1
|
Paolino G, Esposito I, Hong S, Basturk O, Mattiolo P, Kaneko T, Veronese N, Scarpa A, Adsay V, Luchini C. Intraductal tubulopapillary neoplasm (ITPN) of the pancreas: a distinct entity among pancreatic tumors. Histopathology 2022; 81:297-309. [PMID: 35583805 PMCID: PMC9544156 DOI: 10.1111/his.14698] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
Abstract
AIMS Intraductal tubulopapillary neoplasm (ITPN) of the pancreas is a recently recognized pancreatic tumor entity. Here we aimed to determine the most important features with a systematic review coupled with an integrated statistical approach. METHODS AND RESULTS PubMed, SCOPUS, and Embase were searched for studies reporting data on pancreatic ITPN. The clinicopathological, immunohistochemical, and molecular data were summarized. Then a comprehensive survival analysis and a comparative analysis of the molecular alterations of ITPN with those of pancreatic ductal adenocarcinoma (PDAC) and intraductal papillary mucinous neoplasm (IPMN) from reference cohorts (including the International Cancer Genome Consortium- ICGC dataset and The Cancer Genome Atlas, TCGA program) were conducted. The core findings of 128 patients were as follows: (i) Clinicopathological parameters: pancreatic head is the most common site; presence of an associated adenocarcinoma was reported in 60% of cases, but with rare nodal metastasis. (ii) Immunohistochemistry: MUC1 (>90%) and MUC6 (70%) were the most frequently expressed mucins. ITPN lacked the intestinal marker MUC2; unlike IPMN, it did not express MUC5AC. (iii) Molecular landscape: Compared with PDAC/IPMN, the classic pancreatic drivers KRAS, TP53, CDKN2A, SMAD4, GNAS, and RNF43 were less altered in ITPN (P < 0.001), whereas MCL amplifications, FGFR2 fusions, and PI3KCA mutations were commonly altered (P < 0.001). (iv) Survival analysis: ITPN with a "pure" branch duct involvement showed the lowest risk of recurrence. CONCLUSION ITPN is a distinct pancreatic neoplasm with specific clinicopathological and molecular characteristics. Its recognition is fundamental for its clinical/prognostic implications and for the enrichment of potential targets for precision oncology.
Collapse
Affiliation(s)
- Gaetano Paolino
- Department of Diagnostics and Public Health, Section of PathologyUniversity and Hospital Trust of VeronaVeronaItaly
| | - Irene Esposito
- Institute of PathologyUniversity Hospital of DuesseldorfDuesseldorfGermany
| | - Seung‐Mo Hong
- Department of Pathology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Olca Basturk
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Paola Mattiolo
- Department of Diagnostics and Public Health, Section of PathologyUniversity and Hospital Trust of VeronaVeronaItaly
| | - Takuma Kaneko
- Department of Hepato‐Biliary‐Pancreatic MedicineNTT Medical CenterTokyoJapan
| | - Nicola Veronese
- Department of Internal MedicineUniversity of PalermoPalermoItaly
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of PathologyUniversity and Hospital Trust of VeronaVeronaItaly
- ARC‐Net Research CenterUniversity and Hospital Trust of VeronaVeronaItaly
| | - Volkan Adsay
- Department of PathologyKoç University Hospital and Koç University Research Center for Translational Medicine (KUTTAM)IstanbulTurkey
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of PathologyUniversity and Hospital Trust of VeronaVeronaItaly
- ARC‐Net Research CenterUniversity and Hospital Trust of VeronaVeronaItaly
| |
Collapse
|
2
|
Solid Tumors and Kinase Inhibition: Management and Therapy Efficacy Evolution. Int J Mol Sci 2022; 23:ijms23073830. [PMID: 35409190 PMCID: PMC8998551 DOI: 10.3390/ijms23073830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
The increasing numbers of cancer cases worldwide and the exceedingly high mortality rates of some tumor subtypes raise the question about if the current protocols for cancer management are effective and what has been done to improve upon oncologic patients’ prognoses. The traditional chemo-immunotherapy options for cancer treatment focus on the use of cytotoxic agents that are able to overcome neoplastic clones’ survival mechanisms and induce apoptosis, as well as on the ability to capacitate the host’s immune system to hinder the continuous growth of malignant cells. The need to avert the highly toxic profiles of conventional chemo-immunotherapy and to overcome the emerging cases of tumor multidrug resistance has fueled a growing interest in the field of precision medicine and targeted molecular therapies in the last couple of decades, although relatively new alternatives in oncologic practices, the increased specificity, and the positive clinical outcomes achieved through targeted molecular therapies have already consolidated them as promising prospects for the future of cancer management. In recent years, the development and application of targeted drugs as tyrosine kinase inhibitors have enabled cancer treatment to enter the era of specificity. In addition, the combined use of targeted therapy, immunotherapy, and traditional chemotherapy has innovated the standard treatment for many malignancies, bringing new light to patients with recurrent tumors. This article comprises a series of clinical trials that, in the past 5 years, utilized kinase inhibitors (KIs) as a monotherapy or in combination with other cytotoxic agents to treat patients afflicted with solid tumors. The results, with varying degrees of efficacy, are reported.
