1
|
Li M, Yang Z, Zhai X, Li Z, Huang X, Shi J, Zou X, Lv G. Incorporation of Lactococcus lactis and Chia Mucilage for Improving the Physical and Biological Properties of Gelatin-Based Coating: Application for Strawberry Preservation. Foods 2024; 13:1102. [PMID: 38611406 PMCID: PMC11011328 DOI: 10.3390/foods13071102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
In this work, a gelatin/chia mucilage (GN/CM) composite coating material doped with Lactococcus lactis (LS) was developed for strawberry preservation applications. The results of the scanning electron microscope and Fourier transform infrared spectroscopy stated that the enhanced molecular interaction between the CM and GN matrix strengthened the density and compactness of the GN film. Antifungal results indicated that the addition of LS significantly (p < 0.05) improved the ability of the GN coating to inhibit the growth of Botrytis cinerea (inhibition percentage = 62.0 ± 4.6%). Adding CM significantly (p < 0.05) decreased the water vapour permeability and oxygen permeability of the GN coating by 32.7 ± 4.0% and 15.76 ± 1.89%, respectively. In addition, the incorporated CM also significantly (p < 0.05) improved the LS viability and elongation at break of the film by 13.11 ± 2.05% and 42.58 ± 1.21%, respectively. The GN/CM/LS composite coating material also exhibited an excellent washability. The results of this study indicated that the developed GN/CM/LS coating could be used as a novel active material for strawberry preservation.
Collapse
Affiliation(s)
- Mingrui Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Zhikun Yang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Xiaobo Zou
- Institute of Future Food Technology, JITRI, Yixing 214200, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Guanhua Lv
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| |
Collapse
|
2
|
Krishnan SV, Nampoothiri KM, Suresh A, Linh NT, Balakumaran PA, Pócsi I, Pusztahelyi T. Fusarium biocontrol: antagonism and mycotoxin elimination by lactic acid bacteria. Front Microbiol 2024; 14:1260166. [PMID: 38235432 PMCID: PMC10791833 DOI: 10.3389/fmicb.2023.1260166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
Mycotoxins produced by Fusarium species are secondary metabolites with low molecular weight formed by filamentous fungi generally resistant to different environmental factors and, therefore, undergo slow degradation. Contamination by Fusarium mycotoxins in cereals and millets is the foremost quality challenge the food and feed industry faces across the globe. Several types of chemical preservatives are employed in the mitigation process of these mycotoxins, and they help in long-term storage; however, chemical preservatives can be used only to some extent, so the complete elimination of toxins from foods is still a herculean task. The growing demand for green-labeled food drives to evade the use of chemicals in the production processes is getting much demand. Thus, the biocontrol of food toxins is important in the developing food sector. Fusarium mycotoxins are world-spread contaminants naturally occurring in commodities, food, and feed. The major mycotoxins Fusarium species produce are deoxynivalenol, fumonisins, zearalenone, and T2/HT2 toxins. Lactic acid bacteria (LAB), generally regarded as safe (GRAS), is a well-explored bacterial community in food preparations and preservation for ages. Recent research suggests that LAB are the best choice for extenuating Fusarium mycotoxins. Apart from Fusarium mycotoxins, this review focuses on the latest studies on the mechanisms of how LAB effectively detoxify and remove these mycotoxins through their various bioactive molecules and background information of these molecules.
Collapse
Affiliation(s)
- S. Vipin Krishnan
- Microbial Processes and Technology Division (MPTD), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - K. Madhavan Nampoothiri
- Microbial Processes and Technology Division (MPTD), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - Anandhu Suresh
- Microbial Processes and Technology Division (MPTD), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - Nguyen Thuy Linh
- Central Laboratory of Agricultural and Food Products, FAFSEM, University of Debrecen, Debrecen, Hungary
| | - P. A. Balakumaran
- Microbial Processes and Technology Division (MPTD), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, FAFSEM, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Wang Y, Jiang L, Zhang Y, Ran R, Meng X, Liu S. Research advances in the degradation of aflatoxin by lactic acid bacteria. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20230029. [PMID: 37901116 PMCID: PMC10601132 DOI: 10.1590/1678-9199-jvatitd-2023-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Aflatoxins are toxic secondary metabolites that often contaminate food and animal feed, causing huge economic losses and serious health hazards. Aflatoxin contamination has become a major concern worldwide. Biological methods have been used to reduce aflatoxins in food and feed by inhibiting toxin production and detoxification. Among biological methods, lactic acid bacteria are of significant interest because of their safety, efficiency, and environmental friendliness. This study aimed to review the mechanisms by which lactic acid bacteria degrade aflatoxins and the factors that influence their degradation efficiency, including the action of the lactic acid bacteria themselves (cell wall adsorption) and the antifungal metabolites produced by the lactic acid bacteria. The current applications of lactic acid bacteria to food and feed were also reviewed. This comprehensive analysis provided insight into the binding mechanisms between lactic acid bacteria and aflatoxins, facilitating the practical applications of lactic acid bacteria to food and agriculture.
