1
|
Kader T, Lin JR, Hug C, Coy S, Chen YA, de Bruijn I, Shih N, Jung E, Pelletier RJ, Leon ML, Mingo G, Omran DK, Lee JS, Yapp C, Satravada BA, Kundra R, Xu Y, Chan S, Tefft JB, Muhlich J, Kim S, Gysler SM, Agudo J, Heath JR, Schultz N, Drescher C, Sorger PK, Drapkin R, Santagata S. Multimodal Spatial Profiling Reveals Immune Suppression and Microenvironment Remodeling in Fallopian Tube Precursors to High-Grade Serous Ovarian Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615007. [PMID: 39386723 PMCID: PMC11463462 DOI: 10.1101/2024.09.25.615007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
High-Grade Serous Ovarian Cancer (HGSOC) originates from fallopian tube (FT) precursors. However, the molecular changes that occur as precancerous lesions progress to HGSOC are not well understood. To address this, we integrated high-plex imaging and spatial transcriptomics to analyze human tissue samples at different stages of HGSOC development, including p53 signatures, serous tubal intraepithelial carcinomas (STIC), and invasive HGSOC. Our findings reveal immune modulating mechanisms within precursor epithelium, characterized by chromosomal instability, persistent interferon (IFN) signaling, and dysregulated innate and adaptive immunity. FT precursors display elevated expression of MHC-class I, including HLA-E, and IFN-stimulated genes, typically linked to later-stage tumorigenesis. These molecular alterations coincide with progressive shifts in the tumor microenvironment, transitioning from immune surveillance in early STICs to immune suppression in advanced STICs and cancer. These insights identify potential biomarkers and therapeutic targets for HGSOC interception and clarify the molecular transitions from precancer to cancer.
Collapse
Affiliation(s)
- Tanjina Kader
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Jia-Ren Lin
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Clemens Hug
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shannon Coy
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yu-An Chen
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Ino de Bruijn
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Natalie Shih
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Euihye Jung
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Mariana Lopez Leon
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Gabriel Mingo
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Dalia Khaled Omran
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jong Suk Lee
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Clarence Yapp
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | | | - Ritika Kundra
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Yilin Xu
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sabrina Chan
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Juliann B Tefft
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jeremy Muhlich
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sarah Kim
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stefan M Gysler
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - James R Heath
- Institute of Systems Biology, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Nikolaus Schultz
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Charles Drescher
- Swedish Cancer Institute Gynecologic Oncology and Pelvic Surgery, Seattle, WA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sandro Santagata
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Heras-Murillo I, Adán-Barrientos I, Galán M, Wculek SK, Sancho D. Dendritic cells as orchestrators of anticancer immunity and immunotherapy. Nat Rev Clin Oncol 2024; 21:257-277. [PMID: 38326563 DOI: 10.1038/s41571-024-00859-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 02/09/2024]
Abstract
Dendritic cells (DCs) are a heterogeneous group of antigen-presenting innate immune cells that regulate adaptive immunity, including against cancer. Therefore, understanding the precise activities of DCs in tumours and patients with cancer is important. The classification of DC subsets has historically been based on ontogeny; however, single-cell analyses are now additionally revealing a diversity of functional states of DCs in cancer. DCs can promote the activation of potent antitumour T cells and immune responses via numerous mechanisms, although they can also be hijacked by tumour-mediated factors to contribute to immune tolerance and cancer progression. Consequently, DC activities are often key determinants of the efficacy of immunotherapies, including immune-checkpoint inhibitors. Potentiating the antitumour functions of DCs or using them as tools to orchestrate short-term and long-term anticancer immunity has immense but as-yet underexploited therapeutic potential. In this Review, we outline the nature and emerging complexity of DC states as well as their functions in regulating adaptive immunity across different cancer types. We also describe how DCs are required for the success of current immunotherapies and explore the inherent potential of targeting DCs for cancer therapy. We focus on novel insights on DCs derived from patients with different cancers, single-cell studies of DCs and their relevance to therapeutic strategies.
