1
|
Shrestha B, Stern NB, Zhou A, Dunn A, Porter T. Current trends in the characterization and monitoring of vascular response to cancer therapy. Cancer Imaging 2024; 24:143. [PMID: 39438891 PMCID: PMC11515715 DOI: 10.1186/s40644-024-00767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/26/2024] [Indexed: 10/25/2024] Open
Abstract
Tumor vascular physiology is an important determinant of disease progression as well as the therapeutic outcome of cancer treatment. Angiogenesis or the lack of it provides crucial information about the tumor's blood supply and therefore can be used as an index for cancer growth and progression. While standalone anti-angiogenic therapy demonstrated limited therapeutic benefits, its combination with chemotherapeutic agents improved the overall survival of cancer patients. This could be attributed to the effect of vascular normalization, a dynamic process that temporarily reverts abnormal vasculature to the normal phenotype maximizing the delivery and intratumor distribution of chemotherapeutic agents. Longitudinal monitoring of vascular changes following antiangiogenic therapy can indicate an optimal window for drug administration and estimate the potential outcome of treatment. This review primarily focuses on the status of various imaging modalities used for the longitudinal characterization of vascular changes before and after anti-angiogenic therapies and their clinical prospects.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Noah B Stern
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Annie Zhou
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tyrone Porter
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
2
|
Veikutis V, Brazdziunas M, Keleras E, Basevicius A, Grib A, Skaudickas D, Lukosevicius S. Diagnostic Approaches to Adult-Type Diffuse Glial Tumors: Comparative Literature and Clinical Practice Study. Curr Oncol 2023; 30:7818-7835. [PMID: 37754483 PMCID: PMC10528153 DOI: 10.3390/curroncol30090568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023] Open
Abstract
Gliomas are the most frequent intrinsic central nervous system tumors. The new 2021 WHO Classification of Central Nervous System Tumors brought significant changes into the classification of gliomas, that underline the role of molecular diagnostics, with the adult-type diffuse glial tumors now identified primarily by their biomarkers rather than histology. The status of the isocitrate dehydrogenase (IDH) 1 or 2 describes tumors at their molecular level and together with the presence or absence of 1p/19q codeletion are the most important biomarkers used for the classification of adult-type diffuse glial tumors. In recent years terminology has also changed. IDH-mutant, as previously known, is diagnostically used as astrocytoma and IDH-wildtype is used as glioblastoma. A comprehensive understanding of these tumors not only gives patients a more proper treatment and better prognosis but also highlights new difficulties. MR imaging is of the utmost importance for diagnosing and supervising the response to treatment. By monitoring the tumor on followup exams better results can be achieved. Correlations are seen between tumor diagnostic and clinical manifestation and surgical administration, followup care, oncologic treatment, and outcomes. Minimal resection site use of functional imaging (fMRI) and diffusion tensor imaging (DTI) have become indispensable tools in invasive treatment. Perfusion imaging provides insightful information about the vascularity of the tumor, spectroscopy shows metabolic activity, and nuclear medicine imaging displays tumor metabolism. To accommodate better treatment the differentiation of pseudoprogression, pseudoresponse, or radiation necrosis is needed. In this report, we present a literature review of diagnostics of gliomas, the differences in their imaging features, and our radiology's departments accumulated experience concerning gliomas.
Collapse
Affiliation(s)
- Vincentas Veikutis
- Medical Academy, Lithuanian University of Health Sciences, LT50161 Kaunas, Lithuania; (M.B.); (E.K.); (A.B.); (D.S.); (S.L.)
| | - Mindaugas Brazdziunas
- Medical Academy, Lithuanian University of Health Sciences, LT50161 Kaunas, Lithuania; (M.B.); (E.K.); (A.B.); (D.S.); (S.L.)
