1
|
Li M, Zhu W, Lu Y, Shao Y, Xu F, Liu L, Zhao Q. Identification and validation of a CD4 + T cell-related prognostic model to predict immune responses in stage III-IV colorectal cancer. BMC Gastroenterol 2025; 25:153. [PMID: 40069612 PMCID: PMC11895157 DOI: 10.1186/s12876-025-03716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/19/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND CD4+ T cells play an indispensable role in anti-tumor immunity and shaping tumor development. We sought to explore the characteristics of CD4+ T cell marker genes and construct a CD4+ T cell-related prognostic signature for stage III-IV colorectal cancer (CRC) patients. METHOD We combined scRNA and bulk-RNA sequencing to analyze stage III-IV CRC patients and identified the CD4+ T cell marker genes. Unsupervised cluster analysis was performed to divide patients into two clusters. The LASSO and multivariate Cox regression were performed to establish a prognostic-related signature. RT-qpcr and immunofluorescence staining were performed to examine the expression of ANXA2 in CRC tissue. RESULT We found a higher infiltration abundance of activated memory CD4+ T cells was associated with improved prognosis in stage III-IV CRC patients. Patients were divided into two subgroups with distinct clinical and immunological behaviors based on CD4+ T cell marker genes. And then a prognostic signature consisting of six CD4+ T cell marker genes was established, which stratified patients into high- and low-risk groups. Immune spectrum showed that the low-risk group had higher immune cell infiltration than the high-risk group. Furthermore, the risk score of this signature could predict the susceptibility of stage III-IV CRC patients to immune checkpoint inhibitors and chemotherapy drugs. Finally, we validated that ANXA2 was enriched in Tregs and was associated with infiltration of Tregs in CRC tumor microenvironment. CONCLUSION The CD4+ T cell-related prognostic signature established in the study can predict the prognosis and the response to immunotherapy in stage III-IV CRC patients. Our findings provide new insights for tumor immunotherapy of advanced CRC patients.
Collapse
Affiliation(s)
- Mengting Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Weining Zhu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yuanyuan Lu
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Yu Shao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Fei Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China.
| |
Collapse
|
2
|
An Q, Duan L, Wang Y, Wang F, Liu X, Liu C, Hu Q. Role of CD4 + T cells in cancer immunity: a single-cell sequencing exploration of tumor microenvironment. J Transl Med 2025; 23:179. [PMID: 39953548 PMCID: PMC11829416 DOI: 10.1186/s12967-025-06167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025] Open
Abstract
Recent oncological research has intensely focused on the tumor immune microenvironment (TME), particularly the functions of CD4 + T lymphocytes. CD4+ T lymphocytes have been implicated in antigen presentation, cytokine release, and cytotoxicity, suggesting their contribution to the dynamics of the TME. Furthermore, the application of single-cell sequencing has yielded profound insights into the phenotypic diversity and functional specificity of CD4+ T cells in the TME. In this review, we discuss the current findings from single-cell analyses, emphasizing the heterogeneity of CD4+ T cell subsets and their implications in tumor immunology. In addition, we review the critical signaling pathways and molecular networks underpinning CD4+ T cell activities, thereby offering novel perspectives on therapeutic targets and strategies for cancer treatment and prognosis.
Collapse
Affiliation(s)
- Qi An
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Duan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuanyuan Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Fuxin Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiang Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Gannan Medical University, Jiangxi, 341000, China.
| | - Chao Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, 100034, China.
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
3
|
Yang T, Xu W, Zhao J, Chen J, Li S, Lin L, Zhong Y, Yang Z, Xie T, Ding Y. Construction of circRNA-mediated ceRNA network and immunoassay for investigating pathogenesis of COPD. Front Genet 2024; 15:1402856. [PMID: 39290984 PMCID: PMC11405249 DOI: 10.3389/fgene.2024.1402856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Background The chronic respiratory condition known as chronic obstructive pulmonary disease (COPD) was one of the main causes of death and disability worldwide. This study aimed to explore and elucidate new targets and molecular mechanisms of COPD by constructing competitive endogenous RNA (ceRNA) networks. Methods GSE38974 and GSE106986 were used to select DEGs in COPD samples and normal samples. Cytoscape software was used to construct and present protein-protein interaction (PPI) network, mRNA-miRNA co-expression network and ceRNA network. The CIBERSORT algorithm and the Lasso model were used to screen the immune infiltrating cells and hub genes associated with COPD, and the correlation between them was analyzed. COPD cell models were constructed in vitro and the expression level of ceRNA network factors mediated by hub gene was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results In this study, 852 differentially expressed genes were screened in the GSE38974 dataset, including 439 upregulated genes and 413 downregulated genes. Gene clustering analysis of PPI network results was performed using the Minimum Common Tumor Data Element (MCODE) in Cytoscape, and seven hub genes were screened using five algorithms in cytoHubba. CCL20 was verified as an important hub gene based on mRNA-miRNA co-expression network, GSE106986 database validation and the analysis of ROC curve results. Finally, we successfully constructed the circDTL-hsa-miR-330-3p-CCL20 network by Cytoscape. Immune infiltration analysis suggested that CCL20 can co-regulate immune cell migration and infiltration through chemokines CCL7 and CXCL3. In vitro experiments, the expression of circDTL and CCL20 was increased, while the expression of hsa-miR-330-3p was decreased in the COPD cell model. Conclusion By constructing the circDTL-hsa-miR-330-3p-CCL20 network, this study contributes to a better understanding of the molecular mechanism of COPD development, which also provides important clues for the development of new therapeutic strategies and drug targets.
Collapse
Affiliation(s)
- Ting Yang
- Department of General Practice, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, China
- Zayun Township Health Center, Qiongzhong Li and Miao Autonomous County, Haikou, Hainan, China
| | - Wenya Xu
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jie Zhao
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jie Chen
- Department of General Practice, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, China
| | - Siguang Li
- Department of General Practice, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, China
| | - Lingsang Lin
- Department of General Practice, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, China
| | - Yi Zhong
- Department of General Practice, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, China
| | - Zehua Yang
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Tian Xie
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yipeng Ding
- Department of General Practice, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, China
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
4
|
Zhu L, Jin Z. Exploring the causal relationship between the immune cell-inflammatory factor axis and lung cancer: a Mendelian randomization study. Front Oncol 2024; 14:1345765. [PMID: 39267832 PMCID: PMC11390355 DOI: 10.3389/fonc.2024.1345765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Background Lung cancer is a major health burden globally and smoking is a well-known risk factor. It has been observed that chronic inflammation contributes to lung cancer progression, with immune cells and inflammatory cytokines implicated in tumor development. Clarifying the causal links between these immune components and lung cancer could enhance prevention and therapy. Methods We performed Mendelian randomization (MR) to explore causal connections between immune cells, inflammatory markers, and lung cancer risk, using genetic variants as instruments. Data from GWAS on these variables underpinned our MR analyses. Results Our findings indicated an inverse association between some immune cells and lung cancer risk, implying that more immune cells might be protective. NK T cells (CD16-CD56) and myeloid cells (HLA DR+ on CD33dim HLA DR+ CD11b+) had an inverse correlation with lung cancer risk. Furthermore, a direct relationship was observed between inflammatory cytokines and these immune cells. In contrast, IL-18 was inversely associated with lung cancer, while IL-13 showed a direct correlation. Conclusion The study underscores the role of immune and inflammatory factors in lung cancer. These insights could lead to new therapeutic strategies for combating lung cancer.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan, China
| | - Zhi Jin
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
5
|
Liu A, Liu G, Wang X, Yan D, Zhang J, Wei L. Comprehensive analysis of single-cell RNA and bulk RNA sequencing based on M2 tumor-associated macrophage and angiogenesis-related genes to assess prognosis and therapeutic response in lung adenocarcinoma. Heliyon 2024; 10:e34784. [PMID: 39148979 PMCID: PMC11325380 DOI: 10.1016/j.heliyon.2024.e34784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
M2 tumor-associated macrophage (M2 TAM), a crucial component of the tumor microenvironment, has a significant impact on tumor invasion and metastasis in the form of angiogenesis for lung adenocarcinoma (LUAD). In this study, both single-cell RNA and bulk RNA sequencing data were analyzed to identify 12 M2 TAM and angiogenesis-related genes (OLR1, CTSL, HLA-DPB1, NUPR1, ALOX5, DOCK4, CSF2RB, PTPN6, TNFSF12, HNRNPA2B1, NCL, and BIRC2). These genes were used to construct a prognostic signature, which was subsequently validated using an external cohort. Moreover, the immune profile analysis indicated that the low-risk group exhibited a distinct immune cell infiltration and relatively active status. Importantly, the prognostic signature was closely associated with PD-1, CTLA4, tumor mutation burden, and anti-cancer drug sensitivity. In summary, this study proposes a new prognostic signature for patients with LUAD based on M2 TAM and angiogenesis-related genes. The signature forecasts the prognosis of LUAD by an independent manner, reveals the potential molecular mechanisms involved in tumor immune-related functions, and offers appropriate clinical strategies for the treatment of patients with LUAD.