Collapse
Affiliation(s)
- Yuxi Wang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lishi Jiang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Zhang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ran Ran
- School of Light Industry and Materials, Chengdu Textile College, Chengdu, China
| | - Xiao Meng
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shukun Liu
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Navale V, Borade BR, Rama Krishna G, Vamkudoth KR, Kontham R. Metabolites from Lactococcus lactis subsp. lactis: Isolation, Structure Elucidation, and Antimicrobial Activity. ACS OMEGA 2023; 8:36628-36635. [PMID: 37841178 PMCID: PMC10568581 DOI: 10.1021/acsomega.3c01662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/05/2023] [Indexed: 10/17/2023]
Abstract
Herein, we disclose the identification of novel metabolites from a potential probiotic strain, Lactococcus lactis subsp. lactis, obtained from traditional dairy milk samples collected in Maharashtra, India (in January 2021). Isolated metabolites include pyrazin-2-carboxamide [1, pyrazinamide, a potential antitubercular drug], 3,5-dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4-one (2, DDMP), 2,4-di-tert-butylphenol (3), and hexadecanoic acid (4, palmitic acid). The chemical structures of these metabolites were elucidated through extensive 1D NMR (1H and 13C) and 2D NMR (HSQC, HMBC, and NOESY) analyses, high-resolution mass spectrometry, high-performance liquid chromatography, and single-crystal X-ray crystallography. Furthermore, these novel metabolites exhibited potent inhibitory activities against various bacteria, fungi, and yeast strains with minimum inhibitory concentrations ranging between 1.56 and 25 μg/mL, and compounds 1 and 3 were found to be most active against a wide range of microbial strains tested.
Collapse
Affiliation(s)
- Vishwambar
D. Navale
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Balasaheb R. Borade
- Organic
Chemistry Division, CSIR-National Chemical
Laboratory, Dr. Homi
Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gamidi Rama Krishna
- Organic
Chemistry Division, CSIR-National Chemical
Laboratory, Dr. Homi
Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Koteswara Rao Vamkudoth
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ravindar Kontham
- Organic
Chemistry Division, CSIR-National Chemical
Laboratory, Dr. Homi
Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Malesevic M, Gardijan L, Miljkovic M, O'Connor PM, Mirkovic N, Jovcic B, Cotter PD, Jovanovic G, Kojic M. Exploring the antibacterial potential of Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 by genome mining, bacteriocin gene overexpression, and chemical protein synthesis of lactolisterin BU variants. Lett Appl Microbiol 2023; 76:6986262. [PMID: 36695436 DOI: 10.1093/lambio/ovad004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/09/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Lactic acid bacterium Lactococcus lactis BGBU1-4 produces 43 amino acids (aa) long bacteriocin, lactolisterin BU (LBU), a 5.161 kDa peptide with potent antibacterial activity against many Gram-positive pathogens. In addition, BGBU1-4 produces an additional unknown product of 3.642 kDa with antibacterial activity. Here, we determined that the significant amount of naturally produced LBU breaks down to create a 3.642 kDa truncated form of LBU bacteriocin consisting of 31 N-terminal aa (LBU1-31) that exhibits 12.5% the antibacterial activity of the full-length LBU. We showed that chemically synthesized LBU is stable and 50% less active than native LBU, and so we used the synthetic peptides of LBU and its variants to further study their activities and antibacterial potential. Deletion analysis of LBU revealed that the 24 N-terminal aa of LBU (LBU1-24) are responsible for antibacterial activity, while downstream aa (25-43) determine the species-specific effectiveness of LBU. Although LBU1-31 contains aa 1-24, the truncation at position 31 is predicted to change the structure within aa 15-31 and might impact on antibacterial activity. Intriguingly, whole genome sequencing and genome mining established that BGBU1-4 is abundant in genes that encode potential antibacterials, but produces LBU and its breakdown product LBU1-31 exclusively.