Collapse
|
3
|
Fasano M, Perri F, Della Corte CM, Di Liello R, Della Vittoria Scarpati G, Cascella M, Ottaiano A, Ciardiello F, Solla R. Translational Insights and New Therapeutic Perspectives in Head and Neck Tumors. Biomedicines 2021; 9:1045. [PMID: 34440249 PMCID: PMC8391435 DOI: 10.3390/biomedicines9081045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 01/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is characterized by a high mortality rate owing to very few available oncological treatments. For many years, a combination of platinum-based chemotherapy and anti-EGFR antibody cetuximab has represented the only available option for first-line therapy. Recently, immunotherapy has been presented an alternative for positive PD-L1 HNSCC. However, the oncologists' community foresees that a new therapeutic era is approaching. In fact, no-chemo options and some molecular targets are on the horizon. This narrative review addresses past, present, and future therapeutic options for HNSCC from a translational point of view.
Collapse
Affiliation(s)
- Morena Fasano
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.M.D.C.); (R.D.L.); (F.C.)
| | - Francesco Perri
- Medical and Experimental Head and Neck Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Via M. Semmola, 80131 Naples, Italy
| | - Carminia Maria Della Corte
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.M.D.C.); (R.D.L.); (F.C.)
| | - Raimondo Di Liello
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.M.D.C.); (R.D.L.); (F.C.)
| | | | - Marco Cascella
- Division of Anesthesia, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80100 Naples, Italy;
| | - Alessandro Ottaiano
- SSD Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80100 Naples, Italy;
| | - Fortunato Ciardiello
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.M.D.C.); (R.D.L.); (F.C.)
| | - Raffaele Solla
- Italian National Research Council, Institute of Biostructure & Bioimaging, 80131 Naples, Italy;
| |
Collapse
|
4
|
Glorieux M, Dok R, Nuyts S. The influence of PI3K inhibition on the radiotherapy response of head and neck cancer cells. Sci Rep 2020; 10:16208. [PMID: 33004905 PMCID: PMC7529775 DOI: 10.1038/s41598-020-73249-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/07/2020] [Indexed: 01/18/2023] Open
Abstract
Radiotherapy has a central role in the treatment of head and neck squamous cell carcinoma (HNSCC). Activation of the PI3K/AKT/mTOR pathway can decrease the efficiency of radiotherapy via the promotion of cell survival and DNA repair. Here, the influence of PI3K pathway inhibition on radiotherapy response was investigated. Two PI3K inhibitors were investigated and both BKM120 and GDC0980 effectively inhibited cellular and clonogenic growth in 6 HNSCC cells, both HPV-positive as well as HPV-negative. Despite targeted inhibition of the pathway and slight increase in DNA damage, PI3K inhibition did not show significant radiosensitization. Currently only one clinical trial is assessing the effectiveness of combining BKM120 with RT in HNSCC (NCT02113878) of which the results are eagerly awaited.
Collapse
Affiliation(s)
- Mary Glorieux
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000, Leuven, Belgium
| | - Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000, Leuven, Belgium
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000, Leuven, Belgium.