Collapse
Affiliation(s)
- Anbang Liu
- Department of Thoracic Surgery, Qingdao Municipal Hospital, 266000, Qingdao, Shandong, China
| | - Gengqiu Liu
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, No. 628, Zhenyuan Road, Guangming Dist., Shenzhen, 518107, China
| | - Xiaohuai Wang
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, No. 628, Zhenyuan Road, Guangming Dist., Shenzhen, 518107, China
| | - Dongqing Yan
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, No. 628, Zhenyuan Road, Guangming Dist., Shenzhen, 518107, China
| | - Junhang Zhang
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, No. 628, Zhenyuan Road, Guangming Dist., Shenzhen, 518107, China
| | - Li Wei
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, No. 628, Zhenyuan Road, Guangming Dist., Shenzhen, 518107, China
| |
Collapse
|
6
|
Jia Y, Ma P, Yao Q. CellMarkerPipe: cell marker identification and evaluation pipeline in single cell transcriptomes. Sci Rep 2024; 14:13151. [PMID: 38849445 PMCID: PMC11161599 DOI: 10.1038/s41598-024-63492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Assessing marker genes from all cell clusters can be time-consuming and lack systematic strategy. Streamlining this process through a unified computational platform that automates identification and benchmarking will greatly enhance efficiency and ensure a fair evaluation. We therefore developed a novel computational platform, cellMarkerPipe ( https://github.com/yao-laboratory/cellMarkerPipe ), for automated cell-type specific marker gene identification from scRNA-seq data, coupled with comprehensive evaluation schema. CellMarkerPipe adaptively wraps around a collection of commonly used and state-of-the-art tools, including Seurat, COSG, SC3, SCMarker, COMET, and scGeneFit. From rigorously testing across diverse samples, we ascertain SCMarker's overall reliable performance in single marker gene selection, with COSG showing commendable speed and comparable efficacy. Furthermore, we demonstrate the pivotal role of our approach in real-world medical datasets. This general and opensource pipeline stands as a significant advancement in streamlining cell marker gene identification and evaluation, fitting broad applications in the field of cellular biology and medical research.
Collapse
Affiliation(s)
- Yinglu Jia
- School of Computing, University of Nebraska Lincoln, 256 Avery Hall, Lincoln, NE, 68588, USA
- Department of Chemistry, University of Nebraska Lincoln, Hamilton Hall, Lincoln, NE, 68588, USA
| | - Pengchong Ma
- School of Computing, University of Nebraska Lincoln, 256 Avery Hall, Lincoln, NE, 68588, USA
| | - Qiuming Yao
- School of Computing, University of Nebraska Lincoln, 256 Avery Hall, Lincoln, NE, 68588, USA.
- Nebraska Center for the Prevention of Obesity Diseases, 316C Leverton Hall, Lincoln, NE, 68583, USA.
- Nebraska Center for Virology, University of Nebraska, 4240 Fair St., Lincoln, NE, 68583, USA.
| |
Collapse
|
7
|
Chen H, Song A, Ul Rehman F, Han D. Multidimensional progressive single-cell sequencing reveals cell microenvironment composition and cancer heterogeneity in lung cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:890-904. [PMID: 37956258 DOI: 10.1002/tox.24018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023]
Abstract
Despite substantial advances in cancer biology and treatment, the clinical outcomes of patients with lung cancer remain unsatisfactory. The tumor microenvironment (TME) is a potential target. Using single-cell RNA sequencing, we could distinguish eight distinct cell types in the lung cancer microenvironment, demonstrating substantial intratumoral heterogeneity in 19 different lung cancer tumor samples. Through the re-dimensional grouping of cancer-associated fibroblasts (CAFs), myeloid cells, epithelial cells, natural killer (NK) cells, and T cells, the difference in the TME of lung cancer was revealed. We discovered SFTPB, SFN, and KRT8 as possible predictive biomarkers for lung cancer by assessing the gene expression patterns in epithelial cells. Examining cell-to-cell communications showed a robust association between the quantity of matrix CAFs, epithelial cells, and macrophages in the thrombospondin signaling pathway. Additionally, we found that the amyloid precursor protein signaling pathway primarily originated from the matrix, and inflammatory cancer-associated endothelial and fibroblast cells showed a co-expression relationship with myeloid cells and B cells. Through cell-to-cell correlation analysis, we found positive regulation between NK cells, regulatory T cells, GZMB-CD8 T cells, and GZMK-CD8 T cells, which could play a role in developing immune TMEs. These findings support studies on cancer heterogeneity and add to our understanding of lung cancer's cellular microenvironment.
Collapse
Affiliation(s)
- Hua Chen
- Department of Research and Development, Qingdao Bioman Biomedical Technology Co., LTD, Qingdao, China
- Department of Research and Development, Shanghai life Biomedical Technology Co., LTD, Shanghai, China
| | - Anqi Song
- Department of Student Affairs, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Faisal Ul Rehman
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dan Han
- Department of Emergency Medicine and Intensive Care, Shanghai Songjiang District Central Hospital, Shanghai, China
| |
Collapse
|
8
|
Yao Q, Jia Y, Ma P. cellMarkerPipe: Cell Marker Identification and Evaluation Pipeline in Single Cell Transcriptomes. RESEARCH SQUARE 2024:rs.3.rs-3844718. [PMID: 38313296 PMCID: PMC10836098 DOI: 10.21203/rs.3.rs-3844718/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Assessing marker genes from all cell clusters can be time-consuming and lack systematic strategy. Streamlining this process through a unified computational platform that automates identification and benchmarking will greatly enhance efficiency and ensure a fair evaluation. We therefore developed a novel computational platform, cellMarkerPipe (https://github.com/yao-laboratory/cellMarkerPipe), for automated cell-type specific marker gene identification from scRNA-seq data, coupled with comprehensive evaluation schema. CellMarkerPipe adaptively wraps around a collection of commonly used and state-of-the-art tools, including Seurat, COSG, SC3, SCMarker, COMET, and scGeneFit. From rigorously testing across diverse samples, we ascertain SCMarker's overall reliable performance in single marker gene selection, with COSG showing commendable speed and comparable efficacy. Furthermore, we demonstrate the pivotal role of our approach in real-world medical datasets. This general and opensource pipeline stands as a significant advancement in streamlining cell marker gene identification and evaluation, fitting broad applications in the field of cellular biology and medical research.
Collapse
|
9
|
Chen X, He YQ, Miao TW, Yin J, Liu J, Zeng HP, Zhu Q. IER5L is a Prognostic Biomarker in Pan-Cancer Analysis and Correlates with Immune Infiltration and Immune Molecules in Non-Small Cell Lung Cancer. Int J Gen Med 2023; 16:5889-5908. [PMID: 38106972 PMCID: PMC10725786 DOI: 10.2147/ijgm.s439190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose Non-small cell lung cancer (NSCLC) accounts for the majority of lung cancer cases. Immediate early response 5 like (IER5L) plays crucial roles in progression and prognosis for several tumors, but its role in NSCLC remains unclear. Patients and Methods Gene expression and mutation profiles, DNA methylation data, and clinical information for cancers were downloaded from multiple databases. Relative expression, prognostic value, and correlation with disease progression of IER5L were analyzed in multiple cancers, including NSCLC. Upstream mechanisms were explored using a transcriptional network. Functional enrichment analysis, protein-protein interaction network, and gene set enrichment analysis were applied to study downstream mechanisms. Correlations of IER5L with immune infiltration, immune molecules, methylation status, and tumor mutation burden (TMB) were analyzed using R language. Finally, quantitative polymerase chain reaction (qPCR) and single-cell RNA sequencing (scRNA seq) analysis were performed to validate IER5L expression in NSCLC. Results Pan-cancer analysis displayed that IER5L expression was upregulated in multiple cancers and was associated with disease prognosis and progression, including NSCLC, which was validated using qPCR. scRNA seq analysis showed that multiple cells had increased IER5L expression. An EGR1-hsa-miR-8075-IER5L network was constructed for NSCLC. A total of 191 DEGs were identified between the two IER5L groups, which were significantly enriched in biological process of action potential, sodium ion transport, and regulation of membrane potential. Increased IER5L expression was primarily enriched in cell cycle, NOTCH signaling pathway, and oxidative phosphorylation pathway, and was correlated with increased regulatory T cells and neutrophils, elevated levels of immune molecules, and higher TMB. Conclusion Our findings show that increased IER5L expression was correlated with progression and prognosis in multiple cancers as well as with immune infiltration and immune molecules in NSCLC. Thus, IER5L is a prognostic biomarker in multiple cancers and may correlate with immunotherapeutic response in NSCLC.