- Faculty of Medicine, Kaunas University of Applied Sciences, LT44162 Kaunas, Lithuania
| | - Evaldas Keleras
- Medical Academy, Lithuanian University of Health Sciences, LT50161 Kaunas, Lithuania; (M.B.); (E.K.); (A.B.); (D.S.); (S.L.)
| | - Algidas Basevicius
- Medical Academy, Lithuanian University of Health Sciences, LT50161 Kaunas, Lithuania; (M.B.); (E.K.); (A.B.); (D.S.); (S.L.)
| | - Andrei Grib
- Department of Internal Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, MD2004 Chisinau, Moldova;
| | - Darijus Skaudickas
- Medical Academy, Lithuanian University of Health Sciences, LT50161 Kaunas, Lithuania; (M.B.); (E.K.); (A.B.); (D.S.); (S.L.)
| | - Saulius Lukosevicius
- Medical Academy, Lithuanian University of Health Sciences, LT50161 Kaunas, Lithuania; (M.B.); (E.K.); (A.B.); (D.S.); (S.L.)
| |
Collapse
|
3
|
Johnson DR, Glenn CA, Javan R, Olson JJ. Congress of Neurological Surgeons systematic review and evidence-based guidelines update on the role of imaging in the management of progressive glioblastoma in adults. J Neurooncol 2022; 158:139-165. [PMID: 34694565 DOI: 10.1007/s11060-021-03853-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022]
Abstract
TARGET POPULATION These recommendations apply to adults with glioblastoma who have been previously treated with first-line radiation or chemoradiotherapy and who are suspected of experiencing tumor progression. QUESTION In patients with previously treated glioblastoma, is standard contrast-enhanced magnetic resonance imaging including diffusion weighted imaging useful for diagnosing tumor progression and differentiating progression from treatment-related changes? LEVEL II Magnetic resonance imaging with and without gadolinium enhancement including diffusion weighted imaging is recommended as the imaging surveillance method to detect the progression of previously diagnosed glioblastoma. QUESTION In patients with previously treated glioblastoma, does magnetic resonance spectroscopy add useful information for diagnosing tumor progression and differentiating progression from treatment-related changes beyond that derived from standard magnetic resonance imaging with and without gadolinium enhancement? LEVEL II Magnetic resonance spectroscopy is recommended as a diagnostic method to differentiate true tumor progression from treatment-related imaging changes or pseudo-progression in patients with suspected progressive glioblastoma. QUESTION In patients with previously treated glioblastoma, does magnetic resonance perfusion add useful information for diagnosing tumor progression and differentiating progression from treatment-related changes beyond that derived from standard magnetic resonance imaging with and without gadolinium enhancement? LEVEL III Magnetic resonance perfusion is suggested as a diagnostic method to differentiate true tumor progression from treatment-related imaging changes or pseudo-progression in patients with suspected progressive glioblastoma. QUESTION In patients with previously treated glioblastoma, does the addition of single-photon emission computed tomography (SPECT) provide additional useful information for diagnosing tumor progression and differentiating progression from treatment-related changes beyond that derived from standard magnetic resonance imaging with and without gadolinium enhancement? LEVEL III Single-photon emission computed tomography imaging is suggested as a diagnostic method to differentiate true tumor progression from treatment-related imaging changes or pseudo-progression in patients with suspected progressive glioblastoma. QUESTION In patients with previously treated glioblastoma, does 18F-fluorodeoxyglucose positron emission tomography add useful information for diagnosing tumor progression and differentiating progression from treatment-related changes beyond that derived from standard magnetic resonance imaging with and without gadolinium enhancement? LEVEL III The routine use of 18F-fluorodeoxyglucose positron emission tomography to identify progression of glioblastoma is not recommended. QUESTION In patients with previously treated glioblastoma, does positron emission tomography with amino acid agents add useful information for diagnosing tumor progression and differentiating progression from treatment-related changes beyond that derived from standard magnetic resonance imaging with and without gadolinium enhancement? LEVEL III It is suggested that amino acid positron emission tomography be considered to assist in the differentiation of progressive glioblastoma from treatment related changes.