- Department of Radiation Oncology, Leuven Cancer Institute, UZ Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
5
|
Zhang Y, Nie L, Xu K, Fu Y, Zhong J, Gu K, Zhang L. SIRT6, a novel direct transcriptional target of FoxO3a, mediates colon cancer therapy. Am J Cancer Res 2019; 9:2380-2394. [PMID: 31149050 PMCID: PMC6531295 DOI: 10.7150/thno.29724] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
SIRT6, NAD+-dependent deacetylase sirtuin 6, has recently shown to suppress tumor growth in several types of cancer. Colon cancer is a challenging carcinoma associated with high morbidity and death. However, whether SIRT6 play a direct role in colon tumorigenesis and the underlying mechanism are not understood. Methods: To investigate the role of SIRT6 in colon cancer, we firstly analyzed the specimens from 50 colorectal cancer (CRC) patients. We generated shSIRT6 LoVo cells and xenograft mouse to reveal the essential role of SIRT6 in cell apoptosis and tumor growth. To explore the underlying mechanism of SIRT6 regulation, we performed FRET and real-time fluorescence imaging in living cells, real-time PCR, immunoprecipitaion, immunohistochemistry, flow cytometry and luciferase reporter assay. Results: The expression level of SIRT6 in patients' specimens is lower than that of normal controls, and patients with higher SIRT6 level have a better prognosis. Here, we identified that transcriptional factor FoxO3a is a direct up-stream of SIRT6 and positively regulated SIRT6 expression, which in turn, promotes apoptosis by activating Bax and mitochondrial pathway. Functional studies reveal that Akt inactivation increases FoxO3a activity and augment its binding to SIRT6 promoter, leading to elevated SIRT6 expression. Knocking down SIRT6 abolished apoptotic responses and conferred resistance to the treatment of BKM120. Combinational therapies with conventional drugs showed synergistic chemosensitization, which was SIRT6-dependent both in vitro and in vivo. Conclusion: The results uncover SIRT6 as a new potential biomarker for colon cancer, and its unappreciated mechanism about transcription and expression via Akt/FoxO3a pathway.
Collapse
|
6
|
Yang L, Ye F, Bao L, Zhou X, Wang Z, Hu P, Ouyang N, Li X, Shi Y, Chen G, Xia P, Chui M, Li W, Jia Y, Liu Y, Liu J, Ye J, Zhang Z, Bu H. Somatic alterations of TP53, ERBB2, PIK3CA and CCND1 are associated with chemosensitivity for breast cancers. Cancer Sci 2019; 110:1389-1400. [PMID: 30776175 PMCID: PMC6447848 DOI: 10.1111/cas.13976] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/24/2019] [Accepted: 02/08/2019] [Indexed: 02/05/2023] Open
Abstract
The correlation of genetic alterations with response to neoadjuvant chemotherapy (NAC) has not been fully revealed. In this study, we enrolled 247 breast cancer patients receiving anthracycline‐taxane‐based NAC treatment. A next generation sequencing (NGS) panel containing 36 hotspot breast cancer‐related genes was used in this study. Two different standards for the extent of pathologic complete response (pCR), ypT0/isypN0 and ypT0/is, were used as indicators for NAC treatment. TP53 mutation (n = 149, 60.3%), PIK3CA mutation (n = 109, 44.1%) and MYC amplification (n = 95, 38.5%) were frequently detected in enrolled cases. TP53 mutation (P = 0.019 for ypT0/isypN0 and P = 0.003 for ypT0/is) and ERBB2 amplification (P < 0.001 for both ypT0/isypN0 and ypT0/is) were related to higher pCR rates. PIK3CA mutation (P = 0.040 for ypT0/isypN0) and CCND2 amplification (P = 0.042 for ypT0/is) showed reduced sensitivity to NAC. Patients with MAPK pathway alteration had low pCR rates (P = 0.043 for ypT0/is). Patients with TP53 mutation (−) PIK3CA mutation (−) ERBB2 amplification (+) CCND1 amplification (−), TP53 mutation (+) PIK3CA mutation (−) ERBB2 amplification (+) CCND1 amplification (−) or TP53 mutation (+) PIK3CA mutation (+) ERBB2 amplification (+) CCND1 amplification (−)had significantly higher pCR rates (P < 0.05 for ypT0/isypN0 and ypT0/is) than wild type genotype tumors. Some cancer genetic alterations as well as pathway alterations were associated with chemosensitivity to NAC treatment. Our study may shed light on the molecular characteristics of breast cancer for prediction of NAC expectations when breast cancer is first diagnosed by biopsy.
