1
|
Dos Santos SN, Wuest M, Jans HS, Woodfield J, Nario AP, Krys D, Dufour J, Glubrecht D, Bergman C, Bernardes ES, Wuest F. Comparison of three 18F-labeled 2-nitroimidazoles for imaging hypoxia in breast cancer xenografts: [ 18F]FBNA, [ 18F]FAZA and [ 18F]FMISO. Nucl Med Biol 2023; 124-125:108383. [PMID: 37651917 DOI: 10.1016/j.nucmedbio.2023.108383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Tumour hypoxia is associated with increased metastasis, invasion, poor therapy response and prognosis. Most PET radiotracers developed and used for clinical hypoxia imaging belong to the 2-nitroimidazole family. Recently we have developed novel 2-nitroimidazole-derived PET radiotracer [18F]FBNA (N-(4-[18F]fluoro-benzyl)-2-(2-nitro-1H-imidazol-1-yl)-acet-amide), an 18F-labeled analogue of antiparasitic drug benznidazole. The present study aimed to analyze its radio-pharmacological properties and systematically compare its PET imaging profiles with [18F]FMISO and [18F]FAZA in preclinical triple-negative (MDA-MB231) and estrogen receptor-positive (MCF-7) breast cancer models. METHODS In vitro cellular uptake experiments were carried out in MDA-MB321 and MCF-7 cells under normoxic and hypoxic conditions. Metabolic stability in vivo was determined in BALB/c mice using radio-TLC analysis. Dynamic PET experiments over 3 h post-injection were performed in MDA-MB231 and MCF-7 tumour-bearing mice. Those PET data were used for kinetic modelling analysis utilizing the reversible two-tissue-compartment model. Autoradiography was carried out in tumour tissue slices and compared to HIF-1α immunohistochemistry. Detailed ex vivo biodistribution was accomplished in BALB/c mice, and this biodistribution data were used for dosimetry calculation. RESULTS Under hypoxic conditions in vitro cellular uptake was elevated in both cell lines, MCF-7 and MDA-MB231, for all three radiotracers. After intravenous injection, [18F]FBNA formed two radiometabolites, resulting in a final fraction of 65 ± 9 % intact [18F]FBNA after 60 min p.i. After 3 h p.i., [18F]FBNA tumour uptake reached SUV values of 0.78 ± 0.01 in MCF-7 and 0.61 ± 0.04 in MDA-MB231 tumours (both n = 3), representing tumour-to-muscle ratios of 2.19 ± 0.04 and 1.98 ± 0.15, respectively. [18F]FMISO resulted in higher tumour uptakes (SUV 1.36 ± 0.04 in MCF-7 and 1.23 ± 0.08 in MDA-MB231 (both n = 4; p < 0.05) than [18F]FAZA (0.66 ± 0.11 in MCF-7 and 0.63 ± 0.14 in MDA-MB231 (both n = 4; n.s.)), representing tumour-to-muscle ratios of 3.24 ± 0.30 and 3.32 ± 0.50 for [18F]FMISO, and 2.92 ± 0.74 and 3.00 ± 0.42 for [18F]FAZA, respectively. While the fraction per time of radiotracer entering the second compartment (k3) was similar within uncertainties for all three radiotracers in MDA-MB231 tumours, it was different in MCF-7 tumours. The ratios k3/(k3 + k2) and K1*k3/(k3 + k2) in MCF-7 tumours were also significantly different, indicating dissimilar fractions of radiotracer bound and trapped intracellularly: K1*k3/(k2 + k3) [18F]FMISO (0.0088 ± 0.001)/min, n = 4; p < 0.001) > [18F]FAZA (0.0052 ± 0.002)/min, n = 4; p < 0.01) > [18F]FBNA (0.003 ± 0.001)/min, n = 3). In contrast, in MDA-MB231 tumours, only K1 was significantly elevated for [18F]FMISO. However, this did not result in significant differences for K1*k3/(k2 + k3) for all three 2-nitroimidazoles in MDA-MB231 tumours. CONCLUSION Novel 2-nitroimidazole PET radiotracer [18F]FBNA showed uptake into hypoxic breast cancer cells and tumour tissue presumably associated with elevated HIF1-α expression. Systematic comparison of PET imaging performance with [18F]FMISO and [18F]FAZA in different types of preclinical breast cancer models revealed a similar tumour uptake profile for [18F]FBNA with [18F]FAZA and, despite its higher lipophilicity, still a slightly higher muscle tissue clearance compared to [18F]FMISO.