Collapse
Affiliation(s)
- Derek Richard Johnson
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Chad Allan Glenn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ramin Javan
- Department of Neuroradiology, George Washington University Hospital, Washington, DC, USA
| | - Jeffrey James Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
4
|
Nagaraja TN, Elmghirbi R, Brown SL, Rey JA, Schultz L, Mukherjee A, Cabral G, Panda S, Lee IY, Sarntinoranont M, Keenan KA, Knight RA, Ewing JR. Imaging acute effects of bevacizumab on tumor vascular kinetics in a preclinical orthotopic model of U251 glioma. NMR IN BIOMEDICINE 2021; 34:e4516. [PMID: 33817893 PMCID: PMC8978145 DOI: 10.1002/nbm.4516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 05/05/2023]
Abstract
The effect of a human vascular endothelial growth factor antibody on the vasculature of human tumor grown in rat brain was studied. Using dynamic contrast-enhanced magnetic resonance imaging, the effects of intravenous bevacizumab (Avastin; 10 mg/kg) were examined before and at postadministration times of 1, 2, 4, 8, 12 and 24 h (N = 26; 4-5 per time point) in a rat model of orthotopic, U251 glioblastoma (GBM). The commonly estimated vascular parameters for an MR contrast agent were: (i) plasma distribution volume (vp ), (ii) forward volumetric transfer constant (Ktrans ) and (iii) reverse transfer constant (kep ). In addition, extracellular distribution volume (VD ) was estimated in the tumor (VD-tumor ), tumor edge (VD-edge ) and the mostly normal tumor periphery (VD-peri ), along with tumor blood flow (TBF), peri-tumoral hydraulic conductivity (K) and interstitial flow (Flux) and tumor interstitial fluid pressure (TIFP). Studied as % changes from baseline, the 2-h post-treatment time point began showing significant decreases in vp , VD-tumor, VD-edge and VD-peri , as well as K, with these changes persisting at 4 and 8 h in vp , K, VD-tumor, -edge and -peri (t-tests; p < 0.05-0.01). Decreases in Ktrans were observed at the 2- and 4-h time points (p < 0.05), while interstitial volume fraction (ve ; = Ktrans /kep ) showed a significant decrease only at the 2-h time point (p < 0.05). Sustained decreases in Flux were observed from 2 to 24 h (p < 0.01) while TBF and TIFP showed delayed responses, increases in the former at 12 and 24 h and a decrease in the latter only at 12 h. These imaging biomarkers of tumor vascular kinetics describe the short-term temporal changes in physical spaces and fluid flows in a model of GBM after Avastin administration.
Collapse
Affiliation(s)
| | - Rasha Elmghirbi
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Julian A. Rey
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Lonni Schultz
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Abir Mukherjee
- Department of Pathology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Glauber Cabral
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Swayamprava Panda
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Ian Y. Lee
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Kelly A. Keenan
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Robert A. Knight
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| | - James R. Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
- Department of Neurology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
5
|
Strauss SB, Meng A, Ebani EJ, Chiang GC. Imaging Glioblastoma Posttreatment: Progression, Pseudoprogression, Pseudoresponse, Radiation Necrosis. Neuroimaging Clin N Am 2021; 31:103-120. [PMID: 33220823 DOI: 10.1016/j.nic.2020.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Radiographic monitoring of posttreatment glioblastoma is important for clinical trials and determining next steps in management. Evaluation for tumor progression is confounded by the presence of treatment-related radiographic changes, making a definitive determination less straight-forward. The purpose of this article was to describe imaging tools available for assessing treatment response in glioblastoma, as well as to highlight the definitions, pathophysiology, and imaging features typical of true progression, pseudoprogression, pseudoresponse, and radiation necrosis.
Collapse
Affiliation(s)
- Sara B Strauss
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Alicia Meng
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Edward J Ebani
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Gloria C Chiang
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA.
| |
Collapse
|
6
|
Advanced magnetic resonance imaging to support clinical drug development for malignant glioma. Drug Discov Today 2020; 26:429-441. [PMID: 33249294 DOI: 10.1016/j.drudis.2020.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/23/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022]
Abstract
Even though the treatment options and survival of patients with glioblastoma multiforme (GBM), the most common type of malignant glioma, have improved over the past decade, there is still a high unmet medical need to develop novel therapies. Complexity in pathology and therapy require biomarkers to characterize tumors, to define malignant and active areas, to assess disease prognosis, and to quantify and monitor therapy response. While conventional magnetic resonance imaging (MRI) techniques have improved these assessments, limitations remain. In this review, we evaluate the role of various non-invasive biomarkers based on advanced structural and functional MRI techniques in the context of GBM drug development over the past 5 years.