Collapse
Affiliation(s)
- Libo Yang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China.,Laboratory of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Feng Ye
- Laboratory of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Longlong Bao
- Department of Pathology, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Xiaoyan Zhou
- Department of Pathology, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Zhe Wang
- Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Peizhen Hu
- Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Nengtai Ouyang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojuan Li
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Shi
- Department of Molecular Pathology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Gang Chen
- Department of Molecular Pathology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Peiyi Xia
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Meiying Chui
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Ying Jia
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yueping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | | | - Junyi Ye
- Burning Rock Biotech, Guangzhou, China
| | - Zhe Zhang
- Burning Rock Biotech, Guangzhou, China
| | - Hong Bu
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China.,Laboratory of Pathology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Mills JN, Rutkovsky AC, Giordano A. Mechanisms of resistance in estrogen receptor positive breast cancer: overcoming resistance to tamoxifen/aromatase inhibitors. Curr Opin Pharmacol 2018; 41:59-65. [PMID: 29719270 PMCID: PMC6454890 DOI: 10.1016/j.coph.2018.04.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
Several mechanisms of resistance have been identified, underscoring the complex nature of estrogen receptor (ER) signaling and the many connections between this pathway and other essential signaling pathways in breast cancer cells. Many therapeutic targets of cell signaling and cell cycle pathways have met success with endocrine therapy and remain an ongoing area of investigation. This review focuses on two major pathways that have recently emerged as important opportunities for therapeutic intervention in endocrine resistant breast tumors: PI3K/AKT/mTOR cell signaling and cyclinD1/cyclin-dependent kinase 4/6 cell cycle pathways. Additionally, we highlight individual and combination strategies in current clinical trials that target these pathways and others under investigation for the treatment of ER positive breast cancer.
Collapse
Affiliation(s)
- Jamie N Mills
- Medical University of South Carolina, Department of Medicine, Division of Hematology and Oncology, 39 Sabin St. MSC 635, Charleston, SC 29425, USA
| | - Alex C Rutkovsky
- Medical University of South Carolina, Department of Pathology and Laboratory Medicine, 39 Sabin St, Charleston, SC 29425, USA
| | - Antonio Giordano
- Medical University of South Carolina, Department of Medicine, Division of Hematology and Oncology, 39 Sabin St. MSC 635, Charleston, SC 29425, USA.
| |
Collapse
|
8
|
Glorieux M, Dok R, Nuyts S. Novel DNA targeted therapies for head and neck cancers: clinical potential and biomarkers. Oncotarget 2017; 8:81662-81678. [PMID: 29113422 PMCID: PMC5655317 DOI: 10.18632/oncotarget.20953] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/27/2017] [Indexed: 01/24/2023] Open
Abstract
Head and neck squamous cell carcinoma is the sixth most common cancer worldwide and despite advances in treatment over the last years, there is still a relapse rate of 50%. New therapeutic agents are awaited to increase the survival of patients. DNA repair targeted agents in combination with standard DNA damaging therapies are a recent evolution in cancer treatment. These agents focus on the DNA damage repair pathways in cancer cells, which are often involved in therapeutic resistance. Interesting targets to overcome these cancer defense mechanisms are: PARP, DNA-PK, PI3K, ATM, ATR, CHK1/2, and WEE1 inhibitors. The application of DNA targeted agents in head and neck squamous cell cancer showed promising preclinical results which are translated to multiple ongoing clinical trials, although no FDA approval has emerged yet. Biomarkers are necessary to select the patients that can benefit the most from this treatment, although adequate biomarkers are limited and validation is needed to predict therapeutic response.
Collapse
Affiliation(s)
- Mary Glorieux
- KU Leuven, University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, 3000 Leuven, Belgium
| | - Rüveyda Dok
- KU Leuven, University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, 3000 Leuven, Belgium
| | - Sandra Nuyts
- KU Leuven, University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, 3000 Leuven, Belgium
- Department of Radiation Oncology, Leuven Cancer Institute, UZ Leuven, 3000 Leuven, Belgium
| |
Collapse
|