Collapse
Affiliation(s)
- Xin Chen
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People’s Hospital, Zigong, People’s Republic of China
| | - Yan-Qiu He
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People’s Hospital, Zigong, People’s Republic of China
| | - Ti-Wei Miao
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People’s Hospital, Zigong, People’s Republic of China
| | - Jie Yin
- School of Automation & Information Engineering, Sichuan University of Science & Engineering, Zigong, People’s Republic of China
| | - Jie Liu
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People’s Hospital, Zigong, People’s Republic of China
| | - Hong-Ping Zeng
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People’s Hospital, Zigong, People’s Republic of China
| | - Qi Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People’s Hospital, Zigong, People’s Republic of China
| |
Collapse
|
10
|
Zhao F, Zhao C, Xu T, Lan Y, Lin H, Wu X, Li X. Single-cell and bulk RNA sequencing analysis of B cell marker genes in TNBC TME landscape and immunotherapy. Front Immunol 2023; 14:1245514. [PMID: 38111587 PMCID: PMC10725955 DOI: 10.3389/fimmu.2023.1245514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Objective This study amied to investigate the prognostic characteristics of triple negative breast cancer (TNBC) patients by analyzing B cell marker genes based on single-cell and bulk RNA sequencing. Methods Utilizing single-cell sequencing data from TNBC patients, we examined tumor-associated B cell marker genes. Transcriptomic data from The Cancer Genome Atlas (TCGA) database were used as the foundation for predictive modeling. Independent validation set was conducted using the GSE58812 dataset. Immune cell infiltration into the tumor was assessed through various, including XCELL, TIMER, QUANTISEQ, CIBERSORT, CIBERSORT-ABS, and ssGSEA. The TIDE score was utilized to predict immunotherapy outcomes. Additional investigations were conducted on the immune checkpoint blockade gene, tumor mutational load, and the GSEA enrichment analysis. Results Our analysis encompassed 22,106 cells and 20,556 genes in cancerous tissue samples from four TNBC patients, resulting in the identification of 116 B cell marker genes. A B cell marker gene score (BCMG score) involving nine B cell marker genes (ZBP1, SEL1L3, CCND2, TNFRSF13C, HSPA6, PLPP5, CXCR4, GZMB, and CCDC50) was developed using TCGA transcriptomic data, revealing statistically significant differences in survival analysis (P<0.05). Functional analysis demonstrated that marker genes were predominantly associated with immune-related pathways. Notably, substantial differences between the higher and lower- BCMG score groups were observed in terms of immune cell infiltration, immune cell activity, tumor mutational burden, TIDE score, and the expression of immune checkpoint blockade genes. Conclusion This study has established a robust model based on B-cell marker genes in TNBC, which holds significant potential for predicting prognosis and response to immunotherapy in TNBC patients.
Collapse
Affiliation(s)
- Fangrui Zhao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chen Zhao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tangpeng Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanfang Lan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huiqing Lin
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaofei Wu
- Department of Neurology, Central War Zone General Hospital of the Chinese People's Liberation Army, Wuhan, Hubei, China
| | - Xiangpan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
11
|
Mi K, Zeng L, Chen Y, Yang S. Integrative Analysis of Single-Cell and Bulk RNA Sequencing Reveals Prognostic Characteristics of Macrophage Polarization-Related Genes in Lung Adenocarcinoma. Int J Gen Med 2023; 16:5031-5050. [PMID: 37942473 PMCID: PMC10629586 DOI: 10.2147/ijgm.s430408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is a group of cancers with poor prognosis. The combination of single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (RNA-seq) can identify important genes involved in cancer development and progression from a broader perspective. Methods The scRNA-seq data and bulk RNA-seq data of LUAD were downloaded from the Gene Expression Omnibus (GEO) database and the Cancer Genome Atlas (TCGA) database. Analyzing scRNA-seq for core cells in the GSE131907 dataset, and the uniform manifold approximation and projection (UMAP) was used for dimensionality reduction and cluster identification. Macrophage polarization-associated subtypes were acquired from the TCGA-LUAD dataset after analysis, followed by further identification of differentially expressed genes (DEGs) in the TCGA-LUAD dataset (normal/LUAD tissue samples, two subtypes). Venn diagrams were utilized to visualize differentially expressed and highly variable macrophage polarization-related genes. Subsequently, a prognostic risk model for LUAD patients was constructed by univariate Cox and Least Absolute Shrinkage and Selection Operator (LASSO), and the model was investigated for stability in the external data GSE72094. After analyzing the correlation between the trait genes and significantly mutated genes, the immune infiltration between the high/low-risk groups was then examined. The Monocle package was applied to analyze the pseudo-temporal trajectory analysis of different cell clusters in macrophage clusters. Subsequently, cell clusters of data macrophages were selected as key cell clusters to explore the role of characteristic genes in different cell populations and to identify transcription factors (TFs) that affect signature genes. Finally, qPCR were employed to validate the expression levels of prognosis signature genes in LUAD. Results 424 macrophage highly variable genes, 3920 DEGs, and 9561 DEGs were obtained from macrophage clusters, the macrophage polarization-related subtypes, and normal/LUAD tissue samples, respectively. Twenty-eight differentially expressed and highly mutated MPRGs were obtained. A prognostic risk model with 7 DE-MPRGs (RGS13, ADRB2, DDIT4, MS4A2, ALDH2, CTSH, and PKM) was constructed. This prognostic model still has a good prediction effect in the GSE72094 dataset. ZNF536 and DNAH9 were mutated in the low-risk group, while COL11A1 was mutated in the high-risk group, and they were highly correlated with the characteristic genes. A total of 11 immune cells were significantly different in the high/low-risk groups. Five cell types were again identified in the macrophage cluster, and then NK cells: CD56hiCD62L+ differentiated earlier and were present mainly on 2 branches. While macrophages were present on 2 branches and differentiated later. It was found that the expression levels of BCLAF1 and MAX were higher in cluster 1, which might be the TFs affecting the expression of the characteristic genes. Moreover, qPCR confirmed that the expression of the prognosis genes was generally consistent with the results of the bioinformatic analysis. Conclusion Seven MPRGs (RGS13, ADRB2, DDIT4, MS4A2, ALDH2, CTSH, and PKM) were identified as prognostic genes for LUAD and revealed the mechanisms of MPRGs at the single-cell level.
Collapse
Affiliation(s)
- Ke Mi
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Lizhong Zeng
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yang Chen
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
12
|
Yang W, Wang P, Luo M, Cai Y, Xu C, Xue G, Jin X, Cheng R, Que J, Pang F, Yang Y, Nie H, Jiang Q, Liu Z, Xu Z. DeepCCI: a deep learning framework for identifying cell-cell interactions from single-cell RNA sequencing data. Bioinformatics 2023; 39:btad596. [PMID: 37740953 PMCID: PMC10558043 DOI: 10.1093/bioinformatics/btad596] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/29/2023] [Accepted: 09/22/2023] [Indexed: 09/25/2023] Open
Abstract
MOTIVATION Cell-cell interactions (CCIs) play critical roles in many biological processes such as cellular differentiation, tissue homeostasis, and immune response. With the rapid development of high throughput single-cell RNA sequencing (scRNA-seq) technologies, it is of high importance to identify CCIs from the ever-increasing scRNA-seq data. However, limited by the algorithmic constraints, current computational methods based on statistical strategies ignore some key latent information contained in scRNA-seq data with high sparsity and heterogeneity. RESULTS Here, we developed a deep learning framework named DeepCCI to identify meaningful CCIs from scRNA-seq data. Applications of DeepCCI to a wide range of publicly available datasets from diverse technologies and platforms demonstrate its ability to predict significant CCIs accurately and effectively. Powered by the flexible and easy-to-use software, DeepCCI can provide the one-stop solution to discover meaningful intercellular interactions and build CCI networks from scRNA-seq data. AVAILABILITY AND IMPLEMENTATION The source code of DeepCCI is available online at https://github.com/JiangBioLab/DeepCCI.