Collapse
|
7
|
Petrova L, Korfiatis P, Petr O, LaChance DH, Parney I, Buckner JC, Erickson BJ. Cerebral blood volume and apparent diffusion coefficient - Valuable predictors of non-response to bevacizumab treatment in patients with recurrent glioblastoma. J Neurol Sci 2019; 405:116433. [PMID: 31476621 DOI: 10.1016/j.jns.2019.116433] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/30/2019] [Accepted: 08/22/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. The core of standard of care for newly diagnosed GBM was established in 2005 and includes maximum feasible surgical resection followed by radiation and temozolomide, with subsequent temozolomide with or without tumor-treating fields. Unfortunately, nearly all patients experience a recurrence. Bevacizumab (BV) is a commonly used second-line agent for such recurrences, but it has not been shown to impact overall survival, and short-term response is variable. METHODS We collected MRI perfusion and diffusion images from 54 subjects with recurrent GBM treated only with radiation and temozolomide. They were subsequently treated with BV. Using machine learning, we created a model to predict short term response (6 months) and overall survival. We set time thresholds to maximize the separation of responders/survivors versus non-responders/short survivors. RESULTS We were able to segregate 21 (68%) of 31 subjects into unlikely to respond categories based on Progression Free Survival at 6 months (PFS6) criteria. Twenty-two (69%) of 32 subjects could similarly be identified as unlikely to survive long using the machine learning algorithm. CONCLUSION With the use of machine learning techniques to evaluate imaging features derived from pre- and post-treatment multimodal MRI, it is possible to identify an important fraction of patients who are either highly unlikely to respond, or highly likely to respond. This can be helpful is selecting patients that either should or should not be treated with BV.
Collapse
Affiliation(s)
- Lucie Petrova
- Department of Anesthesiology and Critical Care Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria; Austria and Department of Neurosurgery, Military Hospital in Prague, 16902 Praha 6, Czech Republic
| | - Panagiotis Korfiatis
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States of America
| | - Ondra Petr
- Department of Neurosurgery, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Daniel H LaChance
- Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States of America
| | - Ian Parney
- Department of Neurosurgery, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States of America
| | - Jan C Buckner
- Department of Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States of America
| | - Bradley J Erickson
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States of America.
| |
Collapse
|
8
|
Strauss SB, Meng A, Ebani EJ, Chiang GC. Imaging Glioblastoma Posttreatment: Progression, Pseudoprogression, Pseudoresponse, Radiation Necrosis. Radiol Clin North Am 2019; 57:1199-1216. [PMID: 31582045 DOI: 10.1016/j.rcl.2019.07.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Radiographic monitoring of posttreatment glioblastoma is important for clinical trials and determining next steps in management. Evaluation for tumor progression is confounded by the presence of treatment-related radiographic changes, making a definitive determination less straight-forward. The purpose of this article was to describe imaging tools available for assessing treatment response in glioblastoma, as well as to highlight the definitions, pathophysiology, and imaging features typical of true progression, pseudoprogression, pseudoresponse, and radiation necrosis.
Collapse
Affiliation(s)
- Sara B Strauss
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Alicia Meng
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Edward J Ebani
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Gloria C Chiang
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA.
| |
Collapse
|
9
|
Correlation of radiological and immunochemical parameters with clinical outcome in patients with recurrent glioblastoma treated with Bevacizumab. Clin Transl Oncol 2019; 21:1413-1423. [PMID: 30877636 DOI: 10.1007/s12094-019-02070-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 02/23/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Some phase 2 trials had reported encouraging progression-free survival with Bevacizumab in monotherapy or combined with chemotherapy in glioblastoma. However, phase 3 trials showed a significant improvement in progression free survival without a benefit in overall survival. To date, there are no predictive biomarker of response for Bevacizumab in glioblastoma. METHODS We used Immunochemical analysis on tumor samples and pretreatment and post-treatment perfusion-MRI to try to identify possible predictive angiogenesis-related biomarkers of response and survival in patients with glioblastoma treated with bevacizumab in the first recurrence. We analyzed histological parameters: vascular proliferation, mitotic number and Ki-67 index; molecular factors: MGMT promoter methylation, EGFR amplification and EGFR variant III; immunohistochemical: MET, Midkine, HIF1, VEGFA, VEGF-R2, CD44, Olig2, microvascular area and microvascular density; and radiological: rCBV. RESULTS In the statistical analysis, no significant correlation of any histological, molecular, microvascular or radiological parameters could be demonstrated with the response rate, PFS or OS with bevacizumab treatment. CONCLUSION Unfortunately, in this histopathological, molecular, immunohistochemical and neuroradiological study we did not find any predictive biomarker of response or survival benefit for Bevacizumab in glioblastoma.