Collapse
Affiliation(s)
- Ignacio Heras-Murillo
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Irene Adán-Barrientos
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Galán
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Stefanie K Wculek
- Innate Immune Biology Laboratory, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
3
|
Plesca I, Müller L, Böttcher JP, Medyouf H, Wehner R, Schmitz M. Tumor-associated human dendritic cell subsets: phenotype, functional orientation, and clinical relevance. Eur J Immunol 2022; 52:1750-1758. [PMID: 35106759 DOI: 10.1002/eji.202149487] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 11/09/2022]
Abstract
Dendritic cells (DCs) play a pivotal role in orchestrating innate and adaptive antitumor immunity. Activated DCs can produce large amounts of various proinflammatory cytokines, initiate T cell responses, and exhibit direct cytotoxicity against tumor cells. They also efficiently enhance the antitumoral properties of natural killer cells and T lymphocytes. Based on these capabilities, immunogenic DCs promote tumor elimination and are associated with improved survival of patients. Furthermore, they can essentially contribute to the clinical efficacy of immunotherapeutic strategies for cancer patients. However, depending on their intrinsic properties and the tumor microenvironment, DCs can be rendered dysfunctional and mediate tolerance by producing immunosuppressive cytokines and activating regulatory T cells. Such tolerogenic DCs can foster tumor progression and are linked to poor prognosis of patients. Here, we focus on recent studies exploring the phenotype, functional orientation, and clinical relevance of tumor-infiltrating conventional DC1, conventional DC2, plasmacytoid DCs, and monocyte-derived DCs in translational and clinical settings. In addition, recent findings demonstrating the influence of DCs on the efficacy of immunotherapeutic strategies are summarized. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ioana Plesca
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Luise Müller
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Jan P Böttcher
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Hind Medyouf
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rebekka Wehner
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Hopkins D, Sanchez H, Berwin B, Wilkinson-Ryan I. Cisplatin increases immune activity of monocytes and cytotoxic T-cells in a murine model of epithelial ovarian cancer. Transl Oncol 2021; 14:101217. [PMID: 34530192 PMCID: PMC8450249 DOI: 10.1016/j.tranon.2021.101217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/15/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is an immunologically active malignancy, but thus far immune therapy has had limited success in clinical trials. One barrier to implementation of efficacious immune therapies is a lack of knowledge of the effect of chemotherapy on the monocyte-derived component of the immune infiltrate within the tumor. We utilized the ID8 murine EOC model to investigate alterations within tumor ascites that occur following administration of platinum chemotherapy. Cisplatin treatment resulted in a significant increase in monocytes within the ascites of tumor bearing mice. We identified that CD11b+ cells from the ascites of mice that have been treated with cisplatin elicits an increase in IFN-ɣ expression from CD8+ T-cells compared to CD11b+ cells from a mouse treated with vehicle control (604.0 pg/mL v. 4328.0 pg/mL; p < .0001). Splenocytes derived from tumor bearing mice released increase levels of IFN-ɣ after treatment with cisplatin when incubated with dendritic cells (DCs) and tumor antigen (62.0 v. 92.1 pg/mL; p = .03). Cisplatin induced an increase in T-cell and monocyte/macrophage activation markers (CD62L and CD301). Levels of IL-10, IL-6, and VEGF in the cell free ascites of mice treated with cisplatin decreased (p > .05). These results indicate that treatment with cisplatin leads to an increase of anti-tumor activity within the ascites related to alterations in the ascites monocytes. Further investigation of these findings in humans is necessary to identify how these cells behave in different patient subgroups and if there is a role for monocyte directed therapy in conjunction with T-cell directed therapy and/or chemotherapy.
Collapse
Affiliation(s)
- Daniel Hopkins
- Department of Microbiology and Immunology, Dartmouth College, Lebanon NH, USA
| | - Hector Sanchez
- Department of Microbiology and Immunology, Dartmouth College, Lebanon NH, USA
| | - Brent Berwin
- Genomic Education, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Ivy Wilkinson-Ryan
- Department of Ob/Gyn Dartmouth-Hitchcock Medical Center, Geisel School of Medicine, NH, USA.