Collapse
Affiliation(s)
- Wenyi Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Meng Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Yideng Cai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Chang Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Guangfu Xue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Xiyun Jin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Rui Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Jinhao Que
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Fenglan Pang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Yuexin Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Zhigang Liu
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhaochun Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| |
Collapse
|
13
|
Zeng Q, Mousa M, Nadukkandy AS, Franssens L, Alnaqbi H, Alshamsi FY, Safar HA, Carmeliet P. Understanding tumour endothelial cell heterogeneity and function from single-cell omics. Nat Rev Cancer 2023:10.1038/s41568-023-00591-5. [PMID: 37349410 DOI: 10.1038/s41568-023-00591-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
Anti-angiogenic therapies (AATs) are used to treat different types of cancers. However, their success is limited owing to insufficient efficacy and resistance. Recently, single-cell omics studies of tumour endothelial cells (TECs) have provided new mechanistic insight. Here, we overview the heterogeneity of human TECs of all tumour types studied to date, at the single-cell level. Notably, most human tumour types contain varying numbers but only a small population of angiogenic TECs, the presumed targets of AATs, possibly contributing to the limited efficacy of and resistance to AATs. In general, TECs are heterogeneous within and across all tumour types, but comparing TEC phenotypes across tumours is currently challenging, owing to the lack of a uniform nomenclature for endothelial cells and consistent single-cell analysis protocols, urgently raising the need for a more consistent approach. Nonetheless, across most tumour types, universal TEC markers (ACKR1, PLVAP and IGFBP3) can be identified. Besides angiogenesis, biological processes such as immunomodulation and extracellular matrix organization are among the most commonly predicted enriched signatures of TECs across different tumour types. Although angiogenesis and extracellular matrix targets have been considered for AAT (without the hoped success), the immunomodulatory properties of TECs have not been fully considered as a novel anticancer therapeutic approach. Therefore, we also discuss progress, limitations, solutions and novel targets for AAT development.
Collapse
Affiliation(s)
- Qun Zeng
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium
| | - Mira Mousa
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Aisha Shigna Nadukkandy
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lies Franssens
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium
| | - Halima Alnaqbi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Fatima Yousif Alshamsi
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Habiba Al Safar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE.
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium.
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
14
|
Tang H, Liu S, Luo X, Sun Y, Li X, Luo K, Liao S, Li F, Liang J, Zhan X, Wei Q, Liu Y, He M. A novel molecular signature for predicting prognosis and immunotherapy response in osteosarcoma based on tumor-infiltrating cell marker genes. Front Immunol 2023; 14:1150588. [PMID: 37090691 PMCID: PMC10117669 DOI: 10.3389/fimmu.2023.1150588] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
BackgroundTumor infiltrating lymphocytes (TILs), the main component in the tumor microenvironment, play a critical role in the antitumor immune response. Few studies have developed a prognostic model based on TILs in osteosarcoma.MethodsScRNA-seq data was obtained from our previous research and bulk RNA transcriptome data was from TARGET database. WGCNA was used to obtain the immune-related gene modules. Subsequently, we applied LASSO regression analysis and SVM algorithm to construct a prognostic model based on TILs marker genes. What’s more, the prognostic model was verified by external datasets and experiment in vitro. ResultsEleven cell clusters and 2044 TILs marker genes were identified. WGCNA results showed that 545 TILs marker genes were the most strongly related with immune. Subsequently, a risk model including 5 genes was developed. We found that the survival rate was higher in the low-risk group and the risk model could be used as an independent prognostic factor. Meanwhile, high-risk patients had a lower abundance of immune cell infiltration and many immune checkpoint genes were highly expressed in the low-risk group. The prognostic model was also demonstrated to be a good predictive capacity in external datasets. The result of RT-qPCR indicated that these 5 genes have differential expression which accorded with the predicting outcomes.ConclusionsThis study developed a new molecular signature based on TILs marker genes, which is very effective in predicting OS prognosis and immunotherapy response.
Collapse
Affiliation(s)
- Haijun Tang
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shangyu Liu
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoting Luo
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Sun
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiangde Li
- Department of Radiotherapy, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Kai Luo
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shijie Liao
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Feicui Li
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiming Liang
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xinli Zhan
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qingjun Wei
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yun Liu
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- *Correspondence: Maolin He, ; Yun Liu,
| | - Maolin He
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- *Correspondence: Maolin He, ; Yun Liu,
| |
Collapse
|
15
|
Han S, Jiang D, Zhang F, Li K, Jiao K, Hu J, Song H, Ma QY, Wang J. A new immune signature for survival prediction and immune checkpoint molecules in non-small cell lung cancer. Front Oncol 2023; 13:1095313. [PMID: 36793597 PMCID: PMC9924230 DOI: 10.3389/fonc.2023.1095313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023] Open
Abstract
Background Immune checkpoint blockade (ICB) therapy has brought remarkable clinical benefits to patients with advanced non-small cell lung carcinoma (NSCLC). However, the prognosis remains largely variable. Methods The profiles of immune-related genes for patients with NSCLC were extracted from TCGA database, ImmPort dataset, and IMGT/GENE-DB database. Coexpression modules were constructed using WGCNA and 4 modules were identified. The hub genes of the module with the highest correlations with tumor samples were identified. Then integrative bioinformatics analyses were performed to unveil the hub genes participating in tumor progression and cancer-associated immunology of NSCLC. Cox regression and Lasso regression analyses were conducted to screen prognostic signature and to develop a risk model. Results Functional analysis showed that immune-related hub genes were involved in the migration, activation, response, and cytokine-cytokine receptor interaction of immune cells. Most of the hub genes had a high frequency of gene amplifications. MASP1 and SEMA5A presented the highest mutation rate. The ratio of M2 macrophages and naïve B cells revealed a strong negative association while the ratio of CD8 T cells and activated CD4 memory T cells showed a strong positive association. Resting mast cells predicted superior overall survival. Interactions including protein-protein, lncRNA and transcription factor interactions were analyzed and 9 genes were selected by LASSO regression analysis to construct and verify a prognostic signature. Unsupervised hub genes clustering resulted in 2 distinct NSCLC subgroups. The TIDE score and the drug sensitivity of gemcitabine, cisplatin, docetaxel, erlotinib and paclitaxel were significantly different between the 2 immune-related hub gene subgroups. Conclusions These findings suggested that our immune-related genes can provide clinical guidance for the diagnosis and prognosis of different immunophenotypes and facilitate the management of immunotherapy in NSCLC.
Collapse
Affiliation(s)
- Shuai Han
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Dongjie Jiang
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai, China
| | - Feng Zhang
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Kun Li
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Kun Jiao
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Jingyun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Haihan Song
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Qin-Yun Ma
- Department of Thoracic Surgery, North Branch of Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai, China
| |
Collapse
|
16
|
Zhang D, Zhao Y. Identification of natural killer cell associated subtyping and gene signature to predict prognosis and drug sensitivity of lung adenocarcinoma. Front Genet 2023; 14:1156230. [PMID: 37091780 PMCID: PMC10119412 DOI: 10.3389/fgene.2023.1156230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction: This research explored the immune characteristics of natural killer (NK) cells in lung adenocarcinoma (LUAD) and their predictive role on patient survival and immunotherapy response. Material and methods: Molecular subtyping of LUAD samples was performed by evaluating NK cell-associated pathways and genes in The Cancer Genome Atlas (TCGA) dataset using consistent clustering. 12 programmed cell death (PCD) patterns were acquired from previous study. Riskscore prognostic models were constructed using Least absolute shrinkage and selection operator (Lasso) and Cox regression. The model stability was validated in Gene Expression Omnibus database (GEO). Results: We classified LUAD into three different molecular subgroups based on NK cell-related genes, with the worst prognosis in C1 patients and the optimal in C3. Homologous Recombination Defects, purity and ploidy, TMB, LOH, Aneuploidy Score, were the most high-expressed in C1 and the least expressed in C3. ImmuneScore was the highest in C3 type, suggesting greater immune infiltration in C3 subtype. C1 subtypes had higher TIDE scores, indicating that C1 subtypes may benefit less from immunotherapy. Generally, C3 subtype presented highest PCD patterns scores. With four genes, ANLN, FAM83A, RHOV and PARP15, we constructed a LUAD risk prediction model with significant differences in immune cell composition, cell cycle related pathways between the two risk groups. Samples in C1 and high group were more sensitive to chemotherapy drug. The score of PCD were differences in high- and low-groups. Finally, we combined Riskscore and clinical features to improve the performance of the prediction model, and the calibration curve and decision curve verified that the great robustness of the model. Conclusion: We identified three stable molecular subtypes of LUAD and constructed a prognostic model based on NK cell-related genes, maybe have a greater potential for application in predicting immunotherapy response and patient prognosis.