Collapse
|
10
|
Kasenene A, Baidya A, Shams S, Xu HB. Evaluation of tumor response to antiangiogenic therapy in patients with recurrent gliomas using contrast-enhanced perfusion-weighted magnetic resonance imaging techniques: A meta-analysis. World J Meta-Anal 2019; 7:51-65. [DOI: 10.13105/wjma.v7.i2.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND It is of vital importance to find radiologic biomarkers that can accurately predict treatment response. Usually, the initiation of antiangiogenic therapy causes a rapid decrease in the contrast enhancing tumor. However, the treatment response is observed only in a fraction of patients due to the partial radiological response secondary to stabilization of abnormal vessels which does not essentially indicate a true antitumor effect. Perfusion-weighted magnetic resonance imaging (PW-MRI) techniques have shown implicitness as a strong imaging biomarker for gliomas since they give hemodynamic information of blood vessels. Hence, there is a rapid expansion of PW-MRI related studies and clinical applications.
AIM To determine the diagnostic performance of PW-MRI techniques including: (A) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI); and (B) dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) for evaluating response to antiangiogenic therapy in patients with recurrent gliomas.
METHODS Databases such as PubMed (MEDLINE included), EMBASE, and Google Scholar were searched for relevant original articles. The included studies were assessed for methodological quality with the Quality Assessment of Diagnostic Accuracy Studies 2 tool. Medical imaging follow-up or histopathological analysis was used as the reference standard. The data were extracted by two reviewers independently, and then the sensitivity, specificity, summary receiver operating characteristic curve, area under the curve (AUC), and heterogeneity were calculated using Meta-Disc 1.4 software.
RESULTS This study analyzed a total of six articles. The overall sensitivity for DCE-MRI and DSC-MRI was 0.69 [95% confidence interval (CI): 0.53-0.82], and the specificity was 0.99 (95%CI: 0.93-1) by a random effects model (DerSimonianee-Laird model). The likelihood ratio (LR) +, LR-, and diagnostic odds ratio (DOR) were 12.84 (4.54-36.28), 0.35 (0.22-0.53), and 24.44 (7.19-83.06), respectively. The AUC (± SE) was 0.9921 (± 0.0120), and the Q* index (± SE) was 0.9640 (± 0.0323). For DSC-MRI, the sensitivity was 0.73, the specificity was 0.98, the LR+ was 7.82, the LR- was 0.32, the DOR was 31.65, the AUC (± SE) was 0.9925 (± 0.0132), and the Q* index was 0.9649 (± 0.0363). For DCE-MRI, the sensitivity was 0.41, the specificity was 0.97, the LR+ was 5.34, the LR- was 0.71, the DOR was 8.76, the AUC (± SE) was 0.9922 (± 0.2218), and the Q* index was 0.8935 (± 0.3037).
CONCLUSION This meta-analysis demonstrated a beneficial value of PW-MRI (DSC-MRI and DCE-MRI) in monitoring the response of recurrent gliomas to antiangiogenic therapy, with reasonable sensitivity, specificity, +LR, and -LR.