Collapse
Affiliation(s)
- Sofia Nascimento Dos Santos
- Radiopharmacy Center, Nuclear and Energy Research Institute (IPEN / CNEN - SP), CEP 05508-000 São Paulo, SP, Brazil
| | - Melinda Wuest
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton T6G 2R7, Alberta, Canada
| | - Hans-Sonke Jans
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton T6G 2R7, Alberta, Canada
| | - Jenilee Woodfield
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton T6G 2R7, Alberta, Canada
| | - Arian Pérez Nario
- Radiopharmacy Center, Nuclear and Energy Research Institute (IPEN / CNEN - SP), CEP 05508-000 São Paulo, SP, Brazil
| | - Daniel Krys
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton T6G 2R7, Alberta, Canada
| | - Jennifer Dufour
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton T6G 2R7, Alberta, Canada
| | - Darryl Glubrecht
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton T6G 2R7, Alberta, Canada
| | - Cody Bergman
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton T6G 2R7, Alberta, Canada
| | - Emerson Soares Bernardes
- Radiopharmacy Center, Nuclear and Energy Research Institute (IPEN / CNEN - SP), CEP 05508-000 São Paulo, SP, Brazil
| | - Frank Wuest
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton T6G 2R7, Alberta, Canada.
| |
Collapse
|
2
|
Lopes S, Ferreira S, Caetano M. PET/CT in the Evaluation of Hypoxia for Radiotherapy Planning in Head and Neck Tumors: Systematic Literature Review. J Nucl Med Technol 2020; 49:107-113. [PMID: 33361182 DOI: 10.2967/jnmt.120.249540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
PET/CT combines imaging at the molecular level along with imaging at the anatomic level, which, with the administration of a hypoxia-sensitive radiopharmaceutical, allows evaluation of tissue oxygenation. Methods: This work consisted of a systematic literature review that included websites, books, and articles dated from July 1997 to December 2019. The aim was to identify the PET radiopharmaceuticals best suited to the detection of cell hypoxia and to recognize the benefits for planning intensity-modulated radiation therapy (IMRT) and volumetric arc therapy (VMAT). Results: Hypoxia affects the likelihood of cure for head and neck tumors, reducing the success rate. Radiopharmaceuticals such as 18F-fluoromisonidazole, 18F-fluoroerythronitromidazole, and 18F-HX4 (18F-3-fluoro-2-(4-((2-nitro-1H-imidazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)propan-1-ol) allow the delineation of hypoxic subvolumes within the target volume to optimize IMRT/VMAT. Conclusion: Identification of hypoxic areas with PET/CT imaging and use of subsequent IMRT/VMAT allows for possible escalation of radiation dose in radioresistant subvolumes, with a consequent decrease in relapses and an increased likelihood of disease-free survival.
Collapse
Affiliation(s)
- Susana Lopes
- Nottingham University Hospitals, Nottingham, United Kingdom
| | - Sara Ferreira
- Dr. Lopes Dias School of Health-Polytechnic Institute of Castelo Branco, Castelo Branco, Portugal; and
| | - Marco Caetano
- Lisbon School of Health Technology-Polytechnic Institute of Lisbon, Lisbon, Portugal
| |
Collapse
|
3
|
Pasquali M, Martini P, Shahi A, Jalilian AR, Osso JA, Boschi A. Copper-64 based radiopharmaceuticals for brain tumors and hypoxia imaging. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:371-381. [PMID: 33026209 DOI: 10.23736/s1824-4785.20.03285-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The most common and aggressive primary malignancy of the central nervous system is Glioblastoma that, as a wide range of malignant solid tumor, is characterized by extensive hypoxic regions. A great number of PET radiopharmaceuticals have been developed for the identification of hypoxia in solid tumors, among these, we find copper-based tracers. The aim of the current review paper was to provide an overview of radiocopper compounds applied for preclinical and clinical research in brain tumors and hypoxia imaging or therapy. EVIDENCE ACQUISITION Copper offers a wide variety of isotopes, useful for nuclear medicine applications, but only 64Cu and 67Cu are under the spotlight of the scientific community since being good candidates for theranostic applications. Between the two, 64Cu availability and production cost have attracted more interest of the scientific community. EVIDENCE SYNTHESIS In order to better understand the application of copper-bis thiosemicarbazones in hypoxia imaging, an overview of the role of hypoxia in cancer, existing non-imaging and imaging techniques for hypoxia identification and promising future avenues regarding hypoxia is necessary. Different proposed uptake mechanisms of [64Cu][Cu(ATSM)] inside the cell will be discussed and other 64Cu-based tracers for brain tumors described. CONCLUSIONS Among radio copper compounds [64Cu][Cu(ATSM)] is the most studied radiopharmaceutical for imaging and treatment of brain tumors. Experimental evidence suggested that [64Cu][Cu(ATSM)] could be more appropriately considered as a marker of over-reduced intracellular state rather than a pure hypoxia agent. Moreover, preliminary clinical data suggested that [64Cu]CuCl<inf>2</inf> can be a potentially useful diagnostic agent for malignancies of the central nervous system (CNS).