Collapse
Affiliation(s)
- Dexin Zhang
- Respiratory Department of the Second Affiliated Hospital of Xi’an Jiaotong University Medical College, Xi’an, China
- *Correspondence: Dexin Zhang,
| | - Yujie Zhao
- Regional Marketing Department, Yuce Biotechnology Co, Ltd., Dabaihui Center, Shenzhen, China
| |
Collapse
|
17
|
Xing S, Hu K, Wang Y. Tumor Immune Microenvironment and Immunotherapy in Non-Small Cell Lung Cancer: Update and New Challenges. Aging Dis 2022; 13:1615-1632. [PMID: 36465180 PMCID: PMC9662266 DOI: 10.14336/ad.2022.0407] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/07/2022] [Indexed: 08/03/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a serious threat to the health of older adults. Despite the significant progress in immunotherapy, effective treatments for NSCLC remain limited. The development of tumors indicates failure in immune surveillance and the successful immune escape of tumor cells. Research on the tumor immune microenvironment (TIME) revealed these opposing immune processes and contributed to the discovery of new methods to suppress the immune escape and restore the immune surveillance functions. This paper aimed to provide updates on the current findings regarding the relevance of TIME in NSCLC treatment. It also aimed to introduce the TIME, immune editing, cancer immunotherapy, and new challenges. Based on the clinical data, the combination of neoadjuvant chemotherapy and immune checkpoint inhibitor (ICI) therapy is suitable for patients with NSCLC who are not eligible to undergo surgery. Combined ICI therapy after epidermal growth factor receptor (EGFR)/tyrosine kinase inhibitor (TKI) therapy should be considered in patients with EGFR mutations. Chemoradiotherapy may increase the density of CD8+ lymphocytes, which is significantly associated with better prognosis. For older patients and those with advanced-stage disease, regional tumor treatments, such as stereotactic radiation therapy and percutaneous cryoablation, may be more suitable, but further studies are needed to confirm this. In conclusion, restoring immune surveillance is as important as removing cancerous tissues; further studies that include the use of combined treatment methods, individualized treatment plans, and immunonutrition are warranted.
Collapse
Affiliation(s)
- Shuqin Xing
- Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Kaiwen Hu
- Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Yafei Wang
- Department of Orthopedics, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
18
|
Yamazaki M, Hosokawa M, Matsunaga H, Arikawa K, Takamochi K, Suzuki K, Hayashi T, Kambara H, Takeyama H. Integrated spatial analysis of gene mutation and gene expression for understanding tumor diversity in formalin-fixed paraffin-embedded lung adenocarcinoma. Front Oncol 2022; 12:936190. [PMID: 36505794 PMCID: PMC9731154 DOI: 10.3389/fonc.2022.936190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction A deeper understanding of intratumoral heterogeneity is essential for prognosis prediction or accurate treatment plan decisions in clinical practice. However, due to the cross-links and degradation of biomolecules within formalin-fixed paraffin-embedded (FFPE) specimens, it is challenging to analyze them. In this study, we aimed to optimize the simultaneous extraction of mRNA and DNA from microdissected FFPE tissues (φ = 100 µm) and apply the method to analyze tumor diversity in lung adenocarcinoma before and after erlotinib administration. Method Two magnetic beads were used for the simultaneous extraction of mRNA and DNA. The decross-linking conditions were evaluated for gene mutation and gene expression analyses of microdissected FFPE tissues. Lung lymph nodes before treatment and lung adenocarcinoma after erlotinib administration were collected from the same patient and were preserved as FFPE specimens for 4 years. Gene expression and gene mutations between histologically classified regions of lung adenocarcinoma (pre-treatment tumor in lung lymph node biopsies and post-treatment tumor, normal lung, tumor stroma, and remission stroma, in resected lung tissue) were compared in a microdissection-based approach. Results Using the optimized simultaneous extraction of DNA and mRNA and whole-genome amplification, we detected approximately 4,000-10,000 expressed genes and the epidermal growth factor receptor (EGFR) driver gene mutations from microdissected FFPE tissues. We found the differences in the highly expressed cancer-associated genes and the positive rate of EGFR exon 19 deletions among the tumor before and after treatment and tumor stroma, even though they were collected from tumors of the same patient or close regions of the same specimen. Conclusion Our integrated spatial analysis method would be applied to various FFPE pathology specimens providing area-specific gene expression and gene mutation information.
Collapse
Affiliation(s)
- Miki Yamazaki
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Masahito Hosokawa
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan,Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Hiroko Matsunaga
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Koji Arikawa
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Kazuya Takamochi
- Department of Thoracic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kenji Suzuki
- Department of Thoracic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hideki Kambara
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan,Frontier BioSystems Inc., Tokyo, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan,Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan,*Correspondence: Haruko Takeyama,
| |
Collapse
|
19
|
Firdous S, Ghosh A, Saha S. BCSCdb: a database of biomarkers of cancer stem cells. Database (Oxford) 2022; 2022:6725752. [PMID: 36169329 PMCID: PMC9517164 DOI: 10.1093/database/baac082] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/06/2022] [Accepted: 09/02/2022] [Indexed: 06/14/2023]
Abstract
Cancer stem cells (CSCs) are a small heterogeneous population present within the tumor cells exhibiting self-renewal properties. CSCs have been demonstrated to elicit an important role in cancer recurrence, metastasis and drug resistance. CSCs are distinguished from cancer cell populations based on their molecular profiling or expression of distinct CSC biomarker(s). Recently, a huge amount of omics data have been generated for the characterization of CSCs, which enables distinguishing CSCs in different cancers. Here, we report biomarkers of the Cancer Stem Cells database (BCSCdb), a repository of information about CSC biomarkers. BCSCdb comprises CSC biomarkers collected from PubMed literature where these are identified using high-throughput and low-throughput methods. Each biomarker is provided with two different scores: the first is a confidence score to give confidence to reported CSC biomarkers based on the experimental method of detection in CSCs. The second is the global score to identify the global CSC biomarkers across 10 different types of cancer. This database contains three tables containing information about experimentally validated CSC biomarkers or genes, therapeutic target genes of CSCs and CSC biomarkers interactions. It contains information on three types of markers: high-throughput marker (HTM-8307), high-throughput marker validated by the low-throughput method (283) and low-throughput marker (LTM-525). A total of 171 low-throughput biomarkers were identified in primary tissue referred to as clinical biomarkers. Moreover, it contains 445 target genes for CSC therapeutics, 10 biomarkers targeted by clinical trial drugs in CSCs and 5 different types of interaction data for CSC biomarkers. BCSCdb is an online resource for CSC biomarkers, which will be immensely helpful in the cancer research community and is freely available. Database URL: http://dibresources.jcbose.ac.in/ssaha4/bcscdb.
Collapse
Affiliation(s)
- Shazia Firdous
- Division of Bioinformatics, Bose Institute, Unified Campus Salt Lake, College More, EN Block, Sector V, Kolkata, West Bengal 700091, India
| | - Abhirupa Ghosh
- Division of Bioinformatics, Bose Institute, Unified Campus Salt Lake, College More, EN Block, Sector V, Kolkata, West Bengal 700091, India
| | | |
Collapse
|
20
|
Yang G, Jiang J, Yin R, Li Z, Li L, Gao F, Liu C, Zhan X. Two novel predictive biomarkers for osteosarcoma and glycolysis pathways: A profiling study on HS2ST1 and SDC3. Medicine (Baltimore) 2022; 101:e30192. [PMID: 36086752 PMCID: PMC10980373 DOI: 10.1097/md.0000000000030192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/08/2022] [Indexed: 10/14/2022] Open
Abstract
INTRODUCTION Prognostic biomarkers for osteosarcoma (OS) are still very few, and this study aims to examine 2 novel prognostic biomarkers for OS through combined bioinformatics and experimental approach. MATERIALS AND METHODS Expression profile data of OS and paraneoplastic tissues were downloaded from several online databases, and prognostic genes were screened by differential expression analysis, Univariate Cox analysis, least absolute shrinkage and selection operator regression analysis, and multivariate Cox regression analysis to construct prognostic models. The accuracy of the model was validated using principal component analysis, constructing calibration plots, and column line plots. We also analyzed the relationship between genes and drug sensitivity. Gene expression profiles were analyzed by immunocytotyping. Also, protein expressions of the constructed biomarkers in OS and paraneoplastic tissues were verified by immunohistochemistry. RESULTS Heparan sulfate 2-O-sulfotransferase 1 (HS2ST1) and Syndecan 3 (SDC3, met all our requirements after screening. The constructed prognostic model indicated that patients in the high-risk group had a much lower patient survival rate than in the low-risk group. Moreover, these genes were closely related to immune cells (P < .05). Drug sensitivity analysis showed that the 2 genes modeled were strongly correlated with multiple drugs. Immunohistochemical analysis showed significantly higher protein expression of both genes in OS than in paraneoplastic tissues. CONCLUSIONS HS2ST1 and SDC3 are significantly dysregulated in OS, and the prognostic models constructed based on these 2 genes have much lower survival rates in the high-risk group than in the low-risk group. HS2ST1 and SDC3 can be used as glycolytic and immune-related prognostic biomarkers in OS.