Collapse
Affiliation(s)
- Milka Malesevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 444a Vojvode Stepe, Belgrade, Serbia
| | - Lazar Gardijan
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 444a Vojvode Stepe, Belgrade, Serbia
| | - Marija Miljkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 444a Vojvode Stepe, Belgrade, Serbia
| | - Paula M O'Connor
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.,APC Microbiome Ireland, Cork D03 E5R6, Ireland
| | - Nemanja Mirkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 444a Vojvode Stepe, Belgrade, Serbia
| | - Branko Jovcic
- Faculty of Biology, University of Belgrade, Beograd 11000, Serbia.,Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 444a Vojvode Stepe, Belgrade, Serbia
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.,APC Microbiome Ireland, Cork D03 E5R6, Ireland
| | - Goran Jovanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 444a Vojvode Stepe, Belgrade, Serbia
| | - Milan Kojic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 444a Vojvode Stepe, Belgrade, Serbia
| |
Collapse
|
6
|
Patel A, Sahu KP, Mehta S, Balamurugan A, Kumar M, Sheoran N, Kumar S, Krishnappa C, Ashajyothi M, Kundu A, Goyal T, Narayanasamy P, Kumar A. Rice leaf endophytic Microbacterium testaceum: Antifungal actinobacterium confers immunocompetence against rice blast disease. Front Microbiol 2022; 13:1035602. [PMID: 36619990 PMCID: PMC9810758 DOI: 10.3389/fmicb.2022.1035602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/07/2022] [Indexed: 12/24/2022] Open
Abstract
Genetic and functional characteristics of rice leaf endophytic actinobacterial member, Microbacterium are described. Morphotyping, multilocus sequence analysis and transmission electron microscopy indicated the species identity of the endophytic bacterium, OsEnb-ALM-D18, as Microbacterium testaceum. The endophytic Microbacterium showed probiotic solubilization of plant nutrients/minerals, produced hydrolytic enzyme/phytohormones, and showed endophytism in rice seedlings. Further, the endophytic colonization by M. testaceum OsEnb-ALM-D18 was confirmed using reporter gene coding for green fluorescence protein. Microbacterium OsEnb-ALM-D18 showed volatilome-mediated antibiosis (95.5% mycelial inhibition) on Magnaporthe oryzae. Chemical profiling of M. testaceum OsEnb-ALM-D18 volatilome revealed the abundance of 9-Octadecenoic acid, Hexadecanoic acid, 4-Methyl-2-pentanol, and 2,5-Dihydro-thiophene. Upon endobacterization of rice seedlings, M. testaceum altered shoot and root phenotype suggestive of activated defense. Over 80.0% blast disease severity reduction was observed on the susceptible rice cultivar Pusa Basmati-1 upon foliar spray with M. testaceum. qPCR-based gene expression analysis showed induction of OsCERK1, OsPAD4, OsNPR1.3, and OsFMO1 suggestive of endophytic immunocompetence against blast disease. Moreover, M. testaceum OsEnb-ALM-D18 conferred immunocompetence, and antifungal antibiosis can be the future integrated blast management strategy.
Collapse
Affiliation(s)
- Asharani Patel
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Sahil Mehta
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Mukesh Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neelam Sheoran
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shanu Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Aditi Kundu
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Tushar Goyal
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Aundy Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India,*Correspondence: Aundy Kumar, ; ; orcid.org/0000-0002-7401-9885
| |
Collapse
|
7
|
Zheng X, Nie W, Xu J, Zhang H, Liang X, Chen Z. Characterization of antifungal cyclic dipeptides of Lacticaseibacillus paracasei ZX1231 and active packaging film prepared with its cell-free supernatant and bacterial nanocellulose. Food Res Int 2022; 162:112024. [PMID: 36461308 DOI: 10.1016/j.foodres.2022.112024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/13/2022] [Accepted: 10/02/2022] [Indexed: 11/24/2022]
Abstract
Fungal infection and/or spoilage are major concerns of crop and food security worldwide, prompting the developments and application of various antimicrobial agents. In this study, nine strains of lactic acid bacteria (LAB) with antifungal activities were isolated from the traditional Chinese fermented wort of Meigui rice vinegar, where fungi coexist. The cell-free supernatant (CFS) of Lacticaseibacillus paracasei ZX1231 exhibited significant inhibitory activities against Aspergillus niger, Penicillium citrinum, Penicillium polonicum, Zygosaccharomyces rouxii, Talaromyces rubrifaciens, and Candida albicans. Among the four cyclic dipeptides (CDPs) uncovered from the CFS, cyclo(Phe-Leu) and cyclo(Anthranily-Pro) were found in the family Lactobacillaceae for the first time, which inhibited the C. albicans filamentation by targeting upon RAS1-cAMP-PKA pathway. CFS antifungal activities were optimally combined with a bacterial nanocellulose (BNC) matrix to prepare the active quality packaging CFS-BNC films. The challenge tests confirmed that CFS-BNC films significantly inhibited the fungi growth and thus prolonged the shelf life of bread, beef, cheese and soy sauce. L. paracasei ZX1231, its CFS, and the CFS-BNC film may have extensive applications in food preservation and food packaging.
