thermostability was designed. The half-lives of Mut2 at 50 °C and 60 °C were 80.6 h and 9.8 h, respectively. Mut2 was stable at pH values ranging from 4.0 to 8.0 and showed a high tolerance for organic solvents such as ethanol, acetone, and dimethyl sulfoxide. In addition, Mut2 decolorized approximately 100% of 100 mg/L of malachite green dye in 3 h at 70 °C. Furthermore, Mut2 eliminated the toxicity of malachite green to bacteria and Zea mays. In summary, the thermostable laccase Ghlac Mut2 could effectively decolorize and detoxify malachite green at high temperatures, showing great potential to remediate the dyeing wastewater.
Collapse
Affiliation(s)
- Guotao Mao
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (G.M.); (K.W.); (F.W.); (H.L.); (H.Z.); (H.X.); (F.W.)
- The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Kai Wang
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (G.M.); (K.W.); (F.W.); (H.L.); (H.Z.); (H.X.); (F.W.)
| | - Fangyuan Wang
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (G.M.); (K.W.); (F.W.); (H.L.); (H.Z.); (H.X.); (F.W.)
| | - Hao Li
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (G.M.); (K.W.); (F.W.); (H.L.); (H.Z.); (H.X.); (F.W.)
| | - Hongsen Zhang
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (G.M.); (K.W.); (F.W.); (H.L.); (H.Z.); (H.X.); (F.W.)
- The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Hui Xie
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (G.M.); (K.W.); (F.W.); (H.L.); (H.Z.); (H.X.); (F.W.)
- The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhimin Wang
- Department of Applied Chemistry, College of Science, Henan Agricultural University, Zhengzhou 450002, China;
| | - Fengqin Wang
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (G.M.); (K.W.); (F.W.); (H.L.); (H.Z.); (H.X.); (F.W.)
- The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Andong Song
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (G.M.); (K.W.); (F.W.); (H.L.); (H.Z.); (H.X.); (F.W.)
- The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
43
|
Immobilization of cellulase on magnetized multiwall carbon nanotubes (m-MWCNTs) synthesized via eco-friendly (water-based) method. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01874-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
44
|
Varjani S, Bajaj A, Purohit HJ, Kalia VC. Bioremediation and Circular Biotechnology. Indian J Microbiol 2021; 61:235-236. [PMID: 34294988 PMCID: PMC8263819 DOI: 10.1007/s12088-021-00953-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Sunita Varjani
- Gujarat Pollution Control Board, Paryavaran Bhavan, CHH Road, Sector 10A, Gandhinagar, 382 010 Gujarat India
| | - Abhay Bajaj
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020 India
| | - Hemant J. Purohit
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020 India
| | - V. C. Kalia
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| |
Collapse
|
45
|
Removal of Petroleum Contaminants Through Bioremediation with Integrated Concepts of Resource Recovery: A Review. Indian J Microbiol 2021; 61:250-261. [PMID: 34294990 PMCID: PMC8263831 DOI: 10.1007/s12088-021-00928-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
There is an upsurge in industrial production to meet the rising demands of the rapidly growing population globally. The enormous energy demand of the growing economies still depends upon petroleum. It has also resulted in environmental pollution due to the release of petroleum origin pollutants. Soil and aquifers, especially in the direct impact zones of petroleum refineries, are the worst hit. The integrated concept of bioremediation and resource recovery offers a sustainable solution to mitigate environmental pollution. It involves biodegradation, a benign utilization of toxic wastes, and the recycling of natural resources. Bioremediation is considered an integral contributor to the emerging concepts of bio-economy and sustainable development goals. This review article aims to provide an updated overview of bioremediation involving petroleum-based contaminants. Microbial degradation is discussed as a promising strategy for petroleum refinery effluent and sludge treatment. The review also provides an insight into resource reuse and recovery as a holistic approach towards sustainable refinery waste treatment. Furthermore, the integrated technologies that deserve in-depth exploration for future study in the refinery sector are highlighted in the present study.