Collapse
Affiliation(s)
- Guozhi Yang
- Department of Spine Osteopathic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
- Department of Orthopedic, Nanyang Central Hospital, Nanyang, China
| | - Jie Jiang
- Guangxi Medical University, Nanning, P. R. China
| | - Ruifeng Yin
- Department of Orthopedic, Nanyang Central Hospital, Nanyang, China
| | - Zhian Li
- Department of Orthopedic, Nanyang Central Hospital, Nanyang, China
| | - Lei Li
- Department of Orthopedic, Nanyang Central Hospital, Nanyang, China
| | - Feng Gao
- Department of Orthopedic, Nanyang Central Hospital, Nanyang, China
| | - Chong Liu
- Department of Spine Osteopathic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Xinli Zhan
- Department of Spine Osteopathic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| |
Collapse
|
21
|
Hub Gene Screening and Prognostic Modeling of Lung Cancer: An Integrated Bioinformatics Study. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5110683. [PMID: 35836920 PMCID: PMC9276499 DOI: 10.1155/2022/5110683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022]
Abstract
Background One of the most frequent malignancies is lung carcinoma which poses heavy burden on the global health. The link among differentially expressed genes (DEGs) and lung cancer patients' clinical outcomes was still missing. In this study, we integrated transcriptome data with clinical data to investigate the relationship between them in lung carcinoma patients. Methods To begin, DEGs were identified using the Gene Expression Omnibus (GEO) gene expression pattern (GSE180347). Then, these DEGs are being searched in the TCGA database using the DEGs collected in the preceding phase. The Kaplan-Meier plotter was then used to assess the predictive value of these DEGs in patients with lung cancer. Results Our study revealed a total of 45 DEGs, 15 of which were up-regulated and 30 of which were down-regulated. These DEGs were mostly enriched in cytokine receptor binding and cytokine activity, according to GO enrichment analysis. These DEGs were mostly enriched in cytokine-cytokine receptor interaction, according to KEGG enrichment analysis. Based on the PPI network, which comprises of 12 DEGs, a major module was discovered. They are mostly interested in cytotoxicity mediated by natural killer cells. Among all 45 DEGs, the mutations of NCAM1 account for the most cases in TCGA database with a percentage above 15%. Among the 12 DEGs in the significant module, higher expression of FAS, GPR29, HAVCR2, and NCAM1 exhibits longer survival time with hazard ratio and 95% confident interval of 0.79 (0.69-0.89), 0.80 (0.70-0.90), 0.71 (0.60-0.84), and 0.73 (0.62-0.86), respectively. However, higher expression of FCGR3A and IFNG exhibits shorter survival time with hazard ratio and 95% confident interval of 1.50 (1.32-1.71) and 1.15 (1.02-1.31), respectively. Conclusion Our results demonstrate significant correlation between some DEGs and the survival outcome in lung adenocarcinomas patients, providing a comprehensive bioinformatics study in anticipation of future molecular mechanisms and biomarker studies.
Collapse
|
22
|
Wang X, Xu Y, Sun Q, Zhou X, Ma W, Wu J, Zhuang J, Sun C. New insights from the single-cell level: Tumor associated macrophages heterogeneity and personalized therapy. Biomed Pharmacother 2022; 153:113343. [PMID: 35785706 DOI: 10.1016/j.biopha.2022.113343] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/02/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are important immune cells in the tumor microenvironment, and their invasion in tumors is closely related to poor prognosis. Although TAMs are recognized as therapeutic targets, their heterogeneity makes studying tumor mechanism and developing drugs targeting TAMs difficult. The study of TAMs heterogeneity can be used to analyze the mechanism of tumor progression and drug resistance, and may provide possible treatment strategies for cancer patients. Single-cell RNA sequencing (scRNA-seq) can reveal the RNA expression profile for each TAM to distinguish heterogeneity, thereby providing a more efficient detection method and more accurate information for TAM-related studies. In this review, by summarizing the research progress in macrophage heterogeneity and other aspects of scRNA-seq over the past five years, we introduced the development of scRNA-seq technology and its application status in solid tumors, analyzed the advantages and selections of scRNA-seq in TAMs, and summarized the detailed specific research fields. To explore the mechanism of tumor progression and drug intervention from single cell level will provide new perspective for personalized treatment strategies targeting macrophages.
Collapse
Affiliation(s)
- Xiaomin Wang
- Special Medicine Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yiwei Xu
- Institute of Integrated Medicine, School of Medicine, Qingdao University, Qingdao, China
| | - Qi Sun
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xintong Zhou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - JiBiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China; College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China.
| |
Collapse
|
23
|
Liu J, Jia J, Wang S, Zhang J, Xian S, Zheng Z, Deng L, Feng Y, Zhang Y, Zhang J. Prognostic Ability of Enhancer RNAs in Metastasis of Non-Small Cell Lung Cancer. Molecules 2022; 27:molecules27134108. [PMID: 35807355 PMCID: PMC9268450 DOI: 10.3390/molecules27134108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: Non-small cell lung cancer (NSCLC) is the most common lung cancer. Enhancer RNA (eRNA) has potential utility in the diagnosis, prognosis and treatment of cancer, but the role of eRNAs in NSCLC metastasis is not clear; (2) Methods: Differentially expressed transcription factors (DETFs), enhancer RNAs (DEEs), and target genes (DETGs) between primary NSCLC and metastatic NSCLC were identified. Prognostic DEEs (PDEEs) were screened by Cox regression analyses and a predicting model for metastatic NSCLC was constructed. We identified DEE interactions with DETFs, DETGs, reverse phase protein arrays (RPPA) protein chips, immunocytes, and pathways to construct a regulation network using Pearson correlation. Finally, the mechanisms and clinical significance were explained using multi-dimensional validation unambiguously; (3) Results: A total of 255 DEEs were identified, and 24 PDEEs were selected into the multivariate Cox regression model (AUC = 0.699). Additionally, the NSCLC metastasis-specific regulation network was constructed, and six key PDEEs were defined (ANXA8L1, CASTOR2, CYP4B1, GTF2H2C, PSMF1 and TNS4); (4) Conclusions: This study focused on the exploration of the prognostic value of eRNAs in the metastasis of NSCLC. Finally, six eRNAs were identified as potential markers for the prediction of metastasis of NSCLC.
Collapse
Affiliation(s)
- Jun Liu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (J.L.); (J.J.)
- School of Medicine, Tongji University, Shanghai 200092, China; (S.W.); (J.Z.); (S.X.); (Z.Z.)
| | - Jingyi Jia
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (J.L.); (J.J.)
- School of Medicine, Tongji University, Shanghai 200092, China; (S.W.); (J.Z.); (S.X.); (Z.Z.)
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Clinical Research Center for Infectious Diseases (Tuberculosis), Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Siqiao Wang
- School of Medicine, Tongji University, Shanghai 200092, China; (S.W.); (J.Z.); (S.X.); (Z.Z.)
| | - Junfang Zhang
- School of Medicine, Tongji University, Shanghai 200092, China; (S.W.); (J.Z.); (S.X.); (Z.Z.)
| | - Shuyuan Xian
- School of Medicine, Tongji University, Shanghai 200092, China; (S.W.); (J.Z.); (S.X.); (Z.Z.)
| | - Zixuan Zheng
- School of Medicine, Tongji University, Shanghai 200092, China; (S.W.); (J.Z.); (S.X.); (Z.Z.)
| | - Lin Deng
- Normal College, Qingdao University, Qingdao 266071, China;
| | - Yonghong Feng
- School of Medicine, Tongji University, Shanghai 200092, China; (S.W.); (J.Z.); (S.X.); (Z.Z.)
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Clinical Research Center for Infectious Diseases (Tuberculosis), Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Correspondence: (Y.F.); (Y.Z.); (J.Z.)
| | - Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Correspondence: (Y.F.); (Y.Z.); (J.Z.)
| | - Jie Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (J.L.); (J.J.)
- School of Medicine, Tongji University, Shanghai 200092, China; (S.W.); (J.Z.); (S.X.); (Z.Z.)