Collapse
Affiliation(s)
- Micol Pasquali
- National Institute of Nuclear Physics, National Laboratories of Legnaro, Padua, Italy
| | - Petra Martini
- National Institute of Nuclear Physics, National Laboratories of Legnaro, Padua, Italy.,Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Arman Shahi
- Faculty of Science, McMaster University, Hamilton, Canada
| | - Amir R Jalilian
- Department of Nuclear Science and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Joao A Osso
- Department of Nuclear Science and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Alessandra Boschi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy -
| |
Collapse
|
4
|
Apostolova I, Wedel F, Brenner W. Imaging of Tumor Metabolism Using Positron Emission Tomography (PET). Recent Results Cancer Res 2016; 207:177-205. [PMID: 27557539 DOI: 10.1007/978-3-319-42118-6_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Molecular imaging employing PET/CT enables in vivo visualization, characterization, and measurement of biologic processes in tumors at a molecular and cellular level. Using specific metabolic tracers, information about the integrated function of multiple transporters and enzymes involved in tumor metabolic pathways can be depicted, and the tracers can be directly applied as biomarkers of tumor biology. In this review, we discuss the role of F-18-fluorodeoxyglucose (FDG) as an in vivo glycolytic marker which reflects alterations of glucose metabolism in cancer cells. This functional molecular imaging technique offers a complementary approach to anatomic imaging such as computed tomography (CT) and magnetic resonance imaging (MRI) and has found widespread application as a diagnostic modality in oncology to monitor tumor biology, optimize the therapeutic management, and guide patient care. Moreover, emerging methods for PET imaging of further biologic processes relevant to cancer are reviewed, with a focus on tumor hypoxia and aberrant tumor perfusion. Hypoxic tumors are associated with poor disease control and increased resistance to cytotoxic and radiation treatment. In vivo imaging of hypoxia, perfusion, and mismatch of metabolism and perfusion has the potential to identify specific features of tumor microenvironment associated with poor treatment outcome and, thus, contribute to personalized treatment approaches.
Collapse
Affiliation(s)
- Ivayla Apostolova
- Department of Radiology and Nuclear Medicine, Medical School, Otto-von-Guericke University, Magdeburg A.ö.R., Magdeburg, Germany
| | - Florian Wedel
- Department of Nuclear Medicine, University Medicine Charité, Berlin, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, University Medicine Charité, Berlin, Germany.
| |
Collapse
|
5
|
Abstract
Nitroimidazoles and their derivatives have drawn continuing interest over the years because of their varied biological activities and their recently found applications in drug development for antimicrobial chemotherapeutics and antiangiogenic hypoxic cell radiosensitizers. The electron-deficient nitroaromatic compounds have been investigated for use in cancer treatment as chemical modifiers. In this patent (US 2014/0141084 A1), amphiphilic polymers were designed and prepared based on nitroimidazole derivatives and carboxymethyl dextran, which can be used for the hypoxia-selective release of diagnostics or drugs.
Collapse
Affiliation(s)
- Peng-Cheng Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University , Nanjing 210093 , PR, China . +86 25 8359 2672 ; +86 25 8359 2672 ; ;
| | | |
Collapse
|
7
|
Abstract
Although FDG PET and PET/CT have a well established role in the management of most cancer patients, they also have some limitations. For the last 15-20 years a growing number of non-FDG PET tracers have been used in research. Many of these new PET tracers are being investigated for the non-invasive assessment of different biologic functions in cancer cells. This unique information should contribute to making personalized cancer therapy a reality. This paper reviews the non-FDG PET tracers that are most likely to find clinical application, some of them in the near future.
Collapse
|
8
|
Blodgett T. Best practices: consensus on performing positron emission tomography-computed tomography for radiation therapy planning and for therapy response assessment. Semin Ultrasound CT MR 2011; 31:506-15. [PMID: 21147378 DOI: 10.1053/j.sult.2010.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The incorporation of positron emission tomography-computed tomography (PET-CT) into oncological imaging has expanded rapidly since the hybrid scanners were introduced approximately 10 years ago. PET-CT is becoming the standard of practice for the imaging diagnosis and staging of most cancers. Since its introduction, hardware-registered PET and CT images produced by a PET-CT scan were recognized as valuable not only for detection, staging and restaging applications but also for optimizing radiation treatment planning. Even before the introduction of PET-CT, the value of metabolic imaging with the use of FDG PET was recognized as a potentially powerful means of assessing response to various therapies, particularly chemotherapy regimens. To better understand the optimal use of PET-CT in radiation therapy planning and the role of PET-CT in assessing response to therapy, we invited experts from various disciplines to participate in focus group meetings that took place in 2009 and 2010. The Symposia focused on the use of PET-CT imaging in radiation therapy planning (2009) and the use of PET-CT in therapy response assessment (2010). This article will summarize areas of consensus reached by the group regarding many of the discussion topics. The consensus summaries covered in this article are meant to provide direction for future discussions on how to improve the application of this hybrid modality to optimize patient care.
Collapse
|