| |
Collapse
|
5
|
Exosomes of Epstein-Barr Virus-Associated Gastric Carcinoma Suppress Dendritic Cell Maturation. Microorganisms 2020; 8:microorganisms8111776. [PMID: 33198173 PMCID: PMC7697542 DOI: 10.3390/microorganisms8111776] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC) is characterized by the infiltration of lymphocytes and a unique tumor microenvironment. Exosomes from cancer cells are essential for intercellular communication. The aims of this study were to investigate the secretion of EBVaGC exosomes and their physiological effect on dendritic cell maturation in vitro and to characterize dendritic cells (DCs) in EBVaGC in vivo. Western blotting analysis of CD63 and CD81 of exosomes from EBV-infected gastric cancer cell lines indicated an increase in exosome secretion. The fraction of monocyte-derived DCs positive for the maturation marker CD86 was significantly suppressed when incubated with exosomes from EBV-infected gastric cancer cell lines. Immunohistochemical analysis of GC tissues expressing DC markers (S100, Langerin, CD1a, CD83, CD86, and BDCA-2) indicated that the density of DCs was generally higher in EBVaGC than in EBV-negative GC, although the numbers of CD83- and CD86-positive DCs were decreased in the group with high numbers of CD1a-positive DCs. A low number of CD83-positive DCs was marginally correlated with worse prognosis of EBVaGC in patients. EBVaGC is a tumor with abundant DCs, including immature and mature DCs. Moreover, the maturation of DCs is suppressed by exosomes from EBV-infected epithelial cells.
Collapse
|
6
|
Martin-Lluesma S, Graciotti M, Grimm AJ, Boudousquié C, Chiang CL, Kandalaft LE. Are dendritic cells the most appropriate therapeutic vaccine for patients with ovarian cancer? Curr Opin Biotechnol 2020; 65:190-196. [DOI: 10.1016/j.copbio.2020.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
|
7
|
Zhu S, Yang N, Wu J, Wang X, Wang W, Liu YJ, Chen J. Tumor microenvironment-related dendritic cell deficiency: a target to enhance tumor immunotherapy. Pharmacol Res 2020; 159:104980. [PMID: 32504832 DOI: 10.1016/j.phrs.2020.104980] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/07/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs), as specialized antigen-presenting cells, are essential for the initiation of specific T cell responses in innate antitumor immunity and, in certain cases, support humoral responses to inhibit tumor development. Mounting evidence suggests that the DC system displays a broad spectrum of dysfunctional status in the tumor microenvironment (TME), which ultimately affects antitumor immune responses. DC-based therapy can restore the function of DCs in the TME, thus showing a promising potential in tumor therapy. In this review, we provide an overview of the DC deficiency caused by various factors in the TME and discuss proposed strategies to reverse DC deficiency and the applications of novel combinatorial DC-based therapy for immune normalization of the tumor.
Collapse
Affiliation(s)
- Shan Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ning Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jing Wu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xue Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Wan Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | | | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
8
|
Okła K, Czerwonka A, Wawruszak A, Bobiński M, Bilska M, Tarkowski R, Bednarek W, Wertel I, Kotarski J. Clinical Relevance and Immunosuppressive Pattern of Circulating and Infiltrating Subsets of Myeloid-Derived Suppressor Cells (MDSCs) in Epithelial Ovarian Cancer. Front Immunol 2019; 10:691. [PMID: 31001284 PMCID: PMC6456713 DOI: 10.3389/fimmu.2019.00691] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/13/2019] [Indexed: 01/02/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) expansion is a hallmark of cancer. Three major MDSC subsets defined as monocytic (M)-MDSCs, polymorphonuclear (PMN)-MDSCs and early stage (e)MDSCs can be revealed in human diseases. However, the clinical relevance and immunosupressive pattern of these cells in epithelial ovarian cancer (EOC) are unknown. Therefore, we performed a comprehensive analysis of each MDSC subset and immunosupressive factors in the peripheral blood (PB), peritoneal fluid (PF), and the tumor tissue (TT) samples from EOC and integrated this data with the patients' clinicopathological characteristic. MDSCs were analyzed using multicolor flow cytometry. Immunosuppressive factors analysis was performed with ELISA and qRT-PCR. The level of M-MDSCs in the PB/PF/TT of EOC was significantly higher than in healthy donors (HD); frequency of PMN-MDSCs was significantly greater in the TT than in the PB/PF and HD; while the level of eMDSCs was greater in the PB compared with the PF and HD. Elevated abundance of tumor-infiltrating M-MDSCs was associated with advanced stage and high grade of EOC. An analysis of immunosuppressive pattern showed significantly increased blood-circulating ARG/IDO/IL-10-expressing M- and PMN-MDSCs in the EOC patients compared with HD and differences in the accumulation of these subsets in the three tumor immune microenvironments (TIME). This accumulation was positively correlated with levels of TGF-β and ARG1 in the plasma and PF. Low level of blood-circulating and tumor-infiltrating M-MDSCs, but neither PMN-MDSCs nor eMDSCs was strongly associated with prolonged survival in ovarian cancer patients. Our results highlight M-MDSCs as the subset with potential the highest clinical significance.