Collapse
|
8
|
Antifungal activity of lactic acid bacteria and their application in food biopreservation. ADVANCES IN APPLIED MICROBIOLOGY 2022; 120:33-77. [PMID: 36243452 DOI: 10.1016/bs.aambs.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lactic acid bacteria (LAB) are ubiquitous bacteria associated with spontaneous lactic fermentation of vegetables, dairy and meat products. They are generally recognized as safe (GRAS), and they are involved in transformation of probiotic lacto-fermented foods, highly desired for their nutraceutical properties. The antifungal activity is one of the exciting properties of LAB, because of its possible application in food bio-preservation, as alternative to chemical preservatives. Many recent research works have been developed on antifungal activity of LAB, and they demonstrate their capacity to produce various antifungal compounds, (i.e. organic acids, PLA, proteinaceous compounds, peptides, cyclic dipeptides, fatty acids, and other compounds), of different properties (hydrophilic, hydrophobic and amphiphilic). The effectiveness of LAB in controlling spoilage and pathogenic fungi, demonstrated in different agricultural and food products, can be due to the synergistic effect between their antifungal compounds of different properties; where the amphiphilic-compounds allow the contact between the target microbial cell (hydrophilic compartment) and antifungal hydrophobic-compounds. Further studies on the interaction between compounds of these three properties are to de be developed, in order to highlight more their mechanism of action, and make LAB more profitable in improving shelf life and nutraceutical properties of foods.
Collapse
|
9
|
Mishra B, Mishra AK, Kumar S, Mandal SK, NSV L, Kumar V, Baek KH, Mohanta YK. Antifungal Metabolites as Food Bio-Preservative: Innovation, Outlook, and Challenges. Metabolites 2021; 12:12. [PMID: 35050134 PMCID: PMC8778586 DOI: 10.3390/metabo12010012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
Perishable food spoilage caused by fungi is a major cause of discomfort for food producers. Food sensory abnormalities range from aesthetic degeneration to significant aroma, color, or consistency alterations due to this spoilage. Bio-preservation is the use of natural or controlled bacteria or antimicrobials to enhance the quality and safety of food. It has the ability to harmonize and rationalize the required safety requirements with conventional preservation methods and food production safety and quality demands. Even though synthetic preservatives could fix such issues, there is indeed a significant social need for "clean label" foods. As a result, consumers are now seeking foods that are healthier, less processed, and safer. The implementation of antifungal compounds has gotten a lot of attention in recent decades. As a result, the identification and characterization of such antifungal agents has made promising advances. The present state of information on antifungal molecules, their modes of activity, connections with specific target fungi varieties, and uses in food production systems are summarized in this review.
Collapse
Affiliation(s)
- Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India; (B.M.); (S.K.M.); (L.N.)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (A.K.M.); (V.K.)
| | - Sanjay Kumar
- Department of Biotechnology, National Institute of Technology, Tadepalligudem, Andhra Pradesh 534101, India;
| | - Sanjeeb Kumar Mandal
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India; (B.M.); (S.K.M.); (L.N.)
| | - Lakshmayya NSV
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India; (B.M.); (S.K.M.); (L.N.)
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (A.K.M.); (V.K.)
- Department of Orthopedics Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (A.K.M.); (V.K.)
| | - Yugal Kishore Mohanta
- Department of Applied Biology, University of Science and Technology Meghalaya, Ri-Bhoi 793101, India
| |
Collapse
|