- Correspondence: (Y.F.); (Y.Z.); (J.Z.)
| |
Collapse
|
24
|
Bai X, Chen H, Oliver BG. miRNAs-mediated overexpression of Periostin is correlated with poor prognosis and immune infiltration in lung squamous cell carcinoma. Aging (Albany NY) 2022; 14:3757-3781. [PMID: 35508298 PMCID: PMC9134939 DOI: 10.18632/aging.204056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Abstract
Lung cancer is one of the most common malignancies with a high mortality rate worldwide. POSTN has been shown to be strongly correlated with the poor prognosis of lung cancer patients. However, the function and mechanism of action of POSTN in lung cancer remain unclear. Here, we carried out a pan-cancer analysis to assess the clinical prognostic value of POSTN based on the TCGA, TIMER, Oncomine, Kaplan-Meier, and UALCAN databases. We found that upregulated POSTN can be a promising biomarker to predict the prognosis of patients with lung cancer. High levels of POSTN correlated with immune cell infiltration in lung cancer, especially lung squamous cell carcinoma (LUSC), which was further confirmed based on the results from the TISIDB database. Moreover, the expression analysis, correlation analysis, and survival analysis revealed that POSTN-targeted miRNAs, downregulation of has-miR-144-3p and has-miR-30e-3p, were significantly linked to poor prognosis in patients with LUSC. Taken together, we identified that POSTN can act as a novel biomarker for determining the prognosis related to immune infiltration in patients with LUSC and deserves further research.
Collapse
Affiliation(s)
- Xu Bai
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.,Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| |
Collapse
|
25
|
Jessica A. C, Rocío L. C. Differential gene expression in cancer: An overrated analysis? Curr Bioinform 2022. [DOI: 10.2174/1574893617666220422134525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The search for marker genes associated with different pathologies traditionally begins with some form of differential expression analysis. This step is essential in most functional genomics' works that analyze gene expression data. In the present article, we present a different analysis, starting from the known biological significance of different groups of genes and then assessing the proportion of differentially expressed genes. The analysis is performed in the context of cancer expression data to unveil the true importance of differential expression, approaching it from different research objectives. Firstly, it was seen that the percentage of differentially expressed genes is generally low concerning gene sets annotated in KEGG. On the other hand, it was observed that in the training and prediction process of both statistical and machine learning models, the fact of using differentially expressed genes sustainably improves their results.
Collapse
Affiliation(s)
- Carballido Jessica A.
- Department of CS and Engineering - Institute for CS and Engineering
CONICET - UNS
Bahía Blanca, Bs. As. Argentina
| | - Cecchini Rocío L.
- Department of CS and Engineering - Institute for CS and Engineering
CONICET - UNS
Bahía Blanca, Bs. As. Argentina
| |
Collapse
|
26
|
Pathak E, Atri N, Mishra R. Single-Cell Transcriptome Analysis Reveals the Role of Pancreatic Secretome in COVID-19 Associated Multi-organ Dysfunctions. Interdiscip Sci 2022; 14:863-878. [PMID: 35394619 PMCID: PMC8990272 DOI: 10.1007/s12539-022-00513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/09/2023]
Abstract
The SARS-CoV-2 infection affects the lungs, heart, kidney, intestine, olfactory epithelia, liver, and pancreas and brings forward multi-organ dysfunctions (MODs). However, mechanistic details of SARS-CoV-2-induced MODs are unclear. Here, we have investigated the role of pancreatic secretory proteins to mechanistically link COVID-19 with MODs using single-cell transcriptome analysis. Secretory proteins were identified using the Human Protein Atlas. Gene ontology, pathway, and disease enrichment analyses were used to highlight the role of upregulated pancreatic secretory proteins (secretome). We show that SARS-CoV-2 infection shifts the expression profile of pancreatic endocrine cells to acinar and ductal cell-specific profiles, resulting in increased expression of acinar and ductal cell-specific genes. Among all the secretory proteins, the upregulated expression of IL1B, AGT, ALB, SPP1, CRP, SERPINA1, C3, TFRC, TNFSF10, and MIF was mainly associated with disease of diverse organs. Extensive literature and experimental evidence are used to validate the association of the upregulated pancreatic secretome with the coagulation cascade, complement activation, renin-angiotensinogen system dysregulation, endothelial cell injury and thrombosis, immune system dysregulation, and fibrosis. Our finding suggests the influence of an upregulated secretome on multi-organ systems such as nervous, cardiovascular, immune, digestive, and urogenital systems. Our study provides evidence that an upregulated pancreatic secretome is a possible cause of SARS-CoV-2-induced MODs. This finding may have a significant impact on the clinical setting regarding the prevention of SARS-CoV-2-induced MODs.
Collapse
Affiliation(s)
- Ekta Pathak
- Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Neelam Atri
- Bioinformatics Department, MMV, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Department of Botany, MMV, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rajeev Mishra
- Bioinformatics Department, MMV, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
27
|
Integrated analysis of single-cell and bulk RNA-sequencing identifies a signature based on B cell marker genes to predict prognosis and immunotherapy response in lung adenocarcinoma. Cancer Immunol Immunother 2022; 71:2341-2354. [PMID: 35152302 DOI: 10.1007/s00262-022-03143-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023]
Abstract
As an essential component of the tumor microenvironment, B cells exist in all stages of tumor and exert important roles in anti-tumor immunity and shaping tumor development. We aimed to explore the expression profile of B cell marker genes and construct a prognostic signature based on these genes in Lung adenocarcinoma (LUAD). A total of 1268 LUAD patients from different cohorts were enrolled in this study. We performed an analysis of single-cell RNA-sequencing (scRNA-seq) data from Gene expression omnibus (GEO) database to identify B cell marker genes in LUAD. TCGA database was used to construct signature, and six cohorts from GEO database were used for validation. We also investigated the association between this signature and immunotherapy response. Based on 258 B cell marker genes identified by scRNA-seq analysis, a nine-gene signature was constructed for prognostic prediction in TCGA dataset, which classified patients into high-risk and low-risk groups according to overall survival. The multivariate analysis demonstrated that the signature was an independent prognostic factor. The signature's predictive power was verified in other six independent cohorts and different clinical subgroups. Analysis of immune profiles showed that high-risk groups presented discriminative immune-cell infiltrations and immune-suppressive states. More importantly, risk scores of the signature were closely correlated with PD-L1, tumor mutation burden, neoantigens, and tumor immune dysfunction and exclusion score. Our study proposed a novel prognostic signature based on B cell marker genes for LUAD patients. The signature could effectively indicate LUAD patients' survival and serve as a predictor for immunotherapy.
Collapse
|
28
|
Exploration of Prognostic Immune-Related Genes and lncRNAs Biomarkers in Kidney Renal Clear Cell Carcinoma and Its Crosstalk with Acute Kidney Injury. JOURNAL OF ONCOLOGY 2022; 2022:6100187. [PMID: 35178091 PMCID: PMC8847043 DOI: 10.1155/2022/6100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022]
Abstract
Kidney renal clear cell carcinoma (KIRC) has a poor prognosis and a high death rate globally. Cancer prognosis is strongly linked to immune-related genes (IRGs), according to numerous research. We utilized KIRC RNA-seq data from the TCGA database to build a prognostic model incorporating seven immune-related (IR) lncRNAs, and we constructed the model using LASSO regression. Additionally, we calculated a risk score for each patient using a prognostic model that divided patients into high-risk and low-risk groups. The ESTIMATE and CIBERSORT methodologies were then used to analyze the differences in the tumor microenvironment of the two groups of patients. Finally, we predicted three small molecule drugs that may have potential therapeutic effects for high-risk patients. We combined the acute kidney injury dataset to obtain differential genes that may serve standard biological functions with two risk groups. Our study shows that the model we constructed for IR-lncRNAs has reliable predictive efficacy for patients with KIRC.
Collapse
|
29
|
Huang RH, Wang LX, He J, Gao W. Application and prospects of single cell sequencing in tumors. Biomark Res 2021; 9:88. [PMID: 34895349 PMCID: PMC8665603 DOI: 10.1186/s40364-021-00336-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is an intricate disease with inherent intra-tumor heterogeneity at the cellular level because of genetic changes and environmental differences. Cellular heterogeneity exists even within the same tumor type. Small deviations in a genome or transcriptome can lead to significant differences in function. Conventional bulk population sequencing, which produces admixed populations of cells, can only provide an average expression signal for one cell population, ignoring differences between individual cells. Important advances in sequencing have been made in recent years. Single cell sequencing starts in a single cell, thereby increasing our capability to characterize intratumor heterogeneity. This technology has been used to analyze genetic variation, specific metabolic activity, and evolutionary processes in tumors, which may help us understand tumor occurrence and development and improve our understanding of the tumor microenvironment. In addition, it provides a theoretical basis for the development of clinical treatments, especially for personalized medicine. In this article, we briefly introduce Single cell sequencing technology, summarize the application of Single cell sequencing to study the tumor microenvironment, as well as its therapeutic application in different clinical procedures.