Collapse
|
46
|
Jha AK, Zamani S, Kumar A. Green synthesis and characterization of silver nanoparticles using Pteris vittata extract and their therapeutic activities. Biotechnol Appl Biochem 2021; 69:1653-1662. [PMID: 34347920 DOI: 10.1002/bab.2235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 01/01/2023]
Abstract
The bacterial infections have been substantially increasing with higher mortality and new regimens required for their management. The present work deals with the green synthesis of silver nanoparticles (AgNPs) using leaf extract of Pteris vittata at pH 9.0. The AgNPs showed a single absorption peak at 407 nm. The morphology of AgNPs was found to be spherical in shape analyzed by scanning electron micrographs. The X-ray diffraction studies revealed the face-centered cubic structure of AgNPs with a 17-nm average crystallite size. They showed the antimicrobial activity against Pseudomonas aeruginosa, and the cell growth was completely ceased at the minimum inhibitory concentration (MIC); 100 μg/mL, with rapidly decreased cell viability. This bactericidal effect was due to the enhancement of cell permeability caused by cell disruption. The AgNPs lead to show a promising antiquorum-sensing activity by inhibition of toxin protease and pyocyanin in P. aeruginosa by 88% and, 94% respectively, at the sub-MIC concentration (0.25× MIC). These results conclude that the green synthesis of AgNPs shows a promising antimicrobial and antivirulence activity against P. aeruginosa.
Collapse
Affiliation(s)
- Anal Kant Jha
- Department of Chemistry, T. M. Bhagalpur University, Bhagalpur, India
| | - Sabiha Zamani
- Centre for Nanoscience and Nanotechnology, Aryabhatta Knowledge University, Patna, India
| | - Antresh Kumar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India.,Department of Biotechnology, Central University of South Bihar, Gaya, India
| |
Collapse
|
47
|
Myco-remediation of Chlorinated Pesticides: Insights Into Fungal Metabolic System. Indian J Microbiol 2021; 61:237-249. [PMID: 34294989 DOI: 10.1007/s12088-021-00940-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/03/2021] [Indexed: 12/22/2022] Open
Abstract
Synthetic chemicals including organochlorine pesticides pose environment and health hazard due to persistent and bio-accumulation property. Majority of them are recognized as endocrine disruptors. Fungi are ubiquitous in nature and employs efficient enzymatic machinery for the biotransformation and degradation of toxic, recalcitrant pollutants. This review critically discusses the organochlorine biotransformation process mediated by fungi and highlights the role of enzymatic system responsible for biotransformation, especially distribution of dehalogenase homologs among fungal classes. It also explores the potential use of fungal derived biomaterial, mainly chitosan as an adsorbing biomaterial for pesticides and heavy metals removal. Further, prospects of employing fungus to over-come the existing bioremediation limitations are discussed. The study highlights the potential scope of utilizing fungi for initial biotransformation purposes, preceding final biodegradation by bacterial species under environmental conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-021-00940-8.
Collapse
|
48
|
Mitra A, Sreedharan SM, Singh R. Concrete Crack Restoration Using Bacterially Induced Calcium Metabolism. Indian J Microbiol 2021; 61:229-233. [PMID: 33927464 DOI: 10.1007/s12088-020-00916-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/08/2020] [Indexed: 12/28/2022] Open
Abstract
Concrete structures are prone to develop cracks and cause devastation. Repair and renovation are not enough to ensure complete eradication of crack development. The entire process is costly and laborious. The microbiologically induced calcium carbonated precipitation can be effective in restoring the cracks. The calcium-based nutrients along with specific bacterial strain have been used in the present investigation. The pellets of calcium as per Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy are deposited in the cracks of the concrete over a period of 7 days of incubation. The presence of bacteria in the calcium precipitates as demonstrated by scanning electron microscope provides adequate strength and adhering quality to the pellets. The effective filling of cracks is confirmed with the help ultrasonic pulse velocity test also. Since, elephantine heritage and high sky buildings have high maintenance costs, the use of present technique will cut down the cost and duration of restoration. Supplementary Information The online version of this article (10.1007/s12088-020-00916-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ashim Mitra
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh India
| | - Smitha Mony Sreedharan
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh India
| | - Rajni Singh
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh India
| |
Collapse
|