Collapse
Affiliation(s)
- Akanganyira Kasenene
- Department of Radiology and Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Aju Baidya
- Department of Radiology and Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Salman Shams
- Department of Radiology and Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Hai-Bo Xu
- Department of Radiology and Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
11
|
Kong Z, Yan C, Zhu R, Wang J, Wang Y, Wang Y, Wang R, Feng F, Ma W. Imaging biomarkers guided anti-angiogenic therapy for malignant gliomas. NEUROIMAGE-CLINICAL 2018; 20:51-60. [PMID: 30069427 PMCID: PMC6067083 DOI: 10.1016/j.nicl.2018.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 12/24/2022]
Abstract
Antiangiogenic therapy is a universal approach to the treatment of malignant gliomas but fails to prolong the overall survival of newly diagnosed or recurrent glioblastoma patients. Imaging biomarkers are quantitative imaging parameters capable of objectively describing biological processes, pathological changes and treatment responses in some situations and have been utilized for outcome predictions of malignant gliomas in anti-angiogenic therapy. Advanced magnetic resonance imaging techniques (including perfusion-weighted imaging and diffusion-weighted imaging), positron emission computed tomography and magnetic resonance spectroscopy are imaging techniques that can be used to acquire imaging biomarkers, including the relative cerebral blood volume (rCBV), Ktrans, and the apparent diffusion coefficient (ADC). Imaging indicators for a better prognosis when treating malignant gliomas with antiangiogenic therapy include the following: a lower pre- or post-treatment rCBV, less change in rCBV during treatment, a lower pre-treatment Ktrans, a higher vascular normalization index during treatment, less change in arterio-venous overlap during treatment, lower pre-treatment ADC values for the lower peak, smaller ADC volume changes during treatment, and metabolic changes in glucose and phenylalanine. The investigation and utilization of these imaging markers may confront challenges, but may also promote further development of anti-angiogenic therapy. Despite considerable evidence, future prospective studies are critically needed to consolidate the current data and identify novel biomarkers. Anti-angiogenic therapy only benefits specific populations of glioma patients. Advanced imaging techniques can produce quantitative imaging biomarkers. Physiological and metabolic parameter can predict outcome for anti-angiogenic therapy. Larger prospective studies are needed to provide further evidence.
Collapse
Key Words
- 18F-FDOPA, 3,4-dihydroxy-6-[18F]-fluoro-l-phenylalanine
- 18F-FLT, [18F]-fluoro-3-deoxy-3-L-fluorothymidine
- ADC, apparent diffusion coefficient
- AVOL, arterio-venous overlap
- Anti-angiogenic
- BBB, blood brain barrier
- Biomarkers
- CBF, cerebral blood flow
- CBV, cerebral blood volume
- CNS, central nervous system
- CT, computed tomography
- D-2HG, D-2-hydroxypentanedioic acid
- DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging
- DSC-MRI, dynamic susceptibility contrast magnetic resonance imaging
- DWI, diffusion-weighted imaging
- FDG, fluorodeoxyglucose
- FLAIR, fluid-attenuated inversion recovery
- FSE pcASL, fast spin echo pseudocontinuous artery spin labeling
- GBM, glioblastoma
- Glioma
- Imaging
- Ktrans, volume transfer constant between blood plasma and extravascular extracellular space
- MRI, magnetic resonance imaging
- MRS, magnetic resonance spectroscopy
- OS, overall survival
- PET, positron emission computed tomography
- PFS, progression-free survival
- PWI, perfusion-weighted imaging
- RANO, Response Assessment in Neuro-Oncology
- ROI, region of interest
- RSI, restriction spectrum imaging
- SUV, standardized uptake value
- TMZ, temozolomide
- Therapy
- VAI, vessel architectural imaging
- VEGF-A, vascular endothelial growth factor A
- VNI, vascular normalization index.
- fDMs, functional diffusion maps
- nGBM, newly diagnosed glioblastoma
- rCBF, relative cerebral blood flow
- rCBV, relative cerebral blood volume
- rGBM, recurrent glioblastoma
Collapse
Affiliation(s)
- Ziren Kong
- Department of Neurosurgery, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Chengrui Yan
- Department of Neurosurgery, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China; Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Ruizhe Zhu
- Department of Neurosurgery, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Jiaru Wang
- Department of Neurosurgery, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Yaning Wang
- Department of Neurosurgery, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China.
| | - Renzhi Wang
- Department of Neurosurgery, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China.
| | - Feng Feng
- Department of Radiology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China..