Collapse
Affiliation(s)
- Ruo Han Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Le Xin Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jing He
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
30
|
Han D, Yu Z, Zhang H, Liu H, Wang B, Qian D. Microenvironment-associated gene HSD11B1 may serve as a prognostic biomarker in clear cell renal cell carcinoma: a study based on TCGA, RT‑qPCR, Western blotting, and immunohistochemistry. Bioengineered 2021; 12:10891-10904. [PMID: 34845968 PMCID: PMC8810109 DOI: 10.1080/21655979.2021.1994908] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common malignant tumors worldwide. The clinical treatment of ccRCC is strongly associated with the tumor microenvironment (TME). Identifying potential markers of ccRCC is important to improve prognosis. Therefore, in the present study, the levels of immune/stromal components and the proportion of tumor-infiltrating immune cells (TIICs) were determined in 611 ccRCC samples using the ESTIMATE and CIBERSORT analytical tools. Subsequently, hydroxysteroid 11-beta dehydrogenase-1 (HSD11B1) was identified by univariate Cox regression analysis, protein-protein interaction (PPI) networks and clinical survival analysis to be associated with ccRCC prognosis. At the same time, the abundance of HSD11B1 increased significantly in ccRCC was verified by western blotting, RT‑qPCR and immunostaining analysis. Furthermore, Gene Set Enrichment Analysis (GSEA) and TME suggested that HSD11B1 was involved in TME immune-related status. Taken together, the results of the present study demonstrated that HSD11B1 is a potential prognostic biomarker associated with immune cell infiltration in ccRCC.
Collapse
Affiliation(s)
- Di Han
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, P. R. China
| | - Zhongjie Yu
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong, P. R. China
| | - Hong Zhang
- School of Public Health, Qingdao University, Qingdao, Shandong, P. R. China
| | - Haipeng Liu
- Oral Research Center, Qingdao Municipal Hospital, Qingdao, Shandong, P. R. China
| | - Bin Wang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong, P. R. China
| | - Donmeng Qian
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, P. R. China
| |
Collapse
|
31
|
Li J, Yu N, Li X, Cui M, Guo Q. The Single-Cell Sequencing: A Dazzling Light Shining on the Dark Corner of Cancer. Front Oncol 2021; 11:759894. [PMID: 34745998 PMCID: PMC8566994 DOI: 10.3389/fonc.2021.759894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022] Open
Abstract
Tumorigenesis refers to the process of clonal dysplasia that occurs due to the collapse of normal growth regulation in cells caused by the action of various carcinogenic factors. These “successful” tumor cells pass on the genetic templates to their generations in evolutionary terms, but they also constantly adapt to ever-changing host environments. A unique peculiarity known as intratumor heterogeneity (ITH) is extensively involved in tumor development, metastasis, chemoresistance, and immune escape. An understanding of ITH is urgently required to identify the diversity and complexity of the tumor microenvironment (TME), but achieving this understanding has been a challenge. Single-cell sequencing (SCS) is a powerful tool that can gauge the distribution of genomic sequences in a single cell and the genetic variability among tumor cells, which can improve the understanding of ITH. SCS provides fundamental ideas about existing diversity in specific TMEs, thus improving cancer diagnosis and prognosis prediction, as well as improving the monitoring of therapeutic response. Herein, we will discuss advances in SCS and review SCS application in tumors based on current evidence.
Collapse
Affiliation(s)
- Jing Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nan Yu
- Department of Pharmacy, Qingdao Eighth People's Hospital, Qingdao, China
| | - Xin Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengna Cui
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
32
|
Yu X, Wang Z, Chen Y, Yin G, Liu J, Chen W, Zhu L, Xu W, Li X. The Predictive Role of Immune Related Subgroup Classification in Immune Checkpoint Blockade Therapy for Lung Adenocarcinoma. Front Genet 2021; 12:771830. [PMID: 34721552 PMCID: PMC8554034 DOI: 10.3389/fgene.2021.771830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 01/17/2023] Open
Abstract
Background: In lung adenocarcinoma (LUAD), the predictive role of immune-related subgroup classification in immune checkpoint blockade (ICB) therapy remains largely incomplete. Methods: Transcriptomics analysis was performed to evaluate the association between immune landscape and ICB therapy in lung adenocarcinoma and the associated underlying mechanism. First, the least absolute shrinkage and selection operator (LASSO) algorithm and K-means algorithm were used to identify immune related subgroups for LUAD cohort from the Cancer Genome Atlas (TCGA) database (n = 572). Second, the immune associated signatures of the identified subgroups were characterized by evaluating the status of immune checkpoint associated genes and the immune cell infiltration. Then, potential responses to ICB therapy based on the aforementioned immune related subgroup classification were evaluated via tumor immune dysfunction and exclusion (TIDE) algorithm analysis, and survival analysis and further Cox proportional hazards regression analysis were also performed for LUAD. In the end, gene set enrichment analysis (GSEA) was performed to explore the metabolic mechanism potentially responsible for immune related subgroup clustering. Additionally, two LUAD cohorts from the Gene Expression Omnibus (GEO) database were used as validation cohort. Results: A total of three immune related subgroups with different immune-associated signatures were identified for LUAD. Among them, subgroup 1 with higher infiltration scores for effector immune cells and immune checkpoint associated genes exhibited a potential response to IBC therapy and a better survival, whereas subgroup 3 with lower scores for immune checkpoint associated genes but higher infiltration scores for suppressive immune cells tended to be insensitive to ICB therapy and have an unfavorable prognosis. GSEA revealed that the status of glucometabolic reprogramming in LUAD was potentially responsible for the immune-related subgroup classification. Conclusion: In summary, immune related subgroup clustering based on distinct immune associated signatures will enable us to screen potentially responsive LUAD patients for ICB therapy before treatment, and the discovery of metabolism associated mechanism is beneficial to comprehensive therapeutic strategies making involving ICB therapy in combination with metabolism intervention for LUAD.
Collapse
Affiliation(s)
- Xiaozhou Yu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ziyang Wang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Molecular Imaging and Nuclear Medicine, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Yiwen Chen
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Guotao Yin
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jianjing Liu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wei Chen
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lei Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
33
|
Sun G, Li Z, Rong D, Zhang H, Shi X, Yang W, Zheng W, Sun G, Wu F, Cao H, Tang W, Sun Y. Single-cell RNA sequencing in cancer: Applications, advances, and emerging challenges. Mol Ther Oncolytics 2021; 21:183-206. [PMID: 34027052 PMCID: PMC8131398 DOI: 10.1016/j.omto.2021.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cancer has become one of the greatest threats to human health, and new technologies are urgently needed to further clarify the mechanisms of cancer so that better detection and treatment strategies can be developed. At present, extensive genomic analysis and testing of clinical specimens shape the insights into carcinoma. Nevertheless, carcinoma of humans is a complex ecosystem of cells, including carcinoma cells and immunity-related and stroma-related subsets, with accurate characteristics obscured by extensive genome-related approaches. A growing body of research shows that sequencing of single-cell RNA (scRNA-seq) is emerging to be an effective way for dissecting human tumor tissue at single-cell resolution, presenting one prominent way for explaining carcinoma biology. This review summarizes the research progress of scRNA-seq in the field of tumors, focusing on the application of scRNA-seq in tumor circulating cells, tumor stem cells, tumor drug resistance, the tumor microenvironment, and so on, which provides a new perspective for tumor research.
Collapse
Affiliation(s)
- Guangshun Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhouxiao Li
- Department of Hand Surgery, Plastic Surgery and Aesthetic Surgery, Ludwig Maximilians University, Munich, Germany
| | - Dawei Rong
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Hao Zhang
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xuesong Shi
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weijun Yang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wubin Zheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Yangbai Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Chong ZX, Ho WY, Yeap SK, Wang ML, Chien Y, Verusingam ND, Ong HK. Single-cell RNA sequencing in human lung cancer: Applications, challenges, and pathway towards personalized therapy. J Chin Med Assoc 2021; 84:563-576. [PMID: 33883467 DOI: 10.1097/jcma.0000000000000535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is one of the most prevalent human cancers, and single-cell RNA sequencing (scRNA-seq) has been widely used to study human lung cancer at the cellular, genetic, and molecular level. Even though there are published reviews, which summarized the applications of scRNA-seq in human cancers like breast cancer, there is lack of a comprehensive review, which could effectively highlight the broad use of scRNA-seq in studying lung cancer. This review, therefore, was aimed to summarize the various applications of scRNA-seq in human lung cancer research based on the findings from different published in vitro, in vivo, and clinical studies. The review would first briefly outline the concept and principle of scRNA-seq, followed by the discussion on the applications of scRNA-seq in studying human lung cancer. Finally, the challenges faced when using scRNA-seq to study human lung cancer would be discussed, and the potential applications and challenges of scRNA-seq to facilitate the development of personalized cancer therapy in the future would be explored.
Collapse
Affiliation(s)
- Zhi-Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Wan-Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Swee-Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Mong-Lien Wang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yueh Chien
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Nalini Devi Verusingam
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
- National Cancer Council (MAKNA), Kuala Lumpur, Malaysia
| | - Han-Kiat Ong
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| |
Collapse
|