Collapse
Affiliation(s)
- Karolina Okła
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland.,Tumor Immunology Laboratory, Medical University of Lublin, Lublin, Poland
| | - Arkadiusz Czerwonka
- Department of Virology and Immunology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Marcin Bobiński
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Monika Bilska
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Rafał Tarkowski
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Wiesława Bednarek
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Iwona Wertel
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland.,Tumor Immunology Laboratory, Medical University of Lublin, Lublin, Poland
| | - Jan Kotarski
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
9
|
Okła K, Surówka J, Frąszczak K, Czerwonka A, Kaławaj K, Wawruszak A, Kotarski J, Wertel I. Assessment of the clinicopathological relevance of mesothelin level in plasma, peritoneal fluid, and tumor tissue of epithelial ovarian cancer patients. Tumour Biol 2018; 40:1010428318804937. [DOI: 10.1177/1010428318804937] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer remains the most lethal gynecologic malignancy. This is due to lack of effective screening, diagnosis predominance in late stage of disease, a high recurrence rate after primary therapy, and poor treatment response in platinum-resistant tumor. Thus, unique biomarkers, predictive of individual disease course, and prognosis are urgently needed. The aim of our study was to assess the clinicopathological significance of plasma, peritoneal fluid, and tumor tissue levels of mesothelin in epithelial ovarian cancer patients. Plasma and peritoneal fluid levels of mesothelin were measured by enzyme-linked immunosorbent assay. Tissue expression of MSLN was evaluated using quantitative real-time polymerase chain reaction. Preoperative plasma mesothelin levels were significantly higher in epithelial ovarian cancer patients in comparison to the patients with benign tumor and controls. There have been noticed significant differences in the plasma mesothelin levels based on International Federation of Gynecology and Obstetrics stage, grade, and histology type. No significant changes were observed between Kurman and Shih type I versus type II epithelial ovarian cancer. Interestingly, peritoneal fluid mesothelin levels revealed significant differences based on both grade and Kurman and Shih–type epithelial ovarian cancer. There were no relevant changes in the mesothelin level in peritoneal fluid between different stages and histology types compared to benign tumor. MSLN expression level in tumor tissue was significantly higher based on stage, grade, and Kurman and Shih–type epithelial ovarian cancer than in the benign masses. In addition, data showed significant higher MSLN expression in endometrioid tumors compared to benign masses and serous tumors. Plasma, peritoneal fluid, and tumor tissue levels of mesothelin positively correlated with level of CA125. Low mesothelin concentrations in plasma were also associated with prolonged patient survival. More importantly, we revealed that plasma mesothelin level was correlated with both peritoneal fluid mesothelin level and tumor MSLN expression. This study highlights that plasma mesothelin level may be a useful noninvasive biomarker surrogate for local tumor mesothelin status in monitoring of epithelial ovarian cancer patients.
Collapse
Affiliation(s)
- Karolina Okła
- Tumor Immunology Laboratory, The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Justyna Surówka
- Tumor Immunology Laboratory, The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Karolina Frąszczak
- Tumor Immunology Laboratory, The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Arkadiusz Czerwonka
- Department of Virology and Immunology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Katarzyna Kaławaj
- Department of Virology and Immunology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Jan Kotarski
- Tumor Immunology Laboratory, The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Iwona Wertel
- Tumor Immunology Laboratory, The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|