| | - Wenbin Ma
- Department of Neurosurgery, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
12
|
Early Changes in Tumor Perfusion from T1-Weighted Dynamic Contrast-Enhanced MRI following Neural Stem Cell-Mediated Therapy of Recurrent High-Grade Glioma Correlate with Overall Survival. Stem Cells Int 2018; 2018:5312426. [PMID: 29731779 PMCID: PMC5872616 DOI: 10.1155/2018/5312426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/24/2018] [Indexed: 11/17/2022] Open
Abstract
Background The aim of this study was to correlate T1-weighted dynamic contrast-enhanced MRI- (DCE-MRI-) derived perfusion parameters with overall survival of recurrent high-grade glioma patients who received neural stem cell- (NSC-) mediated enzyme/prodrug gene therapy. Methods A total of 12 patients were included in this retrospective study. All patients were enrolled in a first-in-human study (NCT01172964) of NSC-mediated therapy for recurrent high-grade glioma. DCE-MRI data from all patients were collected and analyzed at three time points: MRI#1—day 1 postsurgery/treatment, MRI#2— day 7 ± 3 posttreatment, and MRI#3—one-month follow-up. Plasma volume (Vp), permeability (Ktr), and leakage (λtr) perfusion parameters were calculated by fitting a pharmacokinetic model to the DCE-MRI data. The contrast-enhancing (CE) volume was measured from the last dynamic phase acquired in the DCE sequence. Perfusion parameters and CE at each MRI time point were recorded along with their relative change between MRI#2 and MRI#3 (Δ32). Cox regression was used to analyze patient survival. Results At MRI#1 and at MRI#3, none of the parameters showed a significant correlation with overall survival (OS). However, at MRI#2, CE and λtr were significantly associated with OS (p < 0.05). The relative λtr and Vp from timepoint 2 to timepoint 3 (Δ32λtr and Δ32Vp) were each associated with a higher hazard ratio (p < 0.05). All parameters were highly correlated, resulting in a multivariate model for OS including only CE at MRI#2 and Δ32Vp, with an R2 of 0.89. Conclusion The change in perfusion parameter values from 1 week to 1 month following NSC-mediated therapy combined with contrast-enhancing volume may be a useful biomarker to predict overall survival in patients with recurrent high-grade glioma.
Collapse
|
13
|
Treatment-related changes in glioblastoma: a review on the controversies in response assessment criteria and the concepts of true progression, pseudoprogression, pseudoresponse and radionecrosis. Clin Transl Oncol 2017; 20:939-953. [DOI: 10.1007/s12094-017-1816-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
|
14
|
Abstract
Modern imaging techniques, particularly functional imaging techniques that interrogate some specific aspect of underlying tumor biology, have enormous potential in neuro-oncology for disease detection, grading, and tumor delineation to guide biopsy and resection; monitoring treatment response; and targeting radiotherapy. This brief review considers the role of magnetic resonance imaging and spectroscopy, and positron emission tomography in these areas and discusses the factors that limit translation of new techniques to the clinic, in particular, the cost and difficulties associated with validation in multicenter clinical trials.
Collapse
Affiliation(s)
- Kevin M Brindle
- Kevin M. Brindle, Richard J. Mair, and Alan J. Wright, Cancer Research UK Cambridge Institute, Cambridge; David Y. Lewis, Cancer Research UK Beatson Institute, Glasgow, United Kingdom; José L. Izquierdo-García, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III and Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid, Spain
| | - José L Izquierdo-García
- Kevin M. Brindle, Richard J. Mair, and Alan J. Wright, Cancer Research UK Cambridge Institute, Cambridge; David Y. Lewis, Cancer Research UK Beatson Institute, Glasgow, United Kingdom; José L. Izquierdo-García, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III and Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid, Spain
| | - David Y Lewis
- Kevin M. Brindle, Richard J. Mair, and Alan J. Wright, Cancer Research UK Cambridge Institute, Cambridge; David Y. Lewis, Cancer Research UK Beatson Institute, Glasgow, United Kingdom; José L. Izquierdo-García, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III and Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid, Spain
| | - Richard J Mair
- Kevin M. Brindle, Richard J. Mair, and Alan J. Wright, Cancer Research UK Cambridge Institute, Cambridge; David Y. Lewis, Cancer Research UK Beatson Institute, Glasgow, United Kingdom; José L. Izquierdo-García, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III and Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid, Spain
| | - Alan J Wright
- Kevin M. Brindle, Richard J. Mair, and Alan J. Wright, Cancer Research UK Cambridge Institute, Cambridge; David Y. Lewis, Cancer Research UK Beatson Institute, Glasgow, United Kingdom; José L. Izquierdo-García, